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Introduction Survey Bootstrapping

R Frame of Mind

Iteration is commonly needed

repeat the same thing over and over with new samples
process several subgroups of data (compare cities)
apply various functions to one data set

Some idioms make code faster.

Some idioms make code more understandable.
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Fit These Notes Into Context

Use of iterators requires the ability to write small functions.

If you have never written a small function for R, please review
the lecture functions-1 before tackling this material.

This lecture was once part of functions-1. In fact, it was the
major motivation for functions-1, because I had to teach
people how to write functions before using R apply
statements.
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Clarity and Understandability

Especially in the early years of R, people who used for loops
were ridiculed and urged to use apply() instead.

Some ridicule was justified because code based on for()

often makes heavy use of ’[’ to access data, and that is a very
slow operator.

I have examples of silly/slow code using for()

However, if you have only a few situations to loop through,
there is not usually a substantial speedup by recoding from
for() to apply() (see Chambers, Software for Data
Analysis)

On the other hand, for() loops, especially nested loops, are
prone to user-error and miscalculations, and they will be more
difficult to read.
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Bootstrapping is at the End

Difficult to be sure bootstrapping should be included in this
lecture

It is included here because people who are frustrated with R’s
apply concepts are also usually frustrated with bootstrapping
in R.

Why this makes a difference: Efficiency! People who do
bootstrapping in the literal, obvious way, are generally wasting
memory and time.

Iterators 8 / 66 University of Kansas



Introduction Survey Bootstrapping

Outline

1 Introduction

2 Survey
for
apply
lapply
lapply: Extended Example #1
lapply: Extended Example #2
mapply: a secret weapon

3 Bootstrapping

Iterators 9 / 66 University of Kansas



Introduction Survey Bootstrapping

R has lots of ways to do things over and over

for loop: process by “i” or by “element”

apply: process rows and/or columns in a matrix

lapply: process each element in a list

sapply: attempts to simplify output from lapply

replicate: shorthand for sapply for simple simulations

mapply: for functions that need several arguments, separately
drawn from separate vectors or lists
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for looping

First, I initialize x1, then

loop over elements to set their values

doubleMe <− f u n c t i o n ( i n pu t = 0) {
newva l <− 2 * i n pu t

}
x1 <− v e c t o r (mode = ”numer ic ” , l e n g t h = 57)
f o r ( i i n 1 : 57 ) {x1 [ i ] <− doubleMe ( i ) }

integers i from 1 to 57 are sent to double me, results collect

Note, it is not necessary to actually do this for loop in R,
because R is vectorized.

x2 <− doubleMe ( 1 : 5 7 )
a l l . e q u a l ( x1 , x2 )

[ 1 ] TRUE

Using vectorized code is much faster.
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“apply()”

useRs are urged to avoid “for loops” when possible

Why? Accessing particular values with “[” (vector or matrix
indexes) is SLOW. Better to exploit R’s “vectorization”

apply() is one of a family of functions that can replace a for
loop.

apply() takes a matrix, and does “the same FUN” to all of its
rows or columns (or both).

Definition: MARGIN=1 means “work row by row”,
MARGIN=2 means “column by column”
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Example of “apply()” With a Built-In FUN

Given a matrix xyz with columns “x”, “y”, and “z”

On the columns, MARGIN=2, apply the R “mean” function.
xyz <− mat r i x ( rnorm (9) , n co l =3)
xyz

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 0 .5855288 −0.4534972 0 .6300986
[ 2 , ] 0 .7094660 0 .6058875 −0.2761841
[ 3 , ] −0.1093033 −1.8179560 −0.2841597

co lnames ( xyz ) <− c ( ”x ” , ”y ” , ”z ”)
app l y ( xyz , MARGIN = 2 , FUN = mean )

x y z
0 .39523051 −0.55518856 0 .02325157

If there is no “built in” function that does what you want, then
you have to write your own.
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Write your own Function for apply

Suppose you want the second-highest score from each column.

Write a little function called “second()”

second <− f u n c t i o n ( a c o l = NULL) {
s o r t ( a c o l ) [ 2 ]

}
p r i n t ( xyz )

x y z
[ 1 , ] 0 .5855288 −0.4534972 0 .6300986
[ 2 , ] 0 .7094660 0 .6058875 −0.2761841
[ 3 , ] −0.1093033 −1.8179560 −0.2841597

app l y ( xyz , MARGIN = 2 , FUN = second )

x y z
0 .5855288 −0.4534972 −0.2761841
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Apply the normedEntropy function to rows

The normedEntropy() function is presented in the lecture
functions-1. I reproduce it for completeness here

d i v r <− f u n c t i o n ( p = 0) {
i f e l s e ( p > 0 & p < 1 , −p * l o g2 ( p ) , 0)

}
en t ropy <− f u n c t i o n ( p ) {

sum( d i v r ( p ) )
}
maximumEntropy <− f u n c t i o n (N) − l o g2 (1 / N)
normedEntropy <− f u n c t i o n ( x ) en t ropy ( x ) /

maximumEntropy ( l e n g t h ( x ) )

First, create a matrix in which the sum of each row is 1.0
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Apply the normedEntropy function to rows ...

xmat <− mat r i x ( rmult inom (6 , s i z e = 20 , prob = c
(1 , 2 , 3 , 4 , 5 ) ) , byrow = T, nco l = 5)

xmat <− p r o p . t a b l e ( xmat , 1)
p r i n t ( round ( xmat , 3 ) )

[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ]
[ 1 , ] 0 . 00 0 .30 0 .15 0 .20 0 .35
[ 2 , ] 0 . 20 0 .15 0 .20 0 .20 0 .25
[ 3 , ] 0 . 10 0 .15 0 .10 0 .30 0 .35
[ 4 , ] 0 . 10 0 .00 0 .15 0 .40 0 .35
[ 5 , ] 0 . 05 0 .10 0 .30 0 .35 0 .20
[ 6 , ] 0 . 10 0 .05 0 .30 0 .25 0 .30
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Entropy for each row!

apply normed Entropy to each Row with apply

app l y ( xmat , MARGIN = 1 , FUN = normedEntropy )

[ 1 ] 0 .8295351 0 .9921503 0 .9156704 0 .7759110 0 .8888583 0
.9003158
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“lapply()”: Do same thing to all Elements of a List

lapply() will take a list of things and apply a given function
to each item, returning a new list.
Generally,
aNewList <- lapply( someList, FUN = someFunction )

someFunction MUST accept the elements from someList as
the first argument

Additional arguments to someFunction are allowed
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Example Use of lapply

Create a list with 5 sets of random uniform normal variables

s amp l e L i s t <− l a p p l y ( r ep (1000 ,5) , rnorm )
s amp l e L i s t [ [ 1 ] ] [ 8 8 8 ]

[ 1 ] −0.3101479

Same as

s amp l e L i s t <− l i s t ( ) ## or <− vector(``list '', 5)

s amp l e L i s t [ [ 1 ] ] <− rnorm (1000)
s amp l e L i s t [ [ 2 ] ] <− rnorm (1000)
s amp l e L i s t [ [ 3 ] ] <− rnorm (1000)
s amp l e L i s t [ [ 4 ] ] <− rnorm (1000)
s amp l e L i s t [ [ 5 ] ] <− rnorm (1000)
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Example Use of lapply
Get the mean of sets 1 and 2 individually
mean ( s amp l e L i s t [ [ 1 ] ] )

[ 1 ] 0 .04081866

mean ( s amp l e L i s t [ [ 2 ] ] )

[ 1 ] −0.02739241

Grab means of all sets with lapply
( aNewList <− l a p p l y ( s amp l eL i s t , mean ) )

[ [ 1 ] ]
[ 1 ] 0 .04081866

[ [ 2 ] ]
[ 1 ] −0.02739241

[ [ 3 ] ]
[ 1 ] −0.0255273

[ [ 4 ] ]
[ 1 ] 0 .005682177

[ [ 5 ] ]
[ 1 ] −0.003305987
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Why lapply, Not apply?

Sometimes our “data” is not an even set of columns that fits
in a data.frame or matrix

x l i s t <− l i s t ( x1 = c (1 , 1 , 1 , 2 , 3 , 3 ) , x2 = r p o i s (10 , lambda=3) ,
x3 = round ( rnorm (20 ,m=100 , s=1) ,0 ) )

e l i s t <− l a p p l y ( x l i s t , f u n c t i o n ( x ) { y <− t a b l e ( x ) / l e n g t h ( x
) ; normedEntropy ( y ) })
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Why lapply, not apply?

f o r ( i i n 1 : l e n g t h ( x l i s t ) ) {
ca t ( ”Given L i s t ”)
p r i n t ( x l i s t [ [ i ] ] )
ca t ( ”Normed Entropy ”)
p r i n t ( round ( e l i s t [ [ i ] ] , 3 ) )
ca t ( ”\n ”)
}

Given L i s t [ 1 ] 1 1 1 2 3 3
Normed Entropy [ 1 ] 0 .921

Given L i s t [ 1 ] 3 2 5 2 5 2 1 6 2 4
Normed Entropy [ 1 ] 0 .898

Given L i s t [ 1 ] 101 101 100 101 100 99 101 100 100 102 100
102 100 99 100 101 100 100 101 100

Normed Entropy [ 1 ] 0 .843
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Example with additional arguments
One NA wrecks mean (by default)
s amp l e L i s t <− l a p p l y ( r ep (1000 ,5) , rnorm )
s amp l e L i s t [ [ 1 ] ] [ 7 7 ] <− NA
( aNewList <− l a p p l y ( s amp l eL i s t , mean ) )

[ [ 1 ] ]
[ 1 ] NA

[ [ 2 ] ]
[ 1 ] −0.008354005

[ [ 3 ] ]
[ 1 ] −0.003276648

[ [ 4 ] ]
[ 1 ] −0.003438522

[ [ 5 ] ]
[ 1 ] 0 .05110267
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Example (cont.): Fix that Missing Value Problem

( aNewList <− l a p p l y ( s amp l eL i s t , mean , na.rm = TRUE) )

[ [ 1 ] ]
[ 1 ] −0.03336209

[ [ 2 ] ]
[ 1 ] −0.008354005

[ [ 3 ] ]
[ 1 ] −0.003276648

[ [ 4 ] ]
[ 1 ] −0.003438522

[ [ 5 ] ]
[ 1 ] 0 .05110267

Iterators 24 / 66 University of Kansas



Introduction Survey Bootstrapping

Example: lapply to Simulate Regressions.

The question:

Create 100 regression models from 100 data sets
Study the sampling distribution of the R2 statistic from those
regressions.
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Step 1.

The following generates 100 data frames in a list“mydatasets”.

ex s <− 10
exq <− 0 .345
e x s t d e <− 20
createOneDF <− f u n c t i o n ( run , s = NA, q = NA, s t d e = NA

) {
x <− 18 + 43* r u n i f (1000)
y <− s + q * x + rnorm (1000 , mean = 0 , sd = s td e )
mydf <− da t a . f r ame ( run , x , y )

}
mydatase t s <− l a p p l y ( 1 : 100 , createOneDF , exs , exq ,

e x s t d e )

Here the “list” is just a sequence 1,2,3,...

lapply automatically gives each list element to function as first
argument. (In this case, “run” number).
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Step 2.

Now apply a function to each data frame, make list
“myregressions”

my r e g r e s s i o n s <− l a p p l y ( mydatasets , FUN = f u n c t i o n (
mydf ) lm ( y ∼ x , data = mydf ) )

Note: small functions can be written “inline”

Could as well have written

ca l cReg <− f u n c t i o n ( ad f = NULL) {
mod <− lm ( y ∼ x , data = adf )
}

my r e g r e s s i o n s <− l a p p l y ( mydatasets , FUN = ca l cReg )

Iterators 27 / 66 University of Kansas



Introduction Survey Bootstrapping

Take Stock of What We Have

Each element in the list “mydatasets” really is a data frame:

head ( mydatase t s [ [ 3 3 ] ] )

run x y
1 33 41 .47315 30 .817774
2 33 48 .78788 48 .229489
3 33 31 .71107 45 .515414
4 33 50 .28991 −22.129543
5 33 60 .13310 33 .632953
6 33 35 .67771 9 .532895

Each element in “myregressions” really is a regression result
object

my r e g r e s s i o n s [ [ 3 3 ] ]
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Take Stock of What We Have ...

Ca l l :
lm ( fo rmu la = y ∼ x , data = mydf )

C o e f f i c i e n t s :
( I n t e r c e p t ) x

10 .5261 0 .3371

Which can be summarized thus:

summary ( my r e g r e s s i o n s [ [ 3 3 ] ] )
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Take Stock of What We Have ...

Ca l l :
lm ( fo rmu la = y ∼ x , data = mydf )

R e s i d u a l s :
Min 1Q Median 3Q Max

−56.643 −11.595 0 .873 12 .462 57 .854

C o e f f i c i e n t s :
Es t imate S td . E r r o r t v a l u e Pr (>| t | )

( I n t e r c e p t ) 10 .52613 1 .94869 5 .402 8 .26e−08 ***

x 0 .33713 0 .04737 7 .117 2 .10e−12 ***

−−−
S i g n i f . codes : 0 ' *** ' 0 .001 ' ** ' 0 .01 ' * ' 0 .05 ' . ' 0 . 1 ' '

1

Re s i d u a l s t anda rd e r r o r : 18 . 79 on 998 deg r e e s o f f reedom
Mu l t i p l e R2 : 0 .0483 , Ad jus ted R2 : 0 .04735
F− s t a t i s t i c : 50 . 66 on 1 and 998 DF, p−value : 2 .101e−12
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Take Stock of What We Have ...

Note, the R2 value that we need is sitting there, in the middle of the summary
output. We’ll need that.
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Step 3.

Grab the R2 from each regression in the list.

The estimate of the R2 is an element in the returned object
from summary.

One strategy: create an R list of summary objects

mysummaries <− l a p p l y ( my r eg r e s s i on s , FUN= summary )

Getting the R2 out of each one of those requires some tedious
grabbing, such as

myrsq <− l a p p l y ( mysummaries , FUN = f u n c t i o n (mr) {mr$
r . s q u a r e })

myrsq [ 1 : 5 ]
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Step 3. ...

[ [ 1 ] ]
[ 1 ] 0 .03758218

[ [ 2 ] ]
[ 1 ] 0 .03746384

[ [ 3 ] ]
[ 1 ] 0 .02569663

[ [ 4 ] ]
[ 1 ] 0 .03390325

[ [ 5 ] ]
[ 1 ] 0 .04059477

myrsq <− u n l i s t ( myrsq )
s t r ( myrsq )
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Step 3. ...

num [ 1 : 1 0 0 ] 0 .0376 0 .0375 0 .0257 0 .0339 0 .0406 . . .
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Sapply will do that in one shot

sapply is the “simplified apply”, it attempts to convert a list
into a vector or matrix.

snoop through the regressions, grab the R2.

myrsq <− s a pp l y ( mysummaries , FUN = f u n c t i o n (mr) {mr$
r . s q u a r e })

mean ( myrsq )

[ 1 ] 0 .04510022

sd ( myrsq )

[ 1 ] 0 .01280801

median ( myrsq )

[ 1 ] 0 .04424352
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Everybody Still Loves Histograms
Histogram of myrsq

R−Squares From 100 Regressions

D
en
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ty
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Example: Balance in Logistic Regression

Two years ago, I wondered (while auditing the categorical
class), “what if we run a logistic regression comparing men
and women and there are not very many men?”

Write functions to

manufacture data
analyze data
summarize & plot data

Iterators 37 / 66 University of Kansas



Introduction Survey Bootstrapping

Create Output Data: Need to convert real numbers to 0’s
and 1’s

η “eta” is input, the proclivity to “vote democratic”

s imLog i t <− f u n c t i o n (myeta ) {
mypi <− exp (myeta ) / (1 + exp (myeta ) ) ## SAME AS 1/(1+

exp(-myeta))

myuni f <− r u n i f ( l e n g t h (myeta ) )
y <− i f e l s e ( myuni f < mypi , 1 , 0)

}

Iterators 38 / 66 University of Kansas



Introduction Survey Bootstrapping

Example Use: Creates 1000 Observations

N <− 1000
A <− −1
B <− 0 . 3
x <− 1 + 10 * rnorm (N)
myeta <− A + B * x
y <− s imLog i t ( myeta )
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Illustration of Simulated Data
p l o t ( x , y , main = bquote ( e ta [ i ] == . (A) + . (B) * x [ i ] ) )
t e x t ( 0 . 5 *max( x ) , 0 .5 , e x p r e s s i o n ( Prob ( y [ i ] ==1)== f r a c (

1 , 1 + exp (−eta [ i ] ) ) ) )
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Introduction Survey Bootstrapping

The Fitted Line from glm
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Introduction Survey Bootstrapping

We are Interested in the Difference Between Two Groups
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Introduction Survey Bootstrapping

Now Automate That Process

Manufacture data

Run Regression

Return row of estimates

s imUnbalanced <− f u n c t i o n ( i t e r =0, parm ) {
A <− parm$A; B<− parm$B; C<− parm$C ; PrFem <− parm$PrFem
sex <− i f e l s e ( r u n i f (N) < PrFem , 0 , 1 )
myeta <− A + B * x + C * s ex
sex <− f a c t o r ( sex , l e v e l s = c (0 , 1 ) , l a b e l s = c ( ”M” , ”F ”) )
y <− s imLog i t ( myeta )
myglm2 <− glm ( y ∼ x + sex , f am i l y = b i nom i a l )
myglm2sum <− co e f ( summary (myglm2 ) )
e s t <− myglm2sum [ 3 , ]

}
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Introduction Survey Bootstrapping

Use sapply to run 1000 Regressions

p <− l i s t ( )
p$A <− −1 ; p$B <− 0 . 3 ; p$C <− 0 . 4
p$PrFem <− 0 . 5
r e s u l t 4 5 <− l i s t ( s a pp l y ( 1 : 1000 , s imUnbalanced , parm = p) ,

parm = p)

Note: I’m combining the sapply result, along with “p”, for
record-keeping

p$PrFem <− 0 . 9
r e s u l t 4 9 <− l i s t ( s a pp l y ( 1 : 1000 , s imUnbalanced , parm = p) ,

parm = p)
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Introduction Survey Bootstrapping

Now Plan to Draw Some Figures

c r e a t e F i g s <− f u n c t i o n ( r e s u l t ) {
dat <− r e s u l t [ [ 1 ] ]
C <− r e s u l t $parm$C
PrFem <− r e s u l t $parm$PrFem
mybeta <− dat [ 1 , ]

hrow1 <− h i s t (mybeta , b r eak s =50, p l o t=F)
mybreaks <− hrow1$ b r eak s

breakMember <− cut ( dat [ 1 , ] , mybreaks )

mypval <− dat [ 4 , ]
my s i g n i f <− i f e l s e ( ( mypval < 0 .05 ) , 1 , 0)
d f <− da t a . f r ame (mybeta , mypval , my s i gn i f , breakMember )

p r o p s i g <− by ( d f $ mys i gn i f , INDICES = l i s t ( d f $breakMember )
, mean , s i m p l i f y = TRUE)

mytrat <− dat [ 3 , ]
mycounts <− hrow1$ count s
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Introduction Survey Bootstrapping

Now Plan to Draw Some Figures ...

p l o t ( dat [ 1 , ] , dat [ 4 , ] , x l a b = ”beta e s t ima t e ” , y l a b = ”
e s t ima t ed p ” , cex = 0 .7 , main = pas t e ( ”True Beta=” ,C ,
”Prop . Fem.=” , PrFem) )

gc <− c ( ”gray98 ” , ”gray70 ” , ”gray50 ” , ”gray40 ”)

cut ( p rop s i g , b r e ak s=c (−1, 0 .1 , 0 .5 , 0 .9 , 1 . 1 ) )

c a t p r o p s i g <− cut ( p rop s i g , b r e ak s = c (−1, 0 .1 , 0 .5 , 0 .9 , 1 . 1 )
, o r d e r ed = T, l a b e l s = c ( ”0 ” , ” l t h ” , ”mth ” , ”1 ”) )

b a r p l o t ( hrow1$ den s i t y , c o l = gc [ a s . nume r i c ( c a t p r o p s i g ) ] ,
names = hrow1$mids )

}
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Introduction Survey Bootstrapping

For Balanced Data
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Introduction Survey Bootstrapping

For Balanced Data ...
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For Unbalanced Data

Iterators 49 / 66 University of Kansas



Introduction Survey Bootstrapping

For Unbalanced Data ...
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Introduction Survey Bootstrapping

Final Cautionary Note

At some point, this approach will start to “bog down” under
the weight of memory usage and CPU delays

I’d suggest re-designing so that we separately create the data
frames and run all of the analysis on each separately

That would allow us to 1) stay within memory limits and 2)
parallelize the work across separate cores or computers (see
the R parallel package).
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Introduction Survey Bootstrapping

mapply

I never used mapply for the first 5 years of using R

Now I see need for it at least once per month

The documentation may be difficult to understand, but once
you appreciate the beauty of it, you will like it.
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Introduction Survey Bootstrapping

When is mapply needed

You have several vectors or lists of the same length

You want to take the first element from each and do
something.

Then take the second element from each and do something

Don’t write nested “for” loops, as users are often tempted to
do.

Iterators 53 / 66 University of Kansas



Introduction Survey Bootstrapping

Example of mapply usage in rockchalk package

rockchalk has many functions that are doing the same thing
over and over for subsets of data.

Run the examples for the addLines() function, you should
see it integrates plotSlopes() and plotPlane() by transferring
information.
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Introduction Survey Bootstrapping

Example use of mapply in rockchalk 1.8

dataSplits is a collection of data frames. We want to do the
plot for each with the correct colors, which are stored in
linesFrom variables col and lty.

The small function drawLine accepts 3 arguments, one from
data, one from col, one from lty.

i f ( ! m i s s i n g ( l i n e sF rom ) ) {
d a t a S p l i t s <− s p l i t ( l i n e sF rom $newdata , f = l i n e sF rom

$newdata [ [ l i n e sF rom $ c a l l [ [ ”modx ” ] ] ] ] )
drawLine <− f u n c t i o n ( nd , mycol , my l ty ) {

l i n e s ( t r an s3d ( nd [ [ p l o t x 1 ] ] , nd [ [ p l o t x 2 ] ] , nd$ f i t ,
pmat=r e s ) , c o l = mycol , lwd = l f lwd , l t y =
mylty )

}
mapply ( drawLine , d a t a S p l i t s , l i n e sF rom $ co l ,

l i n e sF rom $ l t y )
}
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Introduction Survey Bootstrapping

Example use of mapply in rockchalk 1.8 ...

Note we are free to name the variables inside drawLine
however we want. That help keep our minds clear about
whether we are talking about just one color or a vector of
colors.
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Introduction Survey Bootstrapping

Outline

1 Introduction

2 Survey
for
apply
lapply
lapply: Extended Example #1
lapply: Extended Example #2
mapply: a secret weapon

3 Bootstrapping
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Introduction Survey Bootstrapping

Bootstrapping: Some “Do it Yourself” Work Is Required

Many R functions require users to write little functions that
do little things.

In many cases (like lapply or apply), look for FUN as an
argument.

Sometimes no builtin-exists. useR must create!
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Introduction Survey Bootstrapping

boot Function Requires a Special Function “statistic”
l i b r a r y ( boot )
? boot

Boot s t r ap Resampl ing

D e s c r i p t i o n :

Gene ra te 'R ' boo t s t r a p r e p l i c a t e s o f a s t a t i s t i c a p p l i e d to
d a t a .

Both pa r ame t r i c and nonpa ramet r i c r e s amp l i n g a r e p o s s i b l e .
. . .

boot ( data , s t a t i s t i c , R , s im = ' ' o r d i n a r y ' ' , s t y p e = ' ' i ' ' ,
s t r a t a=rep (1 , n ) , L = NULL , m = 0 , we i gh t s = NULL ,
r an . g en=f u n c t i o n (d , p ) d , mle = NULL , s imp l e = FALSE , . . . )

s t a t i s t i c : A f u n c t i o n which when a p p l i e d to data r e t u r n s a
v e c t o r

c o n t a i n i n g the s t a t i s t i c ( s ) o f i n t e r e s t . . .
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Introduction Survey Bootstrapping

Bootstrap: Background Explanation

Bootstrap: draw samples repeatedly and re-estimate θ

Resulting values approximate a sampling distribution θ

The “boot” package asks for a data frame and a special
function “statistic”. statistic must

accept a data frame as the first argument
accept an “index vector” as the second argument
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Introduction Survey Bootstrapping

Don’t Panic: This is Confusing to Everybody

Example usage

boot ( data , s t a t i s t i c = yourFunct ion , R = 1000)

boot will iterate 1000 times, and yourFunction will provide the
statistic of interest.

You write yourFunction to make required calculation.

boot will tell yourFunction which lines to use in the data
frame, over-and-over.
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Introduction Survey Bootstrapping

The Median of a Poisson Distribution

Suppose you have a sample from a Poisson Process:

samp <− r p o i s (20 , lambda=3)

And you calculate the median:

median ( samp )

[ 1 ] 2 . 5

How confident are you in that estimate of the median?
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Introduction Survey Bootstrapping

Bootstrap Your Median

Here is yourFunction:

calcMed <− f u n c t i o n ( dat , i nd ) {
median ( dat [ i nd ] )

}

dat[ind] has the effect of “pulling” rows that match “ind” from
“dat”

The boot function will send 1000 “case indexes” to your
function.

l i b r a r y ( boot )
bpo i s <− boot ( samp , calcMed , R = 1000)
bpo i s
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Introduction Survey Bootstrapping

Bootstrap Your Median ...

ORDINARY NONPARAMETRIC BOOTSTRAP

Ca l l :
boot ( data = samp , s t a t i s t i c = calcMed , R = 1000)

Boot s t r ap S t a t i s t i c s :
o r i g i n a l b i a s s t d . e r r o r

t1 * 2 . 5 0 .076 0 .6173371
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Introduction Survey Bootstrapping

Let’s plot that
Histogram of t

t*

D
en

si
ty

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
1

2
3

4

● ●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

−3 −2 −1 0 1 2 3

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Quantiles of Standard Normal

t*

Iterators 65 / 66 University of Kansas



Introduction Survey Bootstrapping

Why Do They Do It That Way?

Your instinct is to do this the “simple” way

(Just) “Manually” draw new random samples of rows from a
data frame.
But: Creating 1000s of “new” re-sampled data sets would
“waste” (exhaust?) memory
Would be especially slow if separate data sets have to be
copied between systems.

More efficient to keep 1 data frame, but 1000’s of vectors of
row numbers.
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