Introduction S Bootstrapping

Outline

© Introduction

© Survey

o for
apply
lapply
lapply: Extended Example #1
lapply: Extended Example #2
mapply: a secret weapon

© Bootstrapping

Iterators 1/66 University of Kansas

Iteration: for, appply, etc
Efficiency and Clarity

Paul E. Johnson1?2

1University of Kansas, Department of Political Science 2Center for Research
Methods and Data Analysis

2013

Iterators 2 /66 University of Kansas

Introduction S Bootstrapping

Outline

© Introduction

© Survey

o for
apply
lapply
lapply: Extended Example #1
lapply: Extended Example #2
mapply: a secret weapon

© Bootstrapping

Iterators 3/66 University of Kansas

Introduction

Outline

© Introduction

Iterators 4 /66 University of

Introduction

R Frame of Mind

@ lteration is commonly needed

e repeat the same thing over and over with new samples
o process several subgroups of data (compare cities)
e apply various functions to one data set

@ Some idioms make code faster.

@ Some idioms make code more understandable.

Iterators 5/66 University of Kansas

Introduction

Fit These Notes Into Context

@ Use of iterators requires the ability to write small functions.

@ If you have never written a small function for R, please review
the lecture functions-1 before tackling this material.

@ This lecture was once part of functions-1. In fact, it was the
major motivation for functions-1, because | had to teach
people how to write functions before using R apply
statements.

Iterators 6 /66 University of Kansas

Introduction S Bootstrapping

Clarity and Understandability

@ Especially in the early years of R, people who used for loops
were ridiculed and urged to use apply () instead.

@ Some ridicule was justified because code based on for ()
often makes heavy use of '[' to access data, and that is a very
slow operator.

@ | have examples of silly/slow code using for ()

@ However, if you have only a few situations to loop through,
there is not usually a substantial speedup by recoding from
for() to apply() (see Chambers, Software for Data
Analysis)

@ On the other hand, for () loops, especially nested loops, are
prone to user-error and miscalculations, and they will be more
difficult to read.

Iterators 7/66 University of Kansas

Introduction S Bootstrapping

Bootstrapping is at the End

@ Difficult to be sure bootstrapping should be included in this
lecture

@ It is included here because people who are frustrated with R's
apply concepts are also usually frustrated with bootstrapping
in R.

@ Why this makes a difference: Efficiency! People who do
bootstrapping in the literal, obvious way, are generally wasting
memory and time.

Iterators 8/66 University of Kansas

Outline

© Survey

Iterators University of

Introduction

R has lots of ways to do things over and over

Iterators

for loop: process by “i" or by “element”

apply: process rows and/or columns in a matrix
lapply: process each element in a list

sapply: attempts to simplify output from lapply
replicate: shorthand for sapply for simple simulations

mapply: for functions that need several arguments, separately
drawn from separate vectors or lists

10/ 66 University of Kansas

Introduction Bootstrapping

for looping

o First, | initialize x1, then
@ loop over elements to set their values

doubleMe <— function(input = 0){
newval <— 2 % input

}

x1 <— vector(mode = "numeric”, length = 57)
for(i in 1:57) {x1[i] <— doubleMe(i)}
integers i from 1 to 57 are sent to double me, results collect
@ Note, it is not necessary to actually do this for loop in R,
because R is vectorized.

x2 <— doubleMe (1:57)
all.equal (x1,x2)

[[1] TRUE |

@ Using vectorized code is much faster.

Iterators 11 /66 University of Kansas

Introduction

“apply()"”

@ useRs are urged to avoid “for loops” when possible

@ Why? Accessing particular values with “[" (vector or matrix
indexes) is SLOW. Better to exploit R's “vectorization”

@ apply() is one of a family of functions that can replace a for
loop.

o apply() takes a matrix, and does "“the same FUN" to all of its
rows or columns (or both).

@ Definition: MARGIN=1 means “work row by row",
MARGIN=2 means “column by column”

Iterators 12 /66 University of Kansas

Example of “apply()” With a Built-In FUN

@ Given a matrix xyz with columns "x", "y", an

@ On the columns, MARGIN=2, apply the R “mean” function.

xyz <— matrix(rnorm(9), ncol=3)
xyz

[.1] [.2] [,3]
[1,] 0.5855288 —0.4534972 0.6300986
[2,] 0.7094660 0.6058875 —0.2761841
[3,] —0.1093033 —1.8179560 —0.2841597

colnames(xyz) <— c("x", "y", "z")

apply (xyz, MARGIN = 2, FUN = mean)

X 4

y
0.39523051 —0.55518856 0.02325157

@ If there is no “built in” function that does what you want, then

you have to write your own.

13 /66

University of Kansas

Bootstrapping

Introduction

Write your own Function for apply

@ Suppose you want the second-highest score from each column.

o Write a little function called “second()”

second <— function(acol = NULL){
sort(acol)[2]

print(xyz)

X y z
[1,] 0.5855288 —0.4534972 0.6300986
[2,] 0.7094660 0.6058875 —0.2761841
[3,] —0.1093033 —1.8179560 —0.2841597

apply(xyz, MARGIN = 2, FUN = second)

X y z
0.5855288 —0.4534972 —-0.2761841

Iterators 14 /66 University of Kansas

Bootstrapping

Introduction

Apply the normedEntropy function to rows

@ The normedEntropy() function is presented in the lecture
functions-1. | reproduce it for completeness here
divr <— function(p = 0){
ifelse (p>0&p< 1, —p % log2(p), 0)

}

entropy <— function (p){
sum(divr(p))
}
maximumEntropy <— function(N) — log2(1 / N)

normedEntropy <— function(x) entropy(x) /
maximumEntropy (length (x))

@ First, create a matrix in which the sum of each row is 1.0

Iterators 15 /66 University of Kansas

Apply the normedEntropy function to rows ...

xmat <— matrix(rmultinom (6, size = 20, prob = c
(1,2,3,4,5)), byrow =T, ncol = 5)

xmat <— prop.table(xmat, 1)

print(round(xmat,3))

[.1] [.2] [,3] [.4] [.5]
[1,] 0.00 0.30 0.15 0.20 0.35
[2,] 0.20 0.15 0.20 0.20 0.25
[3,] 0.10 0.15 0.10 0.30 0.35
[4,] 0.10 0.00 0.15 0.40 0.35
[5,] 0.05 0.10 0.30 0.35 0.20
[6,] 0.10 0.05 0.30 0.25 0.30

Iterators 16 /66 University of Kansas

Entropy for each row!

@ apply normed Entropy to each Row with apply
apply (xmat, MARGIN = 1, FUN = normedEntropy)

[1] 0.8295351 0.9921503 0.9156704 0.7759110 0.8888583 0
.9003158

Iterators 17 /66 University of Kansas

Bootstrapping

Introduction

“lapply()": Do same thing to all Elements of a List

@ lapply () will take a list of things and apply a given function
to each item, returning a new list.
Generally,
aNewList <- lapply(someList, FUN = someFunction)

@ someFunction MUST accept the elements from somelList as
the first argument

@ Additional arguments to someFunction are allowed

Iterators 18 /66 University of Kansas

Example Use of lapply

@ Create a list with 5 sets of random uniform normal variables

samplelList <— lapply(rep(1000,5), rnorm)
sampleList [[1]][888]

[[1] —0.3101479

@ Same as

samplelList <— list () ## or <— wvector(“list'', 5)
samplelist [[1]] <— rnorm(1000)
sampleList [[2]] <— rnorm(1000)
sampleList [[3]] <— rnorm(1000)
samplelList [[4]] <— rnorm(1000)
samplelist [[5]] <— rnorm(1000)

Iterators 19 /66 University of Kansas

Bootstrapping

Introduction

Example Use of lapply

@ Get the mean of sets 1 and 2 individually
mean(sampleList [[1]])

[[1] 0.04081866 |

mean(sampleList [[2]])

[[1] —0.02739241 |

@ Grab means of all sets with lapply
(aNewList <— lapply(sampleList, mean))

[[1]]
[1] 0.04081866

[[2]]
[1] —0.02739241

[[3]]
1] —0.02

University of Kansas

Iterators

Introduction Bootstrapping

Why lapply, Not apply?

@ Sometimes our “data” is not an even set of columns that fits
in a data.frame or matrix

xlist <— list(xl1 = ¢(1,1,1,2,3,3), x2 = rpois(10,lambda=3),
x3 = round(rnorm(20,m=100,s=1),0))

elist <— lapply(xlist, function(x) { y <— table(x)/length(x
); normedEntropy(y)})

Iterators 21 /66 University of Kansas

Introduction

Bootstrapping

Why lapply, not apply?

for(i in 1l:length(xlist)){
cat("Given List")
print(xlist [[i]])
cat("Normed Entropy”)
print (round(elist [[i]],3))
cat("\n")
}

Given List[1] 1 1
|

33
Normed Entropy [1 1

12
0.92
Given List [1] 32525216 2 4
Normed Entropy[1l] 0.898

102 100 99 100 101 100 100 101 100
Normed Entropy[1] 0.843

Given List [1] 101 101 100 101 100 99 101 100 100 102 100

Iterators 22 /66

University of Kansas

Introduction Bootstrapping

Example with additional arguments

@ One NA wrecks mean (by default)

sampleList <— lapply(rep(1000,5), rnorm)
sampleList [[1]][77] <— NA
(aNewlList <— lapply (sampleList, mean))

[[1]]
[1] NA

[[2]]
[1] —0.008354005

[[3]]
[1] —0.003276648

4
[1] —0.003438522

[[51]
[1] 0.05110267

Iterators 23 /66 University of Kansas

Bootstrapping

Introduction

Example (cont.): Fix that Missing Value Problem

(aNewlList <— lapply (sampleList, mean, na.rm = TRUE))

[[1]]
(1]

[
1] —0.03336209
[[2]]

[1] —0.008354005
[[3]]
[1] —0.003276648

[[4]]
[1] —0.003438522

[[5]]
[1] 0.05110267

Iterators 24 / 66 University of Kansas

Introduction Bootstrapping

Example: lapply to Simulate Regressions.

@ The question:

o Create 100 regression models from 100 data sets
o Study the sampling distribution of the R? statistic from those
regressions.

Iterators 25 /66 University of Kansas

Bootstrapping

Introduction

Step 1.

@ The following generates 100 data frames in a list “mydatasets”.

exs <— 10
exq <— 0.345
exstde <— 20
createOneDF <— function(run, s = NA, q = NA, stde = NA

)
x <— 18 4+ 43xrunif(1000)

y <— s + g * x + rnorm (1000, mean = 0, sd = stde)
mydf <— data.frame(run,x,y)

mydatasets <— lapply (1:100, createOneDF, exs, exq,
exstde)

@ Here the “list” is just a sequence 1,2,3,...

o lapply automatically gives each list element to function as first
argument. (In this case, “run” number).

Iterators 26 /66 University of Kansas

Introduction S3ootstrapping

Step 2.

@ Now apply a function to each data frame, make list
“myregressions”

myregressions <— lapply (mydatasets, FUN = function (
mydf) Im(y ~ x, data = mydf))

@ Note: small functions can be written “inline”

@ Could as well have written

calcReg <— function (adf = NULL){
mod <— Im(y ~ x, data = adf)

}

myregressions <— lapply (mydatasets, FUN = calcReg)

Iterators

University of Kansas

Introduction Bootstrapping

Take Stock of What We Have

@ Each element in the list “mydatasets” really is a data frame:
head(mydatasets [[33]])

run X y
1 33 41.47315 30.817774
2 33 48.78788 48.229489
3 33 31.71107 45.515414
4 33 50.28991 —22.129543
5 33 60.13310 33.632953
6 33 35.67771 9.532895

@ Each element in “myregressions” really is a regression result
object
myregressions [[33]]

Iterators 28 /66 University of Kansas

Introduction Bootstrapping

Take Stock of What We Have ...

Call:
Im(formula = y ~ x, data = mydf)

Coefficients:
(Intercept) X
10.5261 0.3371

@ Which can be summarized thus:

summary (myregressions [[33]])

Iterators 29 /66 University of Kansas

Introduction Bootstrapping

Take Stock of What We Have ...

Call:
Im(formula = y ~ x, data = mydf)

Residuals:
Min 1Q Median 3Q Max
—56.643 —11.595 0.873 12.462 57.854

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 10.52613 1.94869 5.402 8.26e—08 s*x*x
X 0.33713 0.04737 7.117 2.10e—12 xx%x

Signif. codes: 0 'sxxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 "' !
1

Residual standard error: 18.79 on 998 degrees of freedom
Multiple R?: 0.0483, Adjusted R?: 0.04735
F—statistic: 50.66 on 1 and 998 DF, p-—value: 2.101le—12

Iterators 30/ 66 University of Kansas

Introduction 2 rapping

Take Stock of What We Have ...

Note, the R? value that we need is sitting there, in the middle of the summary
output. We'll need that.

Iterators 31/66 University of Kansas

Introduction S3ootstrapping

[e]elele] Tole]

Step 3.

o Grab the R? from each regression in the list.

@ The estimate of the R? is an element in the returned object
from summary.
@ One strategy: create an R list of summary objects

mysummaries <— lapply (myregressions , FUN= summary)

@ Getting the R? out of each one of those requires some tedious
grabbing, such as
myrsq <— lapply (mysummaries, FUN = function(mr) {mr$

r.square})
myrsq[1:5]

Iterators University of Kansas

Iterators

o—

.03758218

[[2]]
[1] 0.03746384
[[3]]
[1] 0.02569663
[[4]]
[1] 0.03390325
[[5]1]
[1] 0.04059477

myrsq <— unlist(myrsq)

str(myrsq)

33 /66

University of Kansas

‘ num [1:100] 0.0376 0.0375 0.0257 0.0339 0.0406

Iterators 34 /66 University of Kansas

Sapply will do that in one shot

@ sapply is the “simplified apply”, it attempts to convert a list
into a vector or matrix.
@ snoop through the regressions, grab the R?.

myrsq <— sapply (mysummaries, FUN = function(mr) {mr$
r.square})
mean(myrsq)

[[1] 0.04510022 |

sd (myrsq)

[[1] 0.01280801 \

median (myrsq)

[[1] 0.04424352 |

Iterators 35/66 University of Kansas

Everybody Still Loves Histograms

Histogram of myrsq

" observed densi
o - I
o
2 O e I e Y
2 &+ ’]
[\
a |
o \
—
o A
T T T T T 1
0.00 0.02 0.04 0.06 0.08
R-Squares From 100 Regressions
Iterators 36 /66

University of Kansas

Introduction Bootstrapping

Example: Balance in Logistic Regression

e Two years ago, | wondered (while auditing the categorical
class), “what if we run a logistic regression comparing men
and women and there are not very many men?”

o Write functions to

e manufacture data
e analyze data
e summarize & plot data

Iterators 37 /66 University of Kansas

Introduction

Create Output Data: Need to convert real numbers to 0's
and 1's

n “eta” is input, the proclivity to “vote democratic”

simLogit <— function (myeta){
mypi <— exp(myeta) / (1 + exp(myeta)) ## SAME AS 1/ (1+
exp (-myeta))
myunif <— runif(length(myeta))
y <— ifelse(myunif < mypi, 1, 0)

}

Iterators 38/66 University of Kansas

Example Use: Creates 1000 Observations

Iterators

N <— 1000
A<— -1
B <- 0.3

x <— 1 4+ 10 x rnorm(N)
myeta <— A + B x x
y <— simlLogit(myeta)

39/ 66

University of Kansas

Introduction Bootstrapping

ooo 00000000

[llustration of Simulated Data

plot(x,y, main = bquote(eta[i]==.(A) + .(B) =x
text (0.5xmax(x), 0.5, expression(Prob(y[i]=
1, 1+ exp(—eta[i]))))

I x

ni=-1+0.3;
e 4 come - . e
-
0
@
< |
o
Protly =1) = —
> ro(y; =1) =——
v 1+exp(-n;)
=
o
N
pl
2 ¢ [o
o
-30 -20 -10 0 10 20 30

Iterators 40 / 66 University of Kansas

The Fitted Line from glm

Iterators

<
“

0.8

0.6

0.4

0.2

0.0

nNi=-1+0.3;

oomo

Profy; =1) =

1
L+exp(-n;)

-30

-20

-10

41 /66

University of Kansas

000008000000

We are Interested in the Difference Between Two Groups

Iterators

o
-

0.8

0.6

0.4

0.2

0.0

Ni=-1+0.3;

PRY

Prody; = 1) =

1
1+exp(-n;)

T
-30

T
-20

University of Kansas

Introduction Bootstrapping

000800000
0

Now Automate That Process

@ Manufacture data
@ Run Regression

@ Return row of estimates

simUnbalanced <— function (iter=0, parm){
A <— parm$A; B<— parm$B; C<— parm$C; PrFem <— parm$PrFem
sex <— ifelse(runif(N) < PrFem,0,1)
myeta <— A + B % x + C % sex
sex <— factor(sex, levels = ¢(0,1), labels = c("M","F"))
y <— simlLogit(myeta)
myglm2 <— glm(y ~ x 4+ sex, family = binomial)
myglm2sum <— coef(summary(mygim2))
est <— myglm2sum[3]

Iterators 43 / 66 University of Kansas

Introduction Bootstrapping

000080000
0

Use sapply to run 1000 Regressions

p <— list()

p$A <— —1; p%$B <— 0.3; p$C <— 0.4

p$PrFem <— 0.5

result45 <— list(sapply(1:1000, simUnbalanced, parm = p),
parm = p)

Note: I'm combining the sapply result, along with “p", for
record-keeping

p$PrFem <— 0.9
result49 <— list(sapply(1:1000, simUnbalanced, parm = p),

parm = p)

Iterators 44 / 66 University of Kansas

Introduction Bootstrapping

000000000
0

Now Plan to Draw Some Figures

createFigs <— function(result){
dat <— result [[1]]
C <— result$parm$C
PrFem <— result$parm$PrFem
mybeta <— dat[1,]

hrowl <— hist(mybeta, breaks=50, plot=F)
mybreaks <— hrowl$breaks

breakMember <— cut(dat[1,], mybreaks)

mypval <— dat[4]
mysignif <— ifelse ((mypval < 0.05), 1, 0)
df <— data.frame(mybeta, mypval, mysignif, breakMember)

propsig <— by(df$mysignif, INDICES = list (df$breakMember)
, mean, simplify = TRUE)

mytrat <— dat[3,]

mycounts <— hrowl$counts

Iterators 45 / 66 University of Kansas

Introduction Bootstrapping

000000000
0

Now Plan to Draw Some Figures ...

plot(dat[1,], dat[4,], xlab = "beta estimate”, ylab ="
estimated p”, cex = 0.7, main = paste("True Beta=",C,
"Prop. Fem.=", PrFem))

gc <— c("gray98"”,"gray70","gray50"”,"gray40")
cut(propsig, breaks=c(-1,0.1,0.5,0.9,1.1))

catpropsig <— cut(propsig, breaks = ¢(-1,0.1,0.5,0.9,1.1)
, ordered = T, labels = ¢(”0","Ith”,"mth”,"1"))

barplot (hrowl$density , col = gc[as.numeric(catpropsig)],
names = hrowl$mids)

Iterators 46 / 66 University of Kansas

000000000800

For Balanced Data

Iterators University of

Bootstrapping

000
[e]e]e]o]e]e] lole}

For Balanced Data

True Beta= 0.4 Prop. Fem.= 0.5

< |
- ! o
N ~
[}
1]
@ | * g
°© A |
A] To)
i =
Y
g° .8
z
= . e |
g < | -
<}
~ . ©
o] o
o
S - S
T T T T T T T o~
-0.2 0.0 0.2 04 06 08 10 -0.31 -0.05 0.19 0.41 0.63 0.85
beta estimate
Iterators

48 /66

University of Kansas

000000000080

For Unbalanced Data

Iterators University of

000
000000080

For Unbalanced Data ...

True Beta= 0.4 Prop. Fem.= 0.9 <
—] <]
A _
IR} o~
. -
© 1] ——
o ‘3 \ AT
. =N 1
{ 3 -
agl i o i
g i 31
© .
E ¥ E i
B < - © |
(] S 3’ o
-
s <
b4 o
N .
s .
.. ~N
] g
o
<l e
o
05 00 05 10 15 ~0.525 -0.025 0.425 0.825 1.225
beta estimate
University of Kansas

Iterators

Introduction

Final Cautionary Note

@ At some point, this approach will start to “bog down” under
the weight of memory usage and CPU delays

o I'd suggest re-designing so that we separately create the data
frames and run all of the analysis on each separately

@ That would allow us to 1) stay within memory limits and 2)
parallelize the work across separate cores or computers (see
the R parallel package).

Iterators 51 /66 University of Kansas

Introduction

mapply

@ | never used mapply for the first 5 years of using R
@ Now | see need for it at least once per month

@ The documentation may be difficult to understand, but once
you appreciate the beauty of it, you will like it.

University of Kansas

Iterators

Introduction

When is mapply needed

Iterators

@ You have several vectors or lists of the same length

@ You want to take the first element from each and do
something.

@ Then take the second element from each and do something

@ Don't write nested “for” loops, as users are often tempted to
do.

53 /66 University of Kansas

Bootstrapping

Introduction

Example of mapply usage in rockchalk package

@ rockchalk has many functions that are doing the same thing
over and over for subsets of data.

@ Run the examples for the addLines () function, you should
see it integrates plotSlopes() and plotPlane() by transferring
information.

Iterators 54 /66 University of Kansas

Introduction

Example use of mapply in rockchalk 1.8

@ dataSplits is a collection of data frames. We want to do the
plot for each with the correct colors, which are stored in
linesFrom variables col and lty.

@ The small function drawlLine accepts 3 arguments, one from
data, one from col, one from Ity.

if (!missing(linesFrom)) {
dataSplits <— split(linesFrom$newdata, f = linesFrom
$newdata [[linesFrom$call [["modx"]]]])
drawline <— function(nd, mycol, mylty)
lines (trans3d(nd[[plotx1]], nd[[plotx2]], nd$fit ,

pmat=res), col = mycol, Iwd = Iflwd, Ity =
mylty)
mapply(drawLine, dataSplits, linesFrom$col,

linesFrom$lty)

Iterators 55 /66 University of Kansas

Bootstrapping

Introduction

Example use of mapply in rockchalk 1.8 ...

@ Note we are free to name the variables inside drawLine
however we want. That help keep our minds clear about
whether we are talking about just one color or a vector of
colors.

Iterators 56 /66 University of Kansas

Bootstrapping

Outline

© Bootstrapping

Iterators University of Kansas

Bootstrapping

Introduction

Bootstrapping: Some “Do it Yourself” Work Is Required

@ Many R functions require users to write little functions that
do little things.

@ In many cases (like lapply or apply), look for FUN as an
argument.

@ Sometimes no builtin-exists. useR must create!

Iterators 58 /66 University of Kansas

Introduction Bootstrapping

boot Function Requires a Special Function “statistic”

library (boot)
?boot

Bootstrap Resampling
Description:
Generate 'R' bootstrap replicates of a statistic applied to

data.
Both parametric and nonparametric resampling are possible.

boot(data, statistic, R, sim = ''ordinary'', stype = '"i'"',
strata=rep (1, n), L = NULL, m = 0, weights = NULL,
ran.gen=function(d, p) d, mle = NULL, simple = FALSE, ...)

statistic: A function which when applied to data returns a
vector
containing the statistic(s) of interest...

Iterators 59 / 66 University of Kansas

Introduction Bootstrapping

Bootstrap: Background Explanation

@ Bootstrap: draw samples repeatedly and re-estimate 6
@ Resulting values approximate a sampling distribution 6

@ The “boot” package asks for a data frame and a special
function “statistic”. statistic must

e accept a data frame as the first argument
e accept an “index vector” as the second argument

Iterators 60 /66 University of Kansas

Introduction Bootstrapping

Don’t Panic: This is Confusing to Everybody

Example usage

boot(data, statistic = yourFunction, R = 1000)

@ boot will iterate 1000 times, and yourFunction will provide the
statistic of interest.

@ You write yourFunction to make required calculation.

@ boot will tell yourFunction which lines to use in the data
frame, over-and-over.

Iterators 61 /66 University of Kansas

Introduction

Bootstrapping

The Median of a Poisson Distribution

@ Suppose you have a sample from a Poisson Process:

samp <— rpois (20, lambda=3)

@ And you calculate the median:

median (samp)

1] 2.5

@ How confident are you in that estimate of the median?

Iterators

University of Kansas

Introduction Bootstrapping

Bootstrap Your Median

@ Here is yourFunction:

calcMed <— function(dat, ind){
median(dat[ind])

e dat[ind] has the effect of “pulling” rows that match “ind" from
“dat”

@ The boot function will send 1000 “case indexes” to your
function.

library (boot)
bpois <— boot(samp, calcMed, R = 1000)
bpois

Iterators 63 /66 University of Kansas

Bootstrapping

Bootstrap Your Median ...

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = samp, statistic = calcMed, R = 1000)

Bootstrap Statistics
original bias std. error
tlx 2.5 0.076 0.6173371

Iterators 64 /66 University of Kansas

Introduction

Let's plot that

Histogram of t

L]

od o

10 15 20 25 3.0 35 40

Iterators

t*

15 2.0 25 3.0 35 4.0

1.0

Bootstrapping

2 10 1 2
Quantiles of Standard Normal

3

University of

Introduction Bootstrapping

Why Do They Do It That Way?

@ Your instinct is to do this the “simple” way
o (Just) “Manually” draw new random samples of rows from a
data frame.
e But: Creating 1000s of “new” re-sampled data sets would
“waste” (exhaust?) memory
e Would be especially slow if separate data sets have to be
copied between systems.

@ More efficient to keep 1 data frame, but 1000’s of vectors of
row numbers.

Iterators 66 /66 University of Kansas

	Introduction
	Survey
	for
	apply
	lapply
	lapply: Extended Example #1
	lapply: Extended Example #2
	mapply: a secret weapon

	Bootstrapping

