Outline

(1) Introduction
(2) Survey

- for
- apply
- lapply
- lapply: Extended Example \#1
- lapply: Extended Example \#2
- mapply: a secret weapon
(3) Bootstrapping

Iteration: for, appply, etc
 Efficiency and Clarity

Paul E. Johnson ${ }^{12}$
${ }^{1}$ University of Kansas, Department of Political Science ${ }^{2}$ Center for Research Methods and Data Analysis

2013

Outline

(1) Introduction
(2) Survey

- for
- apply
- lapply
- lapply: Extended Example \#1
- lapply: Extended Example \#2
- mapply: a secret weapon
(3) Bootstrapping

Outline

(1) Introduction
(2) Survey

- for
- apply
- lapply
- lapply: Extended Example \#1
- lapply: Extended Example \#2
- mapply: a secret weapon
(3) Bootstrapping

R Frame of Mind

- Iteration is commonly needed
- repeat the same thing over and over with new samples
- process several subgroups of data (compare cities)
- apply various functions to one data set
- Some idioms make code faster.
- Some idioms make code more understandable.

Fit These Notes Into Context

- Use of iterators requires the ability to write small functions.
- If you have never written a small function for R, please review the lecture functions-1 before tackling this material.
- This lecture was once part of functions-1. In fact, it was the major motivation for functions-1, because I had to teach people how to write functions before using R apply statements.

Clarity and Understandability

- Especially in the early years of R, people who used for loops were ridiculed and urged to use apply () instead.
- Some ridicule was justified because code based on for () often makes heavy use of '[' to access data, and that is a very slow operator.
- I have examples of silly/slow code using for ()
- However, if you have only a few situations to loop through, there is not usually a substantial speedup by recoding from for() to apply () (see Chambers, Software for Data Analysis)
- On the other hand, for () loops, especially nested loops, are prone to user-error and miscalculations, and they will be more difficult to read.

Bootstrapping is at the End

- Difficult to be sure bootstrapping should be included in this lecture
- It is included here because people who are frustrated with R's apply concepts are also usually frustrated with bootstrapping in R .
- Why this makes a difference: Efficiency! People who do bootstrapping in the literal, obvious way, are generally wasting memory and time.

Outline

(1) Introduction
(2) Survey

- for
- apply
- lapply
- lapply: Extended Example \#1
- lapply: Extended Example \#2
- mapply: a secret weapon
(3) Bootstrapping

R has lots of ways to do things over and over

- for loop: process by " i " or by "element"
- apply: process rows and/or columns in a matrix
- lapply: process each element in a list
- sapply: attempts to simplify output from lapply
- replicate: shorthand for sapply for simple simulations
- mapply: for functions that need several arguments, separately drawn from separate vectors or lists

for looping

- First, I initialize $\times 1$, then
- loop over elements to set their values

```
doubleMe <- function(input = 0){
    newval <- 2 * input
}
x1 <- vector(mode = "numeric", length = 57)
for(i in 1:57) {x1[i] <- doubleMe(i)}
```

integers ifrom 1 to 57 are sent to double me, results collect

- Note, it is not necessary to actually do this for loop in R, because R is vectorized.

```
x2 <- doubleMe(1:57)
all.equal ( x1, x2)
```

[1] TRUE

- Using vectorized code is much faster.

"apply()"

- useRs are urged to avoid "for loops" when possible
- Why? Accessing particular values with "[" (vector or matrix indexes) is SLOW. Better to exploit R's "vectorization"
- apply () is one of a family of functions that can replace a for loop.
- apply () takes a matrix, and does "the same FUN" to all of its rows or columns (or both).
- Definition: MARGIN=1 means "work row by row", MARGIN=2 means "column by column"

Example of "apply()" With a Built-In FUN

- Given a matrix xyz with columns " x ", " y ", and " z "
- On the columns, MARGIN=2, apply the R "mean" function.

```
xyz <- matrix( rnorm(9), ncol=3)
xyz
```

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	0.5855288	-0.4534972	0.6300986
$[2]$,	0.7094660	0.6058875	-0.2761841
$[3]$,	-0.1093033	-1.8179560	-0.2841597

```
colnames(xyz) <- c("x", "y", "z")
apply(xyz, MARGIN = 2, FUN = mean)
```

x	y	z
0.39523051	-0.55518856	0.02325157

- If there is no "built in" function that does what you want, then you have to write your own.

Write your own Function for apply

- Suppose you want the second-highest score from each column.
- Write a little function called "second()"

```
second <- function(acol = NULL){
    sort(acol)[2]
}
print(xyz)
```

	x	y	z
$[1]$,	0.5855288	-0.4534972	0.6300986
$[2]$,	0.7094660	0.6058875	-0.2761841
$[3]$,	-0.1093033	-1.8179560	-0.2841597

$$
\text { apply }(x y z, \text { MARGIN }=2, \text { FUN }=\text { second })
$$

$$
\begin{array}{rrr}
\hline x & y & z \\
0.5855288 & -0.4534972 & -0.2761841 \\
\hline
\end{array}
$$

Apply the normedEntropy function to rows

- The normedEntropy() function is presented in the lecture functions-1. I reproduce it for completeness here

```
divr <- function(p = 0){
        ifelse ( p>0 & p< 1, -p* log2(p), 0)
}
entropy <- function(p){
        sum( divr(p) )
}
maximumEntropy <- function(N) - log2(1 / N)
normedEntropy <- function(x) entropy(x) /
        maximumEntropy(Iength(x))
```

- First, create a matrix in which the sum of each row is 1.0

Apply the normedEntropy function to rows ...

```
xmat <- matrix(rmultinom (6, size = 20, prob = c
    (1,2,3,4,5)), byrow = T, ncol = 5)
xmat <- prop.table(xmat, 1)
print(round(xmat,3 ))
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	0.00	0.30	0.15	0.20	0.35
$[2]$,	0.20	0.15	0.20	0.20	0.25
$[3]$,	0.10	0.15	0.10	0.30	0.35
$[4]$,	0.10	0.00	0.15	0.40	0.35
$[5]$,	0.05	0.10	0.30	0.35	0.20
$[6]$,	0.10	0.05	0.30	0.25	0.30

Entropy for each row!

- apply normed Entropy to each Row with apply

```
apply(xmat, MARGIN = 1, FUN = normedEntropy)
```



```
    .9003158
```


"lapply()": Do same thing to all Elements of a List

- lapply () will take a list of things and apply a given function to each item, returning a new list.
Generally,
aNewList <- lapply(someList, FUN = someFunction)
- someFunction MUST accept the elements from someList as the first argument
- Additional arguments to someFunction are allowed

Example Use of lapply

- Create a list with 5 sets of random uniform normal variables

```
sampleList <- lapply(rep (1000,5), rnorm)
sampleList[[1]][888]
```

[1] -0.3101479

- Same as

```
sampleList <- list() ## or <- vector(``list'', 5)
sampleList[[1]] <- rnorm(1000)
sampleList[[2]] <- rnorm(1000)
sampleList[[3]] <- rnorm(1000)
sampleList[[4]] <- rnorm(1000)
sampleList[[5]] <- rnorm(1000)
```


Example Use of lapply

- Get the mean of sets 1 and 2 individually mean(sampleList [[1]])
[1] 0.04081866
mean(sampleList[[2]])
[1] -0.02739241
- Grab means of all sets with lapply
(aNewList <- lapply (sampleList, mean))
[[1]]
[1] 0.04081866
[[2]]
[1] -0.02739241
[[3]]
[1] -0.0255273

Why lapply, Not apply?

- Sometimes our "data" is not an even set of columns that fits in a data.frame or matrix

```
\(x\) list \(<-\) list \((x 1=c(1,1,1,2,3,3), \times 2=r p o i s(10\), lambda \(=3)\),
        \(\times 3=\operatorname{round}(\operatorname{rnorm}(20, m=100, s=1), 0))\)
elist <- lapply(xlist, function (x) \{ y <- table(x)/length (x
    ) ; normedEntropy (y) \})
```


Why lapply, not apply?

```
for(i in 1:length(xlist)){
    cat("Given List")
    print(xlist[[i]])
    cat("Normed Entropy")
    print(round(elist[[i]],3))
    cat("\n")
    }
```

```
Given List[1] 1 1 1 2 2 3 3
Normed Entropy[1] 0.921
Given List [1] 3 2 5 2 5 2 1 6 2 4
Normed Entropy[1] 0.898
Given List [1] 101 101 100 101 100 99 101 100 100 102 100
    102 100
Normed Entropy[1] 0.843
```


Example with additional arguments

- One NA wrecks mean (by default)

```
sampleList <- lapply( rep(1000,5), rnorm)
sampleList[[1]][77] <- NA
(aNewList <- lapply(sampleList, mean))
```

```
[[1]]
[1] NA
[[2]]
[1] -0.008354005
[[3]]
[1] -0.003276648
[[4]]
[1] -0.003438522
[[5]]
[1] 0.05110267
```


Example (cont.): Fix that Missing Value Problem

(aNewList <- lapply(sampleList, mean, na.rm = TRUE))

```
[[1]]
[1] -0.03336209
[[2]]
[1] -0.008354005
[[3]]
[1] -0.003276648
[[4]]
[1] -0.003438522
[[5]]
[1] 0.05110267
```


Example: lapply to Simulate Regressions.

- The question:
- Create 100 regression models from 100 data sets
- Study the sampling distribution of the R^{2} statistic from those regressions.

Step 1.

- The following generates 100 data frames in a list "mydatasets".

```
exs <- 10
exq <- 0.345
exstde <- 20
createOneDF <- function(run, s=NA, q = NA, stde = NA
        ) {
    x<-18+43*runif(1000)
    y<-s + q * x + rnorm(1000, mean = 0, sd = stde)
    mydf <- data.frame(run,x,y)
}
mydatasets <- Iapply(1:100, createOneDF, exs, exq,
        exstde)
```

- Here the "list" is just a sequence $1,2,3, \ldots$
- lapply automatically gives each list element to function as first argument. (In this case, "run" number).

Step 2.

- Now apply a function to each data frame, make list "myregressions"

```
myregressions <- lapply(mydatasets, FUN = function(
    mydf) Im(y ~ x, data = mydf))
```

- Note: small functions can be written "inline"
- Could as well have written

```
calcReg <- function(adf = NULL){
    mod <- Im(y ~ x, data = adf)
    }
myregressions <- lapply(mydatasets, FUN = calcReg)
```


Take Stock of What We Have

- Each element in the list "mydatasets" really is a data frame: head (mydatasets[[33]])

	run	x	y
1	33	41.47315	30.817774
2	33	48.78788	48.229489
3	33	31.71107	45.515414
4	33	50.28991	-22.129543
5	33	60.13310	33.632953
6	33	35.67771	9.532895

- Each element in "myregressions" really is a regression result object

```
myregressions[[33]]
```


Take Stock of What We Have ...

```
Call:
Im(formula = y ~ x, data = mydf)
Coefficients:
(Intercept) 
```

- Which can be summarized thus:

```
summary ( myregressions[[33]] )
```


Take Stock of What We Have ...

Coefficients:

	Estimate	Std. Error	Value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	10.52613	1.94869	5.402	8.26e-08
\times	0.33713	0.04737	7.117	$2.10 \mathrm{e}-12$

Signif. codes: $0{ }^{\prime} * * * ' 0.001$ '**' 0.01 '*' $0.05 '^{\prime} .0 .1$ ' '
1
Residual standard error: 18.79 on 998 degrees of freedom
Multiple $R^{2}: 0.0483$, Adjusted $R^{2}: 0.04735$
F-statistic: 50.66 on 1 and 998 DF, p-value: $2.101 \mathrm{e}-12$

Take Stock of What We Have ...

Note, the R^{2} value that we need is sitting there, in the middle of the summary output. We'll need that.

Step 3.

- Grab the R^{2} from each regression in the list.
- The estimate of the R^{2} is an element in the returned object from summary.
- One strategy: create an R list of summary objects

```
mysummaries <- lapply(myregressions, FUN= summary)
```

- Getting the R^{2} out of each one of those requires some tedious grabbing, such as

```
myrsq <- lapply(mysummaries, FUN = function(mr) {mr$
    r.square})
myrsq[1:5]
```


Step 3. ...

```
[[1]]
[1] 0.03758218
[[2]]
[1] 0.03746384
[[3]]
[1] 0.02569663
[[4]]
[1] 0.03390325
[[5]]
[1] 0.04059477
```

```
myrsq <- unlist(myrsq)
str(myrsq)
```


Step 3. ...

$$
\text { num }[1: 100] ~ 0.0376 \quad 0.03750 .02570 .0339 \quad 0.0406
$$

Sapply will do that in one shot

- sapply is the "simplified apply", it attempts to convert a list into a vector or matrix.
- snoop through the regressions, grab the R^{2}.

```
    myrsq <- sapply(mysummaries, FUN = function(mr) {mr$
        r.square})
    mean(myrsq)
```

[1] 0.04510022
sd (myrsq)
[1] 0.01280801
median (myrsq)
[1] 0.04424352

Everybody Still Loves Histograms

Histogram of myrsq
-- observed density

Example: Balance in Logistic Regression

- Two years ago, I wondered (while auditing the categorical class), "what if we run a logistic regression comparing men and women and there are not very many men?"
- Write functions to
- manufacture data
- analyze data
- summarize \& plot data

Create Output Data: Need to convert real numbers to 0's

 and 1's```
\(\eta\) "eta" is input, the proclivity to "vote democratic"
 simLogit <- function (myeta) \{
 mypi <- exp(myeta) / (1 + exp(myeta)) \#\# SAME AS 1/(1+
 \(\exp (-m y e t a))\)
 myunif \(<-\) runif(length(myeta))
 y \(<-\) ifelse (myunif \(<\) mypi, 1,0)
 \}
```


## Example Use: Creates 1000 Observations

```
N <- 1000
A <- -1
B <- 0.3
x <- 1 + 10 * rnorm(N)
myeta <- A + B * x
y <- simLogit(myeta)
```


## Illustration of Simulated Data

$$
\begin{aligned}
& \operatorname{plot}(x, y, \operatorname{main}=\text { bquote }(\text { eta }[i]==.(A)+.(B) * x[i])) \\
& \operatorname{text}(0.5 * \max (x), 0.5, \operatorname{expression}(\operatorname{Prob}(y[i]==1)==\operatorname{frac}( \\
& 1,1+\exp (-\operatorname{eta}[i]))))
\end{aligned}
$$



## The Fitted Line from glm



## We are Interested in the Difference Between Two Groups



## Now Automate That Process

- Manufacture data
- Run Regression
- Return row of estimates

```
simUnbalanced <- function(iter=0, parm){
 A <- parm$A; B<- parm$B; C<- parm$C; PrFem <- parm$PrFem
 sex <- ifelse(runif(N) < PrFem,0,1)
 myeta <- A + B * x + C * sex
 sex <- factor(sex, levels = c(0,1), labels = c("M","F"))
 y <- simLogit(myeta)
 myglm2 <- glm(y ~ x + sex, family = binomial)
 myglm2sum <- coef(summary(myglm2))
 est <- myglm2sum[3,]
}
```


## Use sapply to run 1000 Regressions

```
\(\mathrm{p}<-\) list ()
\(\mathrm{p} \$ \mathrm{~A}<--1\); \(\mathrm{p} \$ \mathrm{~B}<-0.3 ; \mathrm{p} \$ \mathrm{C}<-0.4\)
p\$PrFem <- 0.5
result45 <- Iist (sapply (1:1000, simUnbalanced, parm \(=p\)),
 parm \(=\mathrm{p}\))
```

Note: I'm combining the sapply result, along with "p", for record-keeping

```
p$PrFem <- 0.9
result49 <- list(sapply(1:1000, simUnbalanced, parm = p),
 parm = p)
```


## Now Plan to Draw Some Figures

```
createFigs <- function(result){
 dat <- result[[1]]
 C <- result$parm$C
 PrFem <- result $parm$PrFem
 mybeta <- dat[1,]
 hrow1 <- hist(mybeta, breaks=50, plot=F)
 mybreaks <- hrow1$breaks
 breakMember <- cut(dat[1,], mybreaks)
 mypval <- dat[4,]
 mysignif <- ifelse((mypval < 0.05), 1, 0)
 df <- data.frame(mybeta, mypval, mysignif, breakMember)
 propsig <- by(df$mysignif, INDICES = list(df$breakMember)
 , mean, simplify = TRUE)
 mytrat <- dat[3,]
 mycounts <- hrow1$counts
```


## Now Plan to Draw Some Figures ...

```
 plot (dat[1,], dat[4,], xlab = "beta estimate", ylab="
 estimated \(\mathrm{p} ", ~ c e x=0.7\), main \(=\) paste("True Beta=", C ,
 "Prop. Fem.=", PrFem))
 gc <- c("gray 98 ","gray 70 ","gray 50 ","gray \(40 ")\)
 cut(propsig, breaks=c(-1,0.1,0.5,0.9,1.1))
 catpropsig \(<-\) cut (propsig, breaks \(=c(-1,0.1,0.5,0.9,1.1)\)
 , ordered \(=\mathrm{T}\), labels \(=c(" 0 ", " \mid t h ", " m t h ", " 1 "))\)
 barplot(hrow1\$density, col \(=\) gc[as.numeric(catpropsig)],
 names \(=\) hrow \(1 \$\) mids)
\}
```


## For Balanced Data

## For Balanced Data ...




## For Unbalanced Data

## For Unbalanced Data ...




## Final Cautionary Note

- At some point, this approach will start to "bog down" under the weight of memory usage and CPU delays
- I'd suggest re-designing so that we separately create the data frames and run all of the analysis on each separately
- That would allow us to 1 ) stay within memory limits and 2 ) parallelize the work across separate cores or computers (see the R parallel package).


## mapply

- I never used mapply for the first 5 years of using R
- Now I see need for it at least once per month
- The documentation may be difficult to understand, but once you appreciate the beauty of it, you will like it.


## When is mapply needed

- You have several vectors or lists of the same length
- You want to take the first element from each and do something.
- Then take the second element from each and do something
- Don't write nested "for" loops, as users are often tempted to do.


## Example of mapply usage in rockchalk package

- rockchalk has many functions that are doing the same thing over and over for subsets of data.
- Run the examples for the addLines() function, you should see it integrates plotSlopes() and plotPlane() by transferring information.


## Example use of mapply in rockchalk 1.8

- dataSplits is a collection of data frames. We want to do the plot for each with the correct colors, which are stored in linesFrom variables col and Ity.
- The small function drawLine accepts 3 arguments, one from data, one from col, one from Ity.

```
 if (!missing(linesFrom)) {
 dataSplits <- split(linesFrom$newdata, f = linesFrom
 $newdata [[linesFrom$call [["modx"]]]])
 drawLine <- function(nd, mycol, mylty) {
 lines(trans3d(nd[[plotx1]], nd[[plotx2]], nd$fit,
 pmat=res), col = mycol, lwd = Iflwd, lty =
 mylty)
 }
 mapply(drawLine, dataSplits, linesFrom$col,
 linesFrom$Ity)
}
```


## Example use of mapply in rockchalk 1.8 ...

- Note we are free to name the variables inside drawLine however we want. That help keep our minds clear about whether we are talking about just one color or a vector of colors.


## Outline

(1) Introduction
(2) Survey

- for
- apply
- lapply
- lapply: Extended Example \#1
- lapply: Extended Example \#2
- mapply: a secret weapon
(3) Bootstrapping


## Bootstrapping: Some "Do it Yourself" Work Is Required

- Many R functions require users to write little functions that do little things.
- In many cases (like lapply or apply), look for FUN as an argument.
- Sometimes no builtin-exists. useR must create!


## boot Function Requires a Special Function "statistic"

library (boot)
?boot

```
Bootstrap Resampling
Description:
Generate 'R' bootstrap replicates of a statistic applied to
 data.
Both parametric and nonparametric resampling are possible.
boot(data, statistic, R, sim = ''ordinary'', stype = ''i'',
strata=rep(1, n), L = NULL, m = 0, weights = NULL,
ran.gen=function(d, p) d, mle = NULL, simple = FALSE, ...)
statistic: A function which when applied to data returns a
 vector
containing the statistic(s) of interest...
```


## Bootstrap: Background Explanation

- Bootstrap: draw samples repeatedly and re-estimate $\theta$
- Resulting values approximate a sampling distribution $\theta$
- The "boot" package asks for a data frame and a special function "statistic". statistic must
- accept a data frame as the first argument
- accept an "index vector" as the second argument


## Don't Panic: This is Confusing to Everybody

Example usage boot(data, statistic = yourFunction, $R=1000$ )

- boot will iterate 1000 times, and yourFunction will provide the statistic of interest.
- You write yourFunction to make required calculation.
- boot will tell yourFunction which lines to use in the data frame, over-and-over.


## The Median of a Poisson Distribution

- Suppose you have a sample from a Poisson Process:

$$
\operatorname{samp}<-\operatorname{rpois}(20, \text { lambda }=3)
$$

- And you calculate the median:

```
 median(samp)
```

[1] 2.5

- How confident are you in that estimate of the median?


## Bootstrap Your Median

- Here is yourFunction:

```
calcMed <- function(dat, ind){
 median(dat[ind])
}
```

- dat[ind] has the effect of "pulling" rows that match "ind" from "dat"
- The boot function will send 1000 "case indexes" to your function.

```
library(boot)
bpois <- boot(samp, calcMed, R = 1000)
bpois
```


## Bootstrap Your Median ...

```
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = samp, statistic = calcMed, R = 1000)
Bootstrap Statistics :
 original bias std. error
t1* 2.5 0.076 0.6173371
```


## Let's plot that




## Why Do They Do It That Way?

- Your instinct is to do this the "simple" way
- (Just) "Manually" draw new random samples of rows from a data frame.
- But: Creating 1000s of "new" re-sampled data sets would "waste" (exhaust?) memory
- Would be especially slow if separate data sets have to be copied between systems.
- More efficient to keep 1 data frame, but 1000's of vectors of row numbers.

