
Introduction Survey Bootstrapping

Outline

1 Introduction

2 Survey
for
apply
lapply
lapply: Extended Example #1
lapply: Extended Example #2
mapply: a secret weapon

3 Bootstrapping

Iterators 1 / 66 University of Kansas

Introduction Survey Bootstrapping

Iteration: for, appply, etc
Efficiency and Clarity

Paul E. Johnson12

1University of Kansas, Department of Political Science 2Center for Research
Methods and Data Analysis

2013

Iterators 2 / 66 University of Kansas

Introduction Survey Bootstrapping

Outline

1 Introduction

2 Survey
for
apply
lapply
lapply: Extended Example #1
lapply: Extended Example #2
mapply: a secret weapon

3 Bootstrapping

Iterators 3 / 66 University of Kansas

Introduction Survey Bootstrapping

Outline

1 Introduction

2 Survey
for
apply
lapply
lapply: Extended Example #1
lapply: Extended Example #2
mapply: a secret weapon

3 Bootstrapping

Iterators 4 / 66 University of Kansas

Introduction Survey Bootstrapping

R Frame of Mind

Iteration is commonly needed

repeat the same thing over and over with new samples
process several subgroups of data (compare cities)
apply various functions to one data set

Some idioms make code faster.

Some idioms make code more understandable.

Iterators 5 / 66 University of Kansas

Introduction Survey Bootstrapping

Fit These Notes Into Context

Use of iterators requires the ability to write small functions.

If you have never written a small function for R, please review
the lecture functions-1 before tackling this material.

This lecture was once part of functions-1. In fact, it was the
major motivation for functions-1, because I had to teach
people how to write functions before using R apply
statements.

Iterators 6 / 66 University of Kansas

Introduction Survey Bootstrapping

Clarity and Understandability

Especially in the early years of R, people who used for loops
were ridiculed and urged to use apply() instead.

Some ridicule was justified because code based on for()

often makes heavy use of ’[’ to access data, and that is a very
slow operator.

I have examples of silly/slow code using for()

However, if you have only a few situations to loop through,
there is not usually a substantial speedup by recoding from
for() to apply() (see Chambers, Software for Data
Analysis)

On the other hand, for() loops, especially nested loops, are
prone to user-error and miscalculations, and they will be more
difficult to read.

Iterators 7 / 66 University of Kansas

Introduction Survey Bootstrapping

Bootstrapping is at the End

Difficult to be sure bootstrapping should be included in this
lecture

It is included here because people who are frustrated with R’s
apply concepts are also usually frustrated with bootstrapping
in R.

Why this makes a difference: Efficiency! People who do
bootstrapping in the literal, obvious way, are generally wasting
memory and time.

Iterators 8 / 66 University of Kansas

Introduction Survey Bootstrapping

Outline

1 Introduction

2 Survey
for
apply
lapply
lapply: Extended Example #1
lapply: Extended Example #2
mapply: a secret weapon

3 Bootstrapping

Iterators 9 / 66 University of Kansas

Introduction Survey Bootstrapping

R has lots of ways to do things over and over

for loop: process by “i” or by “element”

apply: process rows and/or columns in a matrix

lapply: process each element in a list

sapply: attempts to simplify output from lapply

replicate: shorthand for sapply for simple simulations

mapply: for functions that need several arguments, separately
drawn from separate vectors or lists

Iterators 10 / 66 University of Kansas

Introduction Survey Bootstrapping

for looping

First, I initialize x1, then

loop over elements to set their values

doubleMe <− f u n c t i o n (i n pu t = 0) {
newva l <− 2 * i n pu t

}
x1 <− v e c t o r (mode = ”numer ic ” , l e n g t h = 57)
f o r (i i n 1 : 57) {x1 [i] <− doubleMe (i) }

integers i from 1 to 57 are sent to double me, results collect

Note, it is not necessary to actually do this for loop in R,
because R is vectorized.

x2 <− doubleMe (1 : 5 7)
a l l . e q u a l (x1 , x2)

[1] TRUE

Using vectorized code is much faster.

Iterators 11 / 66 University of Kansas

Introduction Survey Bootstrapping

“apply()”

useRs are urged to avoid “for loops” when possible

Why? Accessing particular values with “[” (vector or matrix
indexes) is SLOW. Better to exploit R’s “vectorization”

apply() is one of a family of functions that can replace a for
loop.

apply() takes a matrix, and does “the same FUN” to all of its
rows or columns (or both).

Definition: MARGIN=1 means “work row by row”,
MARGIN=2 means “column by column”

Iterators 12 / 66 University of Kansas

Introduction Survey Bootstrapping

Example of “apply()” With a Built-In FUN

Given a matrix xyz with columns “x”, “y”, and “z”

On the columns, MARGIN=2, apply the R “mean” function.
xyz <− mat r i x (rnorm (9) , n co l =3)
xyz

[, 1] [, 2] [, 3]
[1 ,] 0 .5855288 −0.4534972 0 .6300986
[2 ,] 0 .7094660 0 .6058875 −0.2761841
[3 ,] −0.1093033 −1.8179560 −0.2841597

co lnames (xyz) <− c (”x ” , ”y ” , ”z ”)
app l y (xyz , MARGIN = 2 , FUN = mean)

x y z
0 .39523051 −0.55518856 0 .02325157

If there is no “built in” function that does what you want, then
you have to write your own.

Iterators 13 / 66 University of Kansas

Introduction Survey Bootstrapping

Write your own Function for apply

Suppose you want the second-highest score from each column.

Write a little function called “second()”

second <− f u n c t i o n (a c o l = NULL) {
s o r t (a c o l) [2]

}
p r i n t (xyz)

x y z
[1 ,] 0 .5855288 −0.4534972 0 .6300986
[2 ,] 0 .7094660 0 .6058875 −0.2761841
[3 ,] −0.1093033 −1.8179560 −0.2841597

app l y (xyz , MARGIN = 2 , FUN = second)

x y z
0 .5855288 −0.4534972 −0.2761841

Iterators 14 / 66 University of Kansas

Introduction Survey Bootstrapping

Apply the normedEntropy function to rows

The normedEntropy() function is presented in the lecture
functions-1. I reproduce it for completeness here

d i v r <− f u n c t i o n (p = 0) {
i f e l s e (p > 0 & p < 1 , −p * l o g2 (p) , 0)

}
en t ropy <− f u n c t i o n (p) {

sum(d i v r (p))
}
maximumEntropy <− f u n c t i o n (N) − l o g2 (1 / N)
normedEntropy <− f u n c t i o n (x) en t ropy (x) /

maximumEntropy (l e n g t h (x))

First, create a matrix in which the sum of each row is 1.0

Iterators 15 / 66 University of Kansas

Introduction Survey Bootstrapping

Apply the normedEntropy function to rows ...

xmat <− mat r i x (rmult inom (6 , s i z e = 20 , prob = c
(1 , 2 , 3 , 4 , 5)) , byrow = T, nco l = 5)

xmat <− p r o p . t a b l e (xmat , 1)
p r i n t (round (xmat , 3))

[, 1] [, 2] [, 3] [, 4] [, 5]
[1 ,] 0 . 00 0 .30 0 .15 0 .20 0 .35
[2 ,] 0 . 20 0 .15 0 .20 0 .20 0 .25
[3 ,] 0 . 10 0 .15 0 .10 0 .30 0 .35
[4 ,] 0 . 10 0 .00 0 .15 0 .40 0 .35
[5 ,] 0 . 05 0 .10 0 .30 0 .35 0 .20
[6 ,] 0 . 10 0 .05 0 .30 0 .25 0 .30

Iterators 16 / 66 University of Kansas

Introduction Survey Bootstrapping

Entropy for each row!

apply normed Entropy to each Row with apply

app l y (xmat , MARGIN = 1 , FUN = normedEntropy)

[1] 0 .8295351 0 .9921503 0 .9156704 0 .7759110 0 .8888583 0
.9003158

Iterators 17 / 66 University of Kansas

Introduction Survey Bootstrapping

“lapply()”: Do same thing to all Elements of a List

lapply() will take a list of things and apply a given function
to each item, returning a new list.
Generally,
aNewList <- lapply(someList, FUN = someFunction)

someFunction MUST accept the elements from someList as
the first argument

Additional arguments to someFunction are allowed

Iterators 18 / 66 University of Kansas

Introduction Survey Bootstrapping

Example Use of lapply

Create a list with 5 sets of random uniform normal variables

s amp l e L i s t <− l a p p l y (r ep (1000 ,5) , rnorm)
s amp l e L i s t [[1]] [8 8 8]

[1] −0.3101479

Same as

s amp l e L i s t <− l i s t () ## or <− vector(``list '', 5)

s amp l e L i s t [[1]] <− rnorm (1000)
s amp l e L i s t [[2]] <− rnorm (1000)
s amp l e L i s t [[3]] <− rnorm (1000)
s amp l e L i s t [[4]] <− rnorm (1000)
s amp l e L i s t [[5]] <− rnorm (1000)

Iterators 19 / 66 University of Kansas

Introduction Survey Bootstrapping

Example Use of lapply
Get the mean of sets 1 and 2 individually
mean (s amp l e L i s t [[1]])

[1] 0 .04081866

mean (s amp l e L i s t [[2]])

[1] −0.02739241

Grab means of all sets with lapply
(aNewList <− l a p p l y (s amp l eL i s t , mean))

[[1]]
[1] 0 .04081866

[[2]]
[1] −0.02739241

[[3]]
[1] −0.0255273

[[4]]
[1] 0 .005682177

[[5]]
[1] −0.003305987

Iterators 20 / 66 University of Kansas

Introduction Survey Bootstrapping

Why lapply, Not apply?

Sometimes our “data” is not an even set of columns that fits
in a data.frame or matrix

x l i s t <− l i s t (x1 = c (1 , 1 , 1 , 2 , 3 , 3) , x2 = r p o i s (10 , lambda=3) ,
x3 = round (rnorm (20 ,m=100 , s=1) ,0))

e l i s t <− l a p p l y (x l i s t , f u n c t i o n (x) { y <− t a b l e (x) / l e n g t h (x
) ; normedEntropy (y) })

Iterators 21 / 66 University of Kansas

Introduction Survey Bootstrapping

Why lapply, not apply?

f o r (i i n 1 : l e n g t h (x l i s t)) {
ca t (”Given L i s t ”)
p r i n t (x l i s t [[i]])
ca t (”Normed Entropy ”)
p r i n t (round (e l i s t [[i]] , 3))
ca t (”\n ”)
}

Given L i s t [1] 1 1 1 2 3 3
Normed Entropy [1] 0 .921

Given L i s t [1] 3 2 5 2 5 2 1 6 2 4
Normed Entropy [1] 0 .898

Given L i s t [1] 101 101 100 101 100 99 101 100 100 102 100
102 100 99 100 101 100 100 101 100

Normed Entropy [1] 0 .843

Iterators 22 / 66 University of Kansas

Introduction Survey Bootstrapping

Example with additional arguments
One NA wrecks mean (by default)
s amp l e L i s t <− l a p p l y (r ep (1000 ,5) , rnorm)
s amp l e L i s t [[1]] [7 7] <− NA
(aNewList <− l a p p l y (s amp l eL i s t , mean))

[[1]]
[1] NA

[[2]]
[1] −0.008354005

[[3]]
[1] −0.003276648

[[4]]
[1] −0.003438522

[[5]]
[1] 0 .05110267

Iterators 23 / 66 University of Kansas

Introduction Survey Bootstrapping

Example (cont.): Fix that Missing Value Problem

(aNewList <− l a p p l y (s amp l eL i s t , mean , na.rm = TRUE))

[[1]]
[1] −0.03336209

[[2]]
[1] −0.008354005

[[3]]
[1] −0.003276648

[[4]]
[1] −0.003438522

[[5]]
[1] 0 .05110267

Iterators 24 / 66 University of Kansas

Introduction Survey Bootstrapping

Example: lapply to Simulate Regressions.

The question:

Create 100 regression models from 100 data sets
Study the sampling distribution of the R2 statistic from those
regressions.

Iterators 25 / 66 University of Kansas

Introduction Survey Bootstrapping

Step 1.

The following generates 100 data frames in a list“mydatasets”.

ex s <− 10
exq <− 0 .345
e x s t d e <− 20
createOneDF <− f u n c t i o n (run , s = NA, q = NA, s t d e = NA

) {
x <− 18 + 43* r u n i f (1000)
y <− s + q * x + rnorm (1000 , mean = 0 , sd = s td e)
mydf <− da t a . f r ame (run , x , y)

}
mydatase t s <− l a p p l y (1 : 100 , createOneDF , exs , exq ,

e x s t d e)

Here the “list” is just a sequence 1,2,3,...

lapply automatically gives each list element to function as first
argument. (In this case, “run” number).

Iterators 26 / 66 University of Kansas

Introduction Survey Bootstrapping

Step 2.

Now apply a function to each data frame, make list
“myregressions”

my r e g r e s s i o n s <− l a p p l y (mydatasets , FUN = f u n c t i o n (
mydf) lm (y ∼ x , data = mydf))

Note: small functions can be written “inline”

Could as well have written

ca l cReg <− f u n c t i o n (ad f = NULL) {
mod <− lm (y ∼ x , data = adf)
}

my r e g r e s s i o n s <− l a p p l y (mydatasets , FUN = ca l cReg)

Iterators 27 / 66 University of Kansas

Introduction Survey Bootstrapping

Take Stock of What We Have

Each element in the list “mydatasets” really is a data frame:

head (mydatase t s [[3 3]])

run x y
1 33 41 .47315 30 .817774
2 33 48 .78788 48 .229489
3 33 31 .71107 45 .515414
4 33 50 .28991 −22.129543
5 33 60 .13310 33 .632953
6 33 35 .67771 9 .532895

Each element in “myregressions” really is a regression result
object

my r e g r e s s i o n s [[3 3]]

Iterators 28 / 66 University of Kansas

Introduction Survey Bootstrapping

Take Stock of What We Have ...

Ca l l :
lm (fo rmu la = y ∼ x , data = mydf)

C o e f f i c i e n t s :
(I n t e r c e p t) x

10 .5261 0 .3371

Which can be summarized thus:

summary (my r e g r e s s i o n s [[3 3]])

Iterators 29 / 66 University of Kansas

Introduction Survey Bootstrapping

Take Stock of What We Have ...

Ca l l :
lm (fo rmu la = y ∼ x , data = mydf)

R e s i d u a l s :
Min 1Q Median 3Q Max

−56.643 −11.595 0 .873 12 .462 57 .854

C o e f f i c i e n t s :
Es t imate S td . E r r o r t v a l u e Pr (>| t |)

(I n t e r c e p t) 10 .52613 1 .94869 5 .402 8 .26e−08 ***

x 0 .33713 0 .04737 7 .117 2 .10e−12 ***

−−−
S i g n i f . codes : 0 ' *** ' 0 .001 ' ** ' 0 .01 ' * ' 0 .05 ' . ' 0 . 1 ' '

1

Re s i d u a l s t anda rd e r r o r : 18 . 79 on 998 deg r e e s o f f reedom
Mu l t i p l e R2 : 0 .0483 , Ad jus ted R2 : 0 .04735
F− s t a t i s t i c : 50 . 66 on 1 and 998 DF, p−value : 2 .101e−12

Iterators 30 / 66 University of Kansas

Introduction Survey Bootstrapping

Take Stock of What We Have ...

Note, the R2 value that we need is sitting there, in the middle of the summary
output. We’ll need that.

Iterators 31 / 66 University of Kansas

Introduction Survey Bootstrapping

Step 3.

Grab the R2 from each regression in the list.

The estimate of the R2 is an element in the returned object
from summary.

One strategy: create an R list of summary objects

mysummaries <− l a p p l y (my r eg r e s s i on s , FUN= summary)

Getting the R2 out of each one of those requires some tedious
grabbing, such as

myrsq <− l a p p l y (mysummaries , FUN = f u n c t i o n (mr) {mr$
r . s q u a r e })

myrsq [1 : 5]

Iterators 32 / 66 University of Kansas

Introduction Survey Bootstrapping

Step 3. ...

[[1]]
[1] 0 .03758218

[[2]]
[1] 0 .03746384

[[3]]
[1] 0 .02569663

[[4]]
[1] 0 .03390325

[[5]]
[1] 0 .04059477

myrsq <− u n l i s t (myrsq)
s t r (myrsq)

Iterators 33 / 66 University of Kansas

Introduction Survey Bootstrapping

Step 3. ...

num [1 : 1 0 0] 0 .0376 0 .0375 0 .0257 0 .0339 0 .0406 . . .

Iterators 34 / 66 University of Kansas

Introduction Survey Bootstrapping

Sapply will do that in one shot

sapply is the “simplified apply”, it attempts to convert a list
into a vector or matrix.

snoop through the regressions, grab the R2.

myrsq <− s a pp l y (mysummaries , FUN = f u n c t i o n (mr) {mr$
r . s q u a r e })

mean (myrsq)

[1] 0 .04510022

sd (myrsq)

[1] 0 .01280801

median (myrsq)

[1] 0 .04424352

Iterators 35 / 66 University of Kansas

Introduction Survey Bootstrapping

Everybody Still Loves Histograms
Histogram of myrsq

R−Squares From 100 Regressions

D
en

si
ty

0.00 0.02 0.04 0.06 0.08 0.10

0
10

20
30

observed density

Iterators 36 / 66 University of Kansas

Introduction Survey Bootstrapping

Example: Balance in Logistic Regression

Two years ago, I wondered (while auditing the categorical
class), “what if we run a logistic regression comparing men
and women and there are not very many men?”

Write functions to

manufacture data
analyze data
summarize & plot data

Iterators 37 / 66 University of Kansas

Introduction Survey Bootstrapping

Create Output Data: Need to convert real numbers to 0’s
and 1’s

η “eta” is input, the proclivity to “vote democratic”

s imLog i t <− f u n c t i o n (myeta) {
mypi <− exp (myeta) / (1 + exp (myeta)) ## SAME AS 1/(1+

exp(-myeta))

myuni f <− r u n i f (l e n g t h (myeta))
y <− i f e l s e (myuni f < mypi , 1 , 0)

}

Iterators 38 / 66 University of Kansas

Introduction Survey Bootstrapping

Example Use: Creates 1000 Observations

N <− 1000
A <− −1
B <− 0 . 3
x <− 1 + 10 * rnorm (N)
myeta <− A + B * x
y <− s imLog i t (myeta)

Iterators 39 / 66 University of Kansas

Introduction Survey Bootstrapping

Illustration of Simulated Data
p l o t (x , y , main = bquote (e ta [i] == . (A) + . (B) * x [i]))
t e x t (0 . 5 *max(x) , 0 .5 , e x p r e s s i o n (Prob (y [i] ==1)== f r a c (

1 , 1 + exp (−eta [i]))))

● ● ●● ●● ●

●●

● ●

● ●

●●●● ●●● ●●

●

●

● ● ●

●●

●●

●

●● ●

●●●

●● ●

●

●●

●

● ● ●●●

●

●●

●●

● ●● ●

●

●

●

● ●● ●

● ●●●

●

●● ●

● ●

● ●

●● ●

● ●

●●● ● ●

●● ● ●●● ●●

●

●

●●● ● ●

●

●

● ● ●

● ●●

●

●●

●

●

●

●

●

● ●

● ●

●

●

●●

●

●

●

●●●

●● ●

● ●●●●●

●

●

●●●

●

●

●

●

● ●●

●

●●

●

●●●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●●

●●

●●● ●●

● ●●

●

● ●

●

●

●

●

● ●●

● ●●

●

●

●

●

● ●● ●

●

●

● ●●● ● ●● ●

● ●●

●

●

●

●

●●●

● ● ● ●

●● ● ●● ●●●

●● ● ●● ●

● ●●

● ●

●

● ●●

●

●● ● ●

● ●●

● ●

●●

●●● ● ● ●●● ●●●● ● ●● ●●●●

●

● ●

●

●●●

●

● ●●

●

● ●

● ●

●

●

●

●●

●●

●

●

●

● ●

●● ●

●

●

●● ●

●

●

●

●●

●

●● ●●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

● ●●

●

● ●

●

●

● ● ●●●● ●

●

● ●

●

●

●

● ●

●

● ●

●

● ●

●

● ●

●●

● ● ●●

●●

●

●● ●

●

●

●● ●●

●● ●

●

●

●●

● ●

●●

●

●

●

●

●

● ●●

●

●●

●●

●

● ●●

● ●● ●● ●●●● ●

●● ●

●

●

● ● ●●

●

● ●●● ●

●●

●●

● ● ●

●

●

●

●

●

●● ●

● ●

●

● ● ●●

●

● ●

●

●

●

●

●

●● ●

●

●

●

● ●●

●

●●

●

●

●

● ●●

●

●

●

●

●

● ●●●

●

●

● ●●

●● ●

●

●

●

●

● ● ● ●●

● ●

● ●● ●

●●

● ● ●●

●

● ●

● ●●

●●

●

●●

● ●

●●

●

●●

●

● ●●● ●

●●● ●

●● ●

● ●●● ● ●

●●● ● ●

● ●

●

●●

● ●● ●

●

● ●

●

● ● ●

● ●

●●

●●

●

●● ●

●

●

●

●● ● ●

●

●

●

●● ●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

● ●●

● ●

●

●● ●

●● ● ●

●●

●

●

● ●●

●●

●●

●

●

●●●●

●●●

●

● ●● ●

●

● ●

●

● ●

●● ●●● ●● ●

●

● ●● ●● ●● ●

● ●●●

●

●

●● ●

●

●● ●

●

● ●

●

●● ●

●

●●● ●●

●●

●

● ●●

●● ●

● ●

● ● ●

● ●●

●

●

● ●● ●● ●

●

●

●

●●●

●

● ●● ●

●

●

●

●

●●

●

●● ●

●● ●●

●

●●●

● ●

● ●

●●

●

●●

● ●● ●● ●

● ● ●

●

● ●

●

●

●●

●

●

●●

●

● ●

●

●

●

●●

●

●● ●

●●

●●● ●

● ●●

●●

● ●

●

●

●●

● ● ●

● ●●

● ●● ●

●●

●● ●

●● ●●

●

●

● ●

● ●

●

● ●

●

●●

●

●

● ●● ●

● ●

● ●

●

●

●

●

●

●

●● ●●

●●

●

●●

●

●●

●

● ● ●

●

● ●

● ●

●● ● ●

●

● ●

●

●

●

●●

●

●●

● ●●●

●

●●

●● ●

●

●

●

●● ● ● ●

●● ●●

●

●

●

● ●●

●

●●●

●●

●●

●●

●●

●

●

●

●

●

● ●●●

●●

●

● ●

●●

●●

●

●

●

●●

●

●●●

● ●

●● ●

●

●●

● ●

●●

● ● ●

●●●

−30 −20 −10 0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ηi = −1+ 0.3xi

x

y Prob(yi = 1) =
1

1 + exp(− ηi)

Iterators 40 / 66 University of Kansas

Introduction Survey Bootstrapping

The Fitted Line from glm

● ● ●● ●● ●

●●

● ●

● ●

●●●● ●●● ●●

●

●

● ● ●

●●

●●

●

●● ●

●●●

●● ●

●

●●

●

● ● ●●●

●

●●

●●

● ●● ●

●

●

●

● ●● ●

● ●●●

●

●● ●

● ●

● ●

●● ●

● ●

●●● ● ●

●● ● ●●● ●●

●

●

●●● ● ●

●

●

● ● ●

● ●●

●

●●

●

●

●

●

●

● ●

● ●

●

●

●●

●

●

●

●●●

●● ●

● ●●●●●

●

●

●●●

●

●

●

●

● ●●

●

●●

●

●●●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●●

●●

●●● ●●

● ●●

●

● ●

●

●

●

●

● ●●

● ●●

●

●

●

●

● ●● ●

●

●

● ●●● ● ●● ●

● ●●

●

●

●

●

●●●

● ● ● ●

●● ● ●● ●●●

●● ● ●● ●

● ●●

● ●

●

● ●●

●

●● ● ●

● ●●

● ●

●●

●●● ● ● ●●● ●●●● ● ●● ●●●●

●

● ●

●

●●●

●

● ●●

●

● ●

● ●

●

●

●

●●

●●

●

●

●

● ●

●● ●

●

●

●● ●

●

●

●

●●

●

●● ●●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

● ●●

●

● ●

●

●

● ● ●●●● ●

●

● ●

●

●

●

● ●

●

● ●

●

● ●

●

● ●

●●

● ● ●●

●●

●

●● ●

●

●

●● ●●

●● ●

●

●

●●

● ●

●●

●

●

●

●

●

● ●●

●

●●

●●

●

● ●●

● ●● ●● ●●●● ●

●● ●

●

●

● ● ●●

●

● ●●● ●

●●

●●

● ● ●

●

●

●

●

●

●● ●

● ●

●

● ● ●●

●

● ●

●

●

●

●

●

●● ●

●

●

●

● ●●

●

●●

●

●

●

● ●●

●

●

●

●

●

● ●●●

●

●

● ●●

●● ●

●

●

●

●

● ● ● ●●

● ●

● ●● ●

●●

● ● ●●

●

● ●

● ●●

●●

●

●●

● ●

●●

●

●●

●

● ●●● ●

●●● ●

●● ●

● ●●● ● ●

●●● ● ●

● ●

●

●●

● ●● ●

●

● ●

●

● ● ●

● ●

●●

●●

●

●● ●

●

●

●

●● ● ●

●

●

●

●● ●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

● ●●

● ●

●

●● ●

●● ● ●

●●

●

●

● ●●

●●

●●

●

●

●●●●

●●●

●

● ●● ●

●

● ●

●

● ●

●● ●●● ●● ●

●

● ●● ●● ●● ●

● ●●●

●

●

●● ●

●

●● ●

●

● ●

●

●● ●

●

●●● ●●

●●

●

● ●●

●● ●

● ●

● ● ●

● ●●

●

●

● ●● ●● ●

●

●

●

●●●

●

● ●● ●

●

●

●

●

●●

●

●● ●

●● ●●

●

●●●

● ●

● ●

●●

●

●●

● ●● ●● ●

● ● ●

●

● ●

●

●

●●

●

●

●●

●

● ●

●

●

●

●●

●

●● ●

●●

●●● ●

● ●●

●●

● ●

●

●

●●

● ● ●

● ●●

● ●● ●

●●

●● ●

●● ●●

●

●

● ●

● ●

●

● ●

●

●●

●

●

● ●● ●

● ●

● ●

●

●

●

●

●

●

●● ●●

●●

●

●●

●

●●

●

● ● ●

●

● ●

● ●

●● ● ●

●

● ●

●

●

●

●●

●

●●

● ●●●

●

●●

●● ●

●

●

●

●● ● ● ●

●● ●●

●

●

●

● ●●

●

●●●

●●

●●

●●

●●

●

●

●

●

●

● ●●●

●●

●

● ●

●●

●●

●

●

●

●●

●

●●●

● ●

●● ●

●

●●

● ●

●●

● ● ●

●●●

−30 −20 −10 0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ηi = −1+ 0.3xi

x

y Prob(yi = 1) =
1

1 + exp(− ηi)

Iterators 41 / 66 University of Kansas

Introduction Survey Bootstrapping

We are Interested in the Difference Between Two Groups

● ● ●● ●● ●

●●

● ●

● ●

●●●● ●●● ●●

●

●

● ● ●

●●

●●

●

●● ●

●●●

●● ●

●

●●

●

● ● ●●●

●

●●

●●

● ●● ●

●

●

●

● ●● ●

● ●●●

●

●● ●

● ●

● ●

●● ●

● ●

●●● ● ●

●● ● ●●● ●●

●

●

●●● ● ●

●

●

● ● ●

● ●●

●

●●

●

●

●

●

●

● ●

● ●

●

●

●●

●

●

●

●●●

●● ●

● ●●●●●

●

●

●●●

●

●

●

●

● ●●

●

●●

●

●●●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●●

●●

●●● ●●

● ●●

●

● ●

●

●

●

●

● ●●

● ●●

●

●

●

●

● ●● ●

●

●

● ●●● ● ●● ●

● ●●

●

●

●

●

●●●

● ● ● ●

●● ● ●● ●●●

●● ● ●● ●

● ●●

● ●

●

● ●●

●

●● ● ●

● ●●

● ●

●●

●●● ● ● ●●● ●●●● ● ●● ●●●●

●

● ●

●

●●●

●

● ●●

●

● ●

● ●

●

●

●

●●

●●

●

●

●

● ●

●● ●

●

●

●● ●

●

●

●

●●

●

●● ●●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

● ●●

●

● ●

●

●

● ● ●●●● ●

●

● ●

●

●

●

● ●

●

● ●

●

● ●

●

● ●

●●

● ● ●●

●●

●

●● ●

●

●

●● ●●

●● ●

●

●

●●

● ●

●●

●

●

●

●

●

● ●●

●

●●

●●

●

● ●●

● ●● ●● ●●●● ●

●● ●

●

●

● ● ●●

●

● ●●● ●

●●

●●

● ● ●

●

●

●

●

●

●● ●

● ●

●

● ● ●●

●

● ●

●

●

●

●

●

●● ●

●

●

●

● ●●

●

●●

●

●

●

● ●●

●

●

●

●

●

● ●●●

●

●

● ●●

●● ●

●

●

●

●

● ● ● ●●

● ●

● ●● ●

●●

● ● ●●

●

● ●

● ●●

●●

●

●●

● ●

●●

●

●●

●

● ●●● ●

●●● ●

●● ●

● ●●● ● ●

●●● ● ●

● ●

●

●●

● ●● ●

●

● ●

●

● ● ●

● ●

●●

●●

●

●● ●

●

●

●

●● ● ●

●

●

●

●● ●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

● ●●

● ●

●

●● ●

●● ● ●

●●

●

●

● ●●

●●

●●

●

●

●●●●

●●●

●

● ●● ●

●

● ●

●

● ●

●● ●●● ●● ●

●

● ●● ●● ●● ●

● ●●●

●

●

●● ●

●

●● ●

●

● ●

●

●● ●

●

●●● ●●

●●

●

● ●●

●● ●

● ●

● ● ●

● ●●

●

●

● ●● ●● ●

●

●

●

●●●

●

● ●● ●

●

●

●

●

●●

●

●● ●

●● ●●

●

●●●

● ●

● ●

●●

●

●●

● ●● ●● ●

● ● ●

●

● ●

●

●

●●

●

●

●●

●

● ●

●

●

●

●●

●

●● ●

●●

●●● ●

● ●●

●●

● ●

●

●

●●

● ● ●

● ●●

● ●● ●

●●

●● ●

●● ●●

●

●

● ●

● ●

●

● ●

●

●●

●

●

● ●● ●

● ●

● ●

●

●

●

●

●

●

●● ●●

●●

●

●●

●

●●

●

● ● ●

●

● ●

● ●

●● ● ●

●

● ●

●

●

●

●●

●

●●

● ●●●

●

●●

●● ●

●

●

●

●● ● ● ●

●● ●●

●

●

●

● ●●

●

●●●

●●

●●

●●

●●

●

●

●

●

●

● ●●●

●●

●

● ●

●●

●●

●

●

●

●●

●

●●●

● ●

●● ●

●

●●

● ●

●●

● ● ●

●●●

−30 −20 −10 0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ηi = −1+ 0.3xi

x

y Prob(yi = 1) =
1

1 + exp(− ηi)

Iterators 42 / 66 University of Kansas

Introduction Survey Bootstrapping

Now Automate That Process

Manufacture data

Run Regression

Return row of estimates

s imUnbalanced <− f u n c t i o n (i t e r =0, parm) {
A <− parm$A; B<− parm$B; C<− parm$C ; PrFem <− parm$PrFem
sex <− i f e l s e (r u n i f (N) < PrFem , 0 , 1)
myeta <− A + B * x + C * s ex
sex <− f a c t o r (sex , l e v e l s = c (0 , 1) , l a b e l s = c (”M” , ”F ”))
y <− s imLog i t (myeta)
myglm2 <− glm (y ∼ x + sex , f am i l y = b i nom i a l)
myglm2sum <− co e f (summary (myglm2))
e s t <− myglm2sum [3 ,]

}

Iterators 43 / 66 University of Kansas

Introduction Survey Bootstrapping

Use sapply to run 1000 Regressions

p <− l i s t ()
p$A <− −1 ; p$B <− 0 . 3 ; p$C <− 0 . 4
p$PrFem <− 0 . 5
r e s u l t 4 5 <− l i s t (s a pp l y (1 : 1000 , s imUnbalanced , parm = p) ,

parm = p)

Note: I’m combining the sapply result, along with “p”, for
record-keeping

p$PrFem <− 0 . 9
r e s u l t 4 9 <− l i s t (s a pp l y (1 : 1000 , s imUnbalanced , parm = p) ,

parm = p)

Iterators 44 / 66 University of Kansas

Introduction Survey Bootstrapping

Now Plan to Draw Some Figures

c r e a t e F i g s <− f u n c t i o n (r e s u l t) {
dat <− r e s u l t [[1]]
C <− r e s u l t $parm$C
PrFem <− r e s u l t $parm$PrFem
mybeta <− dat [1 ,]

hrow1 <− h i s t (mybeta , b r eak s =50, p l o t=F)
mybreaks <− hrow1$ b r eak s

breakMember <− cut (dat [1 ,] , mybreaks)

mypval <− dat [4 ,]
my s i g n i f <− i f e l s e ((mypval < 0 .05) , 1 , 0)
d f <− da t a . f r ame (mybeta , mypval , my s i gn i f , breakMember)

p r o p s i g <− by (d f $ mys i gn i f , INDICES = l i s t (d f $breakMember)
, mean , s i m p l i f y = TRUE)

mytrat <− dat [3 ,]
mycounts <− hrow1$ count s

Iterators 45 / 66 University of Kansas

Introduction Survey Bootstrapping

Now Plan to Draw Some Figures ...

p l o t (dat [1 ,] , dat [4 ,] , x l a b = ”beta e s t ima t e ” , y l a b = ”
e s t ima t ed p ” , cex = 0 .7 , main = pas t e (”True Beta=” ,C ,
”Prop . Fem.=” , PrFem))

gc <− c (”gray98 ” , ”gray70 ” , ”gray50 ” , ”gray40 ”)

cut (p rop s i g , b r e ak s=c (−1, 0 .1 , 0 .5 , 0 .9 , 1 . 1))

c a t p r o p s i g <− cut (p rop s i g , b r e ak s = c (−1, 0 .1 , 0 .5 , 0 .9 , 1 . 1)
, o r d e r ed = T, l a b e l s = c (”0 ” , ” l t h ” , ”mth ” , ”1 ”))

b a r p l o t (hrow1$ den s i t y , c o l = gc [a s . nume r i c (c a t p r o p s i g)] ,
names = hrow1$mids)

}

Iterators 46 / 66 University of Kansas

Introduction Survey Bootstrapping

For Balanced Data

Iterators 47 / 66 University of Kansas

Introduction Survey Bootstrapping

For Balanced Data ...

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

● ● ●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●●

● ●●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●●

●

●
●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True Beta= 0.4 Prop. Fem.= 0.5

beta estimate

es
tim

at
ed

 p

−0.31 −0.05 0.19 0.41 0.63 0.85

0.
0

0.
5

1.
0

1.
5

2.
0

Iterators 48 / 66 University of Kansas

Introduction Survey Bootstrapping

For Unbalanced Data

Iterators 49 / 66 University of Kansas

Introduction Survey Bootstrapping

For Unbalanced Data ...

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True Beta= 0.4 Prop. Fem.= 0.9

beta estimate

es
tim

at
ed

 p

−0.525 −0.025 0.425 0.825 1.225

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Iterators 50 / 66 University of Kansas

Introduction Survey Bootstrapping

Final Cautionary Note

At some point, this approach will start to “bog down” under
the weight of memory usage and CPU delays

I’d suggest re-designing so that we separately create the data
frames and run all of the analysis on each separately

That would allow us to 1) stay within memory limits and 2)
parallelize the work across separate cores or computers (see
the R parallel package).

Iterators 51 / 66 University of Kansas

Introduction Survey Bootstrapping

mapply

I never used mapply for the first 5 years of using R

Now I see need for it at least once per month

The documentation may be difficult to understand, but once
you appreciate the beauty of it, you will like it.

Iterators 52 / 66 University of Kansas

Introduction Survey Bootstrapping

When is mapply needed

You have several vectors or lists of the same length

You want to take the first element from each and do
something.

Then take the second element from each and do something

Don’t write nested “for” loops, as users are often tempted to
do.

Iterators 53 / 66 University of Kansas

Introduction Survey Bootstrapping

Example of mapply usage in rockchalk package

rockchalk has many functions that are doing the same thing
over and over for subsets of data.

Run the examples for the addLines() function, you should
see it integrates plotSlopes() and plotPlane() by transferring
information.

Iterators 54 / 66 University of Kansas

Introduction Survey Bootstrapping

Example use of mapply in rockchalk 1.8

dataSplits is a collection of data frames. We want to do the
plot for each with the correct colors, which are stored in
linesFrom variables col and lty.

The small function drawLine accepts 3 arguments, one from
data, one from col, one from lty.

i f (! m i s s i n g (l i n e sF rom)) {
d a t a S p l i t s <− s p l i t (l i n e sF rom $newdata , f = l i n e sF rom

$newdata [[l i n e sF rom $ c a l l [[”modx ”]]]])
drawLine <− f u n c t i o n (nd , mycol , my l ty) {

l i n e s (t r an s3d (nd [[p l o t x 1]] , nd [[p l o t x 2]] , nd$ f i t ,
pmat=r e s) , c o l = mycol , lwd = l f lwd , l t y =
mylty)

}
mapply (drawLine , d a t a S p l i t s , l i n e sF rom $ co l ,

l i n e sF rom $ l t y)
}

Iterators 55 / 66 University of Kansas

Introduction Survey Bootstrapping

Example use of mapply in rockchalk 1.8 ...

Note we are free to name the variables inside drawLine
however we want. That help keep our minds clear about
whether we are talking about just one color or a vector of
colors.

Iterators 56 / 66 University of Kansas

Introduction Survey Bootstrapping

Outline

1 Introduction

2 Survey
for
apply
lapply
lapply: Extended Example #1
lapply: Extended Example #2
mapply: a secret weapon

3 Bootstrapping

Iterators 57 / 66 University of Kansas

Introduction Survey Bootstrapping

Bootstrapping: Some “Do it Yourself” Work Is Required

Many R functions require users to write little functions that
do little things.

In many cases (like lapply or apply), look for FUN as an
argument.

Sometimes no builtin-exists. useR must create!

Iterators 58 / 66 University of Kansas

Introduction Survey Bootstrapping

boot Function Requires a Special Function “statistic”
l i b r a r y (boot)
? boot

Boot s t r ap Resampl ing

D e s c r i p t i o n :

Gene ra te 'R ' boo t s t r a p r e p l i c a t e s o f a s t a t i s t i c a p p l i e d to
d a t a .

Both pa r ame t r i c and nonpa ramet r i c r e s amp l i n g a r e p o s s i b l e .
. . .

boot (data , s t a t i s t i c , R , s im = ' ' o r d i n a r y ' ' , s t y p e = ' ' i ' ' ,
s t r a t a=rep (1 , n) , L = NULL , m = 0 , we i gh t s = NULL ,
r an . g en=f u n c t i o n (d , p) d , mle = NULL , s imp l e = FALSE , . . .)

s t a t i s t i c : A f u n c t i o n which when a p p l i e d to data r e t u r n s a
v e c t o r

c o n t a i n i n g the s t a t i s t i c (s) o f i n t e r e s t . . .

Iterators 59 / 66 University of Kansas

Introduction Survey Bootstrapping

Bootstrap: Background Explanation

Bootstrap: draw samples repeatedly and re-estimate θ

Resulting values approximate a sampling distribution θ

The “boot” package asks for a data frame and a special
function “statistic”. statistic must

accept a data frame as the first argument
accept an “index vector” as the second argument

Iterators 60 / 66 University of Kansas

Introduction Survey Bootstrapping

Don’t Panic: This is Confusing to Everybody

Example usage

boot (data , s t a t i s t i c = yourFunct ion , R = 1000)

boot will iterate 1000 times, and yourFunction will provide the
statistic of interest.

You write yourFunction to make required calculation.

boot will tell yourFunction which lines to use in the data
frame, over-and-over.

Iterators 61 / 66 University of Kansas

Introduction Survey Bootstrapping

The Median of a Poisson Distribution

Suppose you have a sample from a Poisson Process:

samp <− r p o i s (20 , lambda=3)

And you calculate the median:

median (samp)

[1] 2 . 5

How confident are you in that estimate of the median?

Iterators 62 / 66 University of Kansas

Introduction Survey Bootstrapping

Bootstrap Your Median

Here is yourFunction:

calcMed <− f u n c t i o n (dat , i nd) {
median (dat [i nd])

}

dat[ind] has the effect of “pulling” rows that match “ind” from
“dat”

The boot function will send 1000 “case indexes” to your
function.

l i b r a r y (boot)
bpo i s <− boot (samp , calcMed , R = 1000)
bpo i s

Iterators 63 / 66 University of Kansas

Introduction Survey Bootstrapping

Bootstrap Your Median ...

ORDINARY NONPARAMETRIC BOOTSTRAP

Ca l l :
boot (data = samp , s t a t i s t i c = calcMed , R = 1000)

Boot s t r ap S t a t i s t i c s :
o r i g i n a l b i a s s t d . e r r o r

t1 * 2 . 5 0 .076 0 .6173371

Iterators 64 / 66 University of Kansas

Introduction Survey Bootstrapping

Let’s plot that
Histogram of t

t*

D
en

si
ty

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
1

2
3

4

● ●●●●●

●●●

●●

●●

●●●

●●●

●● ●

−3 −2 −1 0 1 2 3

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Quantiles of Standard Normal

t*

Iterators 65 / 66 University of Kansas

Introduction Survey Bootstrapping

Why Do They Do It That Way?

Your instinct is to do this the “simple” way

(Just) “Manually” draw new random samples of rows from a
data frame.
But: Creating 1000s of “new” re-sampled data sets would
“waste” (exhaust?) memory
Would be especially slow if separate data sets have to be
copied between systems.

More efficient to keep 1 data frame, but 1000’s of vectors of
row numbers.

Iterators 66 / 66 University of Kansas

	Introduction
	Survey
	for
	apply
	lapply
	lapply: Extended Example #1
	lapply: Extended Example #2
	mapply: a secret weapon

	Bootstrapping

