
Functions

Paul E. Johnson1 2

1Department of Political Science

2Center for Research Methods and Data Analysis, University of Kansas

2018

Johnson (K.U.) functions 2018 1 / 44

Outline

1 Functions differentiate R from Others

2 Roxygen markup is increasingly popular

3 Example of a function

4 Problems/Opportunities to be Aware Of

5 Another example

6 Interacting with function objects

7 Conclusion

Johnson (K.U.) functions 2018 2 / 44

Functions differentiate R from Others

Outline

1 Functions differentiate R from Others

2 Roxygen markup is increasingly popular

3 Example of a function

4 Problems/Opportunities to be Aware Of

5 Another example

6 Interacting with function objects

7 Conclusion

Johnson (K.U.) functions 2018 3 / 44

Functions differentiate R from Others

R is comparatively more open

S started as a programming language for statistical calculations

The programs S and R (R Core Team, 2017) accept that language

Because S/R was first a language, it retains many of the
programmer-friendly features of a programming language

In comparison to, for example, SAS or Stata

Johnson (K.U.) functions 2018 4 / 44

Functions differentiate R from Others

Generations of S

The S Language– John Chambers, et al.
at Bell Labs, mid 1970s.

There have been 4 generations of the S
language.

Many packages now were written in S3,
but S4 has existed for 10 years.

New frameworks constantly debated &
proposed

S3: The New S Language 1988

Johnson (K.U.) functions 2018 5 / 44

Functions differentiate R from Others

Is R a Branch from S?

Ross Ihaka and Robert Gentleman.
1996. “R: A language for data analysis
and graphics.” Journal of Computational
and Graphical Statistics, 5(3):299-314.

R is

1 a competing dialect of the S
language.

2 a competing software & package
management system.

S pioneers now work to advance R.

S4: John Chambers,Software for Data
Analysis: Programming with R,
Springer, 2008

Johnson (K.U.) functions 2018 6 / 44

Functions differentiate R from Others

functions

The R design allows both

1 inclusion of function collections (packages) prepared by others
2 easy creation of user functions written during a user’s session

In CRMDA, I notice a pattern.

1 We work on 1 project, write some functions.
2 Work on another project, write same/similar functions
3 We notice the common need, sometimes try to write general purpose

functions that

1 would have worked in past projects
2 are useful in future projects.

Many functions in the “rockchalk” package, and all of the function in
“kutils”, are borne of necessity in that way.

Johnson (K.U.) functions 2018 7 / 44

Functions differentiate R from Others

Looking Good is Feeling Good

When your project is finished, I wish your work would look like this

Functions defined at the top!

myfn1 <- function (arg1 , arg2){

lines here using arg1 , arg2

}

5 myfn2 <- function (arg1 , arg2 , arg3){

caution: reused arg1 , arg2 local varnames

arg1 , arg2 different here than in myfn1

}

When I check your work , I focus below , not

above this line

10 a <- 7

b <- c(4, 4, 4, 4, 2)

d <- c("New York", "Cincinnati")

result1 <- myfn1(a, b)

result2 <- myfn2(result1 , d)

Johnson (K.U.) functions 2018 8 / 44

Functions differentiate R from Others

In a perfect world

Each function would carry out an understandable purpose that we can
believe is done correctly

After we verify myfn1 and myfn2 , we’d never “read through” them
again, they are no longer part of the proof-reading exercise. There may
be “troubleshooting”, but we expect those functions to work dependably.

Some “art” and “judgment” is needed, to make a function work correctly,
with just the right inputs.

Novice error: bury input constants inside functions. Should be
arguments instead.

Can relocate functions in a separate file, or into a package, and
everything “just works”

Johnson (K.U.) functions 2018 9 / 44

Functions differentiate R from Others

Anatomy of a function

R allows us to create functions “on the fly”. This is the essential
difference between a compiled language like C and an interpreted
language like R. While an R session is running, we can add new
capabilities to it.

The artist Escher would like this:
There is a function named function. That is to say, function is a
function that creates functions!

Maybe that is more Dr. Seuss.

Johnson (K.U.) functions 2018 10 / 44

Functions differentiate R from Others

Anatomy of a function

somethingGood() is a new function, created by the function()

function like so:

somethingGood <- function(x, y, z){

code in here

}

We Choose
1 the function’s name, somethingGood .
2 the names of the arguments, which are x, y and z

To ”call” (i.e, ”use”) that function, we’ll write

somethingGood(whatever1 , whatever2 , whatever3)

Built-in R functions have short names like ls() lm() , glm() .

The terms arguments and parameters are interchangeable. I often say
inputs.

Johnson (K.U.) functions 2018 11 / 44

Functions differentiate R from Others

Anatomy of a function ...

In R, we do not use the word “options” for function inputs. That
confuses people, who think you are referring to session options and the
R function called options().

arguments may be specified with default values, as in

somethingGood <- function(x1 = 0, x2 = NULL){

After the squiggly brace, any valid R code can be used.

What happens in the function stays in the function. Does not
affect same-named variables in the workspace.

Return results: When when the function’s work is finished, a single
object’s name is included on the last line.

somethingGood <- function(x1 = 0, x2 = NULL){

suppose really interesting calculations

create res , a result

res

}

Johnson (K.U.) functions 2018 12 / 44

Functions differentiate R from Others

Anatomy of a function ...

Please remember.
1 The return includes one object
2 That object can be a vector, a matrix, a data frame, or a list including

(one or more of) all of the above.

If a returned value includes a large matrix or data frame, one is wise to
NOT PRINT it into the session by default. Wrap your return value

inside invisible()

somethingGood <- function(x1 = 0, x2 = NULL){

suppose really interesting calculations

create \texttt{res}, a result

invisible(res)

}

Can break out of function by calling return() . This offers a pleasant

way to use an if/then condition to stop work.

Johnson (K.U.) functions 2018 13 / 44

Functions differentiate R from Others

Anatomy of a function ...

somethingGood <- function(x1 = 0, x2 = NULL){

suppose you created res

if (someLogicalCondition)

return(invisible(res))

otherwise , go on and revise res further.

5 invisible(res)

}

Johnson (K.U.) functions 2018 14 / 44

Functions differentiate R from Others

Anatomy of a function ...

Functions can be nested. If there is a special purpose function that you
don’t expect to use anywhere else, hide it in the top of the function
where you use it.

somethingGood <- function(x1 = 0, x2 = NULL){

chore <- function (z){

calculation about z argument

or x1 or x2 from enclosuring environment

5 }

z.candidate <- R calculations involving x1

and x2

result <- chore(z.candidate)

result

}

chore() is available only within somethingGood()

Johnson (K.U.) functions 2018 15 / 44

Functions differentiate R from Others

R Functions pass information“by value”

Users should organize their information “here”, in the current
environment

the function must not be allowed to damage information.

Thus, we send info “over there” to a function
We get back a new something.

g <- somethingGood(whatever1 , whatever2)

spawns a new thing g

Can clobber old things (on purpose?)

whatever1 <- somethingGood(whatever1 , whatever2)

Emphasis. A function DOES NOT
change variables we give to the function
change other variables in the user workspace

The super assignment <<- allows an exception to this, but R Core

recommends we avoid it. If you must do this, the assign() function is a

safer method.
Johnson (K.U.) functions 2018 16 / 44

Roxygen markup is increasingly popular

Outline

1 Functions differentiate R from Others

2 Roxygen markup is increasingly popular

3 Example of a function

4 Problems/Opportunities to be Aware Of

5 Another example

6 Interacting with function objects

7 Conclusion

Johnson (K.U.) functions 2018 17 / 44

Roxygen markup is increasingly popular

Standardize notation about functions

Programmers (me) often lazy about leaving behind clear documentation.

They like to write functions, not instructions

The Literate Programming movement (@1990) began as a way to blend
documentation with functions, to encourage programmers to try harder

Johnson (K.U.) functions 2018 18 / 44

Roxygen markup is increasingly popular

Standardize notation about functions

The Roxygen style uses text markup like so

##’ terse statement of function purpose

##’

##’ paragraph about function

##’

5 ##’ Paragraphs of "Details"

##’ @param x words about x

##’ @param y words about y

##’ @return a description of the function ’s return

##’ @author Paul Johnson <pauljohn@@ku.edu >

10 myfunction <- function(x, y){

imagine code here

}

Johnson (K.U.) functions 2018 19 / 44

Roxygen markup is increasingly popular

Roxygen can be turned into package documentation

Hadley Wickham has provided many useful R packages, including
roxygen2

Write roxygen markup, then run the roxygenize function that creates
documentation.

Details about package markup:
http://r-pkgs.had.co.nz/man.html#text-formatting

Johnson (K.U.) functions 2018 20 / 44

http://r-pkgs.had.co.nz/man.html#text-formatting

Example of a function

Outline

1 Functions differentiate R from Others

2 Roxygen markup is increasingly popular

3 Example of a function

4 Problems/Opportunities to be Aware Of

5 Another example

6 Interacting with function objects

7 Conclusion

Johnson (K.U.) functions 2018 21 / 44

Example of a function

reverse a factor’s levels

In many projects, we have “Likert Scales”

Often, users have factor variables for which the “polarity” must be
reversed.

high-to-low must become low-to-high
However, they usually have some values like “Skip” or “Not Avail” that
they want to leave at the end of the output.

Johnson (K.U.) functions 2018 22 / 44

Example of a function

If we did not have to worry about the special values, this
would be easy as pie!

##’ Reverse a factor ’s levels

##’

##’ This requires a factor variable

##’ @param x A factor variable

5 ##’ @return A reversed factor variable

##’ @author Paul Johnson <pauljohn@@ku.edu >

revs <- function (x){

if (!is.factor(x)) stop("your variable is

not a factor")

rlevels <- rev(levels(x))

10 factor(x, levels = rlevels)

}

Johnson (K.U.) functions 2018 23 / 44

Example of a function

Lets test that

x <- c("hot", "hot", "cold", "medium", "medium",

"hot")

zz1 <- ordered(x, levels = c("hot", "medium",

"cold"))

x2 <- revs(zz1)

table(x2, zz1 , dnn = list("x2", "zz1 is the

original"))

zz1 is the original
x2 hot medium cold

cold 0 0 1
medium 0 2 0

5 hot 3 0 0

Johnson (K.U.) functions 2018 24 / 44

Problems/Opportunities to be Aware Of

Outline

1 Functions differentiate R from Others

2 Roxygen markup is increasingly popular

3 Example of a function

4 Problems/Opportunities to be Aware Of

5 Another example

6 Interacting with function objects

7 Conclusion

Johnson (K.U.) functions 2018 25 / 44

Problems/Opportunities to be Aware Of

R uses ”lexical scope”

The highest, available-everywhere “environment” is the user workspace.

Using a function creates an “closure” within which changes are
contained.

However, in R a function can “look up” for something that it thinks it
needs. It can reach “up” to the user workspace and pull in information.

Johnson (K.U.) functions 2018 26 / 44

Problems/Opportunities to be Aware Of

That outward-looking tendency is helpful

If your functions use the same information, perhaps it is too boring or
tedious to name those things as variables in your function

x <- 30

aa <- letters [5:10]

getXYZ <- function(m1, m2){

res1 <- paste(m1, x, sep = "_")

5 res2 <- paste(aa, m2 , sep = "_what?_")

list(res1 , res2)

}

getXYZ(m1 = c(1, 2, 3), m2 = c(98, 99))

[[1]]
[1] "1_30" "2_30" "3_30"

[[2]]
5 [1] "e_what?_98" "f_what?_99" "g_what?_98" "h_what?_99" "i_what?_98"

"j_what?_99"

Johnson (K.U.) functions 2018 27 / 44

Problems/Opportunities to be Aware Of

That outward-looking tendency is helpful ...

Notice: The function went and retrieved “ x ” and “ aa ” from the
workspace

They were not passed in as arguments

Johnson (K.U.) functions 2018 28 / 44

Problems/Opportunities to be Aware Of

That outward-looking tendency may be harmful

Fail! If the x and aa in the workspace are not the same ones you wanted
in your function

That’s why I’m very worried about undefined variables in functions.

In C or similar language, we would get an error

In R, we don’t get an error or even a warning if R finds something that
seems to fit.

Because commonly used variable names like “ x ”, “ y ”, “ dat ” are
floating about both in the workspace and in functions I write, I’m
especially vulnerable to this trouble.

The package “ codetools ” has a function checkUsage() which can help

identify undefined variables.

Johnson (K.U.) functions 2018 29 / 44

Another example

Outline

1 Functions differentiate R from Others

2 Roxygen markup is increasingly popular

3 Example of a function

4 Problems/Opportunities to be Aware Of

5 Another example

6 Interacting with function objects

7 Conclusion

Johnson (K.U.) functions 2018 30 / 44

Another example

A ”Variable Key”example

The input data set had names like “V1”, “V2”, . . ., “V99”.

Client provided an Excel sheet with new names like this

oldname newname

V1 Respondent ID
V2 Respondent Age
V3 city - residence
V4 state - residence

We want to respect their newname choices as much as possible, but

we cannot use those as column names (spaces and some minus signs).

We also want consistency, so we decided to make all of these lower case.

Can fix by running 4 commands on newname before replacing it:

Johnson (K.U.) functions 2018 31 / 44

Another example

A ”Variable Key”example ...

newname <- c("Respondent ID", "Respondent Age",

"city - residence", "state - residence")

Change space to underscore

newname <- gsub(" ", "_", newname , fixed = TRUE)

Replace minus with underscore

5 newname <- gsub("-", "_", newname , fixed = TRUE)

Replace multiple underscores with one

underscore

newname <- gsub("(_)\\1+", "_", newname)

Lower case

newname <- tolower(newname)

10 newname

[1] "respondent_id" "respondent_age" "city_residence"
"state_residence"

##colnames(dat) <- newname

Johnson (K.U.) functions 2018 32 / 44

Another example

A ”Variable Key”example

If we import 10 data frames with that same issue, then we have to have
40 lines of code to fix their names.

I’d rather sequester those commands in a function,

##’ Remove spaces , minus signs , and change

letters to lower case

##’

##’ Cleans up a character string. Does not do

comprenensive

##’ cleanup , just minus , spaces and capitals.

Could extend to other flaws

5 ##’ @param x A vector of character string.

##’ @return cleaned vector of strings

##’ @author pauljohn@@ku.edu

cleanVarName <- function(x){

x <- gsub(" ", "_", x, fixed = TRUE)

10 x <- gsub("-", "_", x, fixed = TRUE)

Johnson (K.U.) functions 2018 33 / 44

Another example

A ”Variable Key”example ...

x <- gsub("(_)\\1+", "_", x)

x <- tolower(x)

x

}

And then run one line per data frame

colnames(dat1) <- cleanVarName(colnames(dat1))

colnames(dat2) <- cleanVarName(colnames(dat2))

...

colnames(dat10) <- cleanVarNames(colname(dat10))

Possibly even a for loop that saves so much typing. If we had the
data.frame names within a vector, or if we were importing files from a
list, we could automate this.

Johnson (K.U.) functions 2018 34 / 44

Interacting with function objects

Outline

1 Functions differentiate R from Others

2 Roxygen markup is increasingly popular

3 Example of a function

4 Problems/Opportunities to be Aware Of

5 Another example

6 Interacting with function objects

7 Conclusion

Johnson (K.U.) functions 2018 35 / 44

Interacting with function objects

browser() and debug()

There are 3 things to try to get a handle on what your function does.

1 Type the function’s name, check out the way R looks at your code.

getXYZ

function(m1, m2){
res1 <- paste(m1, x, sep = "_")
res2 <- paste(aa, m2, sep = "_what?_")
list(res1 , res2)

5 }

Note: No parens, no arguments
This works with any R function. Type its name. Even q .

2 Ask R to “stop” whenever it tries to use your function with debug() .

debug(getXYZ)

After that, when you use that function, R will offer an interactive view
of what that function does.

Johnson (K.U.) functions 2018 36 / 44

Interacting with function objects

browser() and debug() ...

result depends on which editor you are using, I’ll demonstrate.

debug cheatsheet

keystroke result
n move into next sub-process or next line

Enter run current line (similar to “n”)
c let the function run
Q abort the function at its current position

3 Put the function call browser() in the middle of your function’s code.

getXYZ <- function(m1, m2){

res1 <- paste(m1, x, sep = "_")

res2 <- paste(aa, m2 , sep = "_what?_")

browser ()

5 list(res1 , res2)

}

Johnson (K.U.) functions 2018 37 / 44

Interacting with function objects

browser() and debug() ...

This is the same as debug() , except that the function runs up to the

point at which you inserted browser() .

especially handy when you have a long function and you don’t want to
run “n” over and over again.

Johnson (K.U.) functions 2018 38 / 44

Conclusion

Outline

1 Functions differentiate R from Others

2 Roxygen markup is increasingly popular

3 Example of a function

4 Problems/Opportunities to be Aware Of

5 Another example

6 Interacting with function objects

7 Conclusion

Johnson (K.U.) functions 2018 39 / 44

Conclusion

The Ease of Creating Functions

The ease of creating (and packaging) new functions is, no doubt, an
important part of the R success story

We hope these slides give the user some confidence about writing
functions, or reading more about writing functions.

There is a chapter about writing functions in the Introduction to R that
is provided with R itself.

Johnson (K.U.) functions 2018 40 / 44

Conclusion

Additional Readings

Additional readings that I enjoy are

Matloff, Norman. S. (2011). The Art of R Programming: a tour of
statistical software design. San Francisco: No Starch Press.

Chambers, J. M. (2008). Software for Data Analysis: programming with
R. London: Springer.

Wickham, Hadley (2014). Advanced R. Boca Raton, FL: CRC.

Johnson (K.U.) functions 2018 41 / 44

Conclusion

vignettes in the rockchalk package

Rstyle: Commentary about how your code ought to look.

Rchaeology: more advanced function writing tips, especially
concentrating on terminology about “calls”, “eval”, and R functions to
interpret function arguments.

Johnson (K.U.) functions 2018 42 / 44

Conclusion

References

R Core Team (2017). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.

Johnson (K.U.) functions 2018 43 / 44

Conclusion

Session

sessionInfo ()

R version 3.4.4 (2018 -03-15)
Platform: x86_64-pc-linux-gnu (64 -bit)
Running under: Ubuntu 18.04 LTS

5 Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
10 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8

LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8
LC_IDENTIFICATION=C

15 attached base packages:
[1] stats graphics grDevices utils datasets base

loaded via a namespace (and not attached):
[1] compiler_3.4.4 tools_3.4.4

Johnson (K.U.) functions 2018 44 / 44

	Functions differentiate R from Others
	Roxygen markup is increasingly popular
	Example of a function
	Problems/Opportunities to be Aware Of
	Another example
	Interacting with function objects
	Conclusion
	References

