Functions

Paul E. Johnson! 2

! Department of Political Science

2Center for Research Methods and Data Analysis, University of Kansas
2018

CENTER FOR
RESEARCH METHODS
& DATA ANALYSIS

College of Liberal Arts
& Sciences

Johnson (K.U.) functions

Outline

@ Functions differentiate R from Others
e Roxygen markup is increasingly popular
© Example of a function

@ Problems/Opportunities to be Aware Of
© Another example

e Interacting with function objects

@ Conclusion

Johnson (K.U.) functions

Functions differentiate R from Others

Outline

@ Functions differentiate R from Others

Johnson (K.U.) functions 2018 3/44

Functions differentiate R from Others

R is comparatively more open

@ S started as a programming language for statistical calculations
@ The programs S and R (R Core Team, 2017) accept that language

@ Because S/R was first a language, it retains many of the
programmer-friendly features of a programming language

@ In comparison to, for example, SAS or Stata

Johnson (K.U.) functions

Functions differentiate R from Others

Generations of S

@ The S Language— John Chambers, et al. The S Language
at Bell Labs, mid 1970s.

@ There have been 4 generations of the S
language.

@ Many packages now were written in S3,
but S4 has existed for 10 years.

@ New frameworks constantly debated &
proposed

S3: The New S Language 1988

Johnson (K.U.) functions

Functions differentiate R from Others

Is R a Branch from S?

S pioneers now work to advance R.

Click to |:00_ |lD!

Ross lhaka and Robert Gentleman.
1996. “R: A language for data analysis e
and graphics." Journal of Computational L}
and Graphical Statistics, 5(3):299-314.

o Ris
© a2 competing dialect of the S
language.
© a competing software & package
management system.

S4: John Chambers,Software for Data
Analysis: Programming with R,
Springer, 2008

Johnson (K.U.) functions

Functions differentiate R from Others

functions

@ The R design allows both

@ inclusion of function collections (packages) prepared by others
@ casy creation of user functions written during a user’s session

@ In CRMDA, I notice a pattern.

@ We work on 1 project, write some functions.

© Work on another project, write same/similar functions

© We notice the common need, sometimes try to write general purpose
functions that

@ would have worked in past projects
@ are useful in future projects.

@ Many functions in the “rockchalk” package, and all of the function in
“kutils”, are borne of necessity in that way.

Johnson (K.U.) functions

Functions differentiate R from Others

Looking Good is Feeling Good

When your project is finished, | wish your work would look like this

Functions defined at the top!
myfnl <- function (argl, arg2){
lines here using argl, arg2
}
s myfn2 <- function (argl, arg2, arg3){
caution: reused argl, arg2 local varnames
argl, arg2 different here than in myfnl

When I check your work, I focus below, not
above this 1line

0 a <- 7

b <- c(4, 4, 4, 4, 2)

d <- c("New York", "Cincinnati")

resultl <- myfnil(a, b)

result2 <- myfn2(resultl, d)

Johnson (K.U.) functions

Functions differentiate R from Others

In a perfect world

@ Each function would carry out an understandable purpose that we can
believe is done correctly

@ After we verify myfnl and myfn2 , we'd never “read through” them
again, they are no longer part of the proof-reading exercise. There may
be “troubleshooting”, but we expect those functions to work dependably.

@ Some “art” and “judgment” is needed, to make a function work correctly,
with just the right inputs.

o Novice error: bury input constants inside functions. Should be
arguments instead.

@ Can relocate functions in a separate file, or into a package, and
everything “just works"

Johnson (K.U.) functions

Functions differentiate R from Others

Anatomy of a function

@ R allows us to create functions “on the fly". This is the essential
difference between a compiled language like C and an interpreted
language like R. While an R session is running, we can add new
capabilities to it.

@ The artist Escher would like this:

There is a function named function. That is to say, function is a
function that creates functions!

Maybe that is more Dr. Seuss.

2018

Johnson (K.U.) functions

10/ 44

Functions differentiate R from Others

Anatomy of a function

@ somethingGood() is a new function, created by the function()
function like so:

somethingGood <- function(x, y, z){
code in here

}

@ We Choose
@ the function’'s name, somethingGood .
@ the names of the arguments, which are x, y and z

@ To "call” (i.e, "use") that function, we'll write

‘somethingGood(whateverl , whatever2, whatever3)

Built-in R functions have short names like Is() Im(), glm() .

@ The terms arguments and parameters are interchangeable. | often say
inputs.

KU

Johnson (K.U.) functions

Functions differentiate R from Others

Anatomy of a function ...

@ In R, we do not use the word “options” for function inputs. That
confuses people, who think you are referring to session options and the
R function called options().

@ arguments may be specified with default values, as in

somethingGood <- function(xl = 0, x2 = NULL)({

@ After the squiggly brace, any valid R code can be used.

@ What happens in the function stays in the function. Does not
affect same-named variables in the workspace.

@ Return results: When when the function’s work is finished, a single
object’s name is included on the last line.

somethingGood <- function(xl = 0, x2 = NULL)({
suppose really interesting calculations
create res, a result
res

¥ KU

Johnson (K.U.) functions

Functions differentiate R from Others

Anatomy of a function ...

@ Please remember.
@ The return includes one object
© That object can be a vector, a matrix, a data frame, or a list including
(one or more of) all of the above.
@ If a returned value includes a large matrix or data frame, one is wise to
NOT PRINT it into the session by default. Wrap your return value

inside invisible()

somethingGood <- function(xl = 0, x2 = NULL)({
suppose really interesting calculations
create \texttt{res}, a result
invisible (res)

3

@ Can break out of function by calling return() . This offers a pleasant
way to use an if/then condition to stop work.

Johnson (K.U.) functions

Functions differentiate R from Others

Anatomy of a function ...

somethingGood <- function(xl = 0, x2 = NULL){
suppose you created res
if (somelogicalCondition)
return (invisible (res))
otherwise, go on and revise res further.
5 invisible (res)

3

Johnson (K.U.) functions 2018 14 /44

Functions differentiate R from Others

Anatomy of a function ...

@ Functions can be nested. If there is a special purpose function that you
don't expect to use anywhere else, hide it in the top of the function
where you use it.

somethingGood <- function(xl = 0, x2 = NULL)({
chore <- function (z){
calculation about z argument
or x1 or x2 from enclosuring environment

s |}
z.candidate <- R calculations involving x1
and x2
result <- chore(z.candidate)
result
iy

o chore() is available only within somethingGood()

Johnson (K.U.) functions

Functions differentiate R from Others

R Functions pass information “by value”

@ Users should organize their information “here”, in the current
environment
e the function must not be allowed to damage information.
@ Thus, we send info “over there” to a function
@ We get back a new something.

‘ g <- somethingGood (whateverl, whatever2)

spawns a new thing g
@ Can clobber old things (on purpose?)

‘ whateverl <- somethingGood(whateverl, whatever2)

@ Emphasis. A function DOES NOT
e change variables we give to the function
o change other variables in the user workspace

@ The super assignment <<- allows an exception to this, but R Core
recommends we avoid it. If you must do this, the assign() function is a

safer method.
2018 16,9"44

Johnson (K.U.) functions

Roxygen markup is increasingly popular

Outline

© Roxygen markup is increasingly popular

Johnson (K.U.) functions

Roxygen markup is increasingly popular

Standardize notation about functions

@ Programmers (me) often lazy about leaving behind clear documentation.
@ They like to write functions, not instructions

@ The Literate Programming movement (©@1990) began as a way to blend
documentation with functions, to encourage programmers to try harder

2018 18 /44

Johnson (K.U.) functions

Roxygen markup is increasingly popular

Standardize notation about functions

The Roxygen style uses text markup like so

##’ terse statement of function purpose

##°

##’ paragraph about function

##

5 ##’ Paragraphs of "Details"

##’ Qparam x words about x

##°’ Q@param y words about y

##’ Qreturn a description of the function’s return
##’ Qauthor Paul Johnson <pauljohn@@ku.edu>
o | myfunction <- function(x, y){

imagine code here

3

Johnson (K.U.) functions 2018 19/44

Roxygen markup is increasingly popular

Roxygen can be turned into package documentation

@ Hadley Wickham has provided many useful R packages, including
roxygen?2

@ Write roxygen markup, then run the roxygenize function that creates
documentation.

@ Details about package markup:
http://r-pkgs.had.co.nz/man.html#text-formatting

Johnson (K.U.) functions

http://r-pkgs.had.co.nz/man.html#text-formatting

Example of a function

Outline

© Example of a function

Johnson (K.U.) functions

Example of a function

reverse a factor's levels

@ In many projects, we have “Likert Scales”

@ Often, users have factor variables for which the “polarity” must be
reversed.
o high-to-low must become low-to-high

o However, they usually have some values like “Skip” or “Not Avail” that
they want to leave at the end of the output.

Johnson (K.U.) functions

Example of a function

If we did not have to worry about the special values, this

would be easy as piel!

##’ Reverse a factor’s levels
#i°
##’ This requires a factor variable
##’ Oparam x A factor variable
5 ##’ Qreturn A reversed factor variable
##’ Qauthor Paul Johnson <pauljohn@@ku.edu>
revs <- function (x){
if (!is.factor(x)) stop("your variable is
not a factor")
rlevels <- rev(levels(x))
0 factor(x, levels = rlevels)

Johnson (K.U.) functions 2018 23 /44

Example of a function

Lets test that

x <= c("hot",
llhot n)

zz1 <- ordered(x,
"cold"))

x2 <- revs(zzl)

table (x2, zzl,
original"))

"hot

dnn

", "cold", "medium", "medium",
levels = c("hot", "medium",
= list("x2", "zzl is the

zz1 is the original

x2 hot medium cold
cold 0 0 1
medium 0 2 0
hot 3 0 0

Johnson (K.U.)

functions

2018

24 /44

Problems/Opportunities to be Aware Of

Outline

0 Problems/Opportunities to be Aware Of

Johnson (K.U.) functions

Problems/Opportunities to be Aware Of

R uses "lexical scope”

@ The highest, available-everywhere “environment” is the user workspace.

@ Using a function creates an “closure” within which changes are
contained.

@ However, in R a function can “look up” for something that it thinks it
needs. It can reach "up” to the user workspace and pull in information.

Johnson (K.U.) functions

2018 26 /44

Problems/Opportunities to be Aware Of

That outward-looking tendency is helpful

@ If your functions use the same information, perhaps it is too boring or
tedious to name those things as variables in your function

x <- 30
aa <- letters[5:10]
getXYZ <- function(ml, m2){

resl <- paste(ml, x, sep = "_")
res2 <- paste(aa, m2, sep = "_what?_")
list (resl, res?2)
}
getXYZ(m1 = c(1, 2, 3), m2 = c(98, 99))
[[1]1]
[1] "1_30" "2_30" "3_30"
[[2]1]
[1] "e_what?_98" "f_what?_99" "g_what?_98" "h_what?_99" "i_what?_98"
"j_what?_99"

Johnson (K.U.) functions

Problems/Opportunities to be Aware Of

That outward-looking tendency is helpful ...

@ Notice: The function went and retrieved “ x " and " aa " from the
workspace

@ They were not passed in as arguments

Johnson (K.U.) functions

Problems/Opportunities to be Aware Of

That outward-looking tendency may be harmful

@ Faill If the x and aa in the workspace are not the same ones you wanted
in your function

@ That's why I'm very worried about undefined variables in functions.

o In C or similar language, we would get an error
e In R, we don't get an error or even a warning if R finds something that
seems to fit.

(LT (LT

@ Because commonly used variable names like “ x ", *y ", * dat " are
floating about both in the workspace and in functions | write, I'm
especially vulnerable to this trouble.

@ The package “ codetools " has a function checkUsage() which can help
identify undefined variables.

Johnson (K.U.) functions 2018 29 /44

Another example

Outline

Another example

Johnson (K.U.) functions

Another example

A "Variable Key" example

@ The input data set had names like “V1", “V2", ..., “V99".
@ Client provided an Excel sheet with new names like this
[oldname [newname |
V1 Respondent ID
V2 Respondent Age
V3 city - residence
V4 state - residence

@ We want to respect their newname choices as much as possible, but
@ we cannot use those as column names (spaces and some minus signs).
@ We also want consistency, so we decided to make all of these lower case.

@ Can fix by running 4 commands on newname before replacing it:

Johnson (K.U.)

functions

Another example

A "Variable Key" example ...

newname <- c("Respondent ID", "Respondent Age",

"city - residence", "state - residence")
Change space to underscore
newname <- gsub(" ", "_", newname, fixed = TRUE)
Replace minus with underscore
5 newname <- gsub("-", "_", newname, fixed = TRUE)

Replace multiple underscores with one
underscore

newname <- gsub("(_)\\1+", "_", newname)

Lower case

newname <- tolower (newname)

0 newname

[1] "respondent_id" "respondent_age" "city_residence"
"state_residence"

##colnames (dat) <- newname

Johnson (K.U.) functions

L0

Another example

A "Variable Key" example

@ If we import 10 data frames with that same issue, then we have to have

40 lines of code to fix their names.

@ |'d rather sequester those commands in a function,

##°

##
##

##°

##°

##°
#it’

cleanVarName <-

Remove spaces,

minus signs,

letters to lower case

Cleans up a character string.

comprenensive

cleanup, just minus,
Could extend to other flaws
@param x A vector of character string.
@return cleaned vector of strings
Qauthor pauljohn@@ku.edu

x <- gsub(" ",
x <- gSllb("—",

Johnson (K.U.)

"
>

n
= 9

spaces and capitals.

function (x){
n

X,
X,

functions

fixed
fixed

Does not do

and change

TRUE)
TRUE)

Another example

A "Variable Key" example ...

x <- gsub(ll(_)\\1+ll’ II_II, X)
x <- tolower (x)
X

@ And then run one line per data frame

colnames (datl) <- cleanVarName (colnames (datl))
colnames (dat2) <- cleanVarName (colnames (dat2))
..

colnames (dat10) <- cleanVarNames (colname (dat10))

@ Possibly even a for loop that saves so much typing. If we had the
data.frame names within a vector, or if we were importing files from a
list, we could automate this.

Johnson (K.U.) functions 2018 34 /44

Interacting with function objects

Outline

Interacting with function objects

Johnson (K.U.) functions

Interacting with function objects

browser() and debug()

There are 3 things to try to get a handle on what your function does.

@ Type the function’'s name, check out the way R looks at your code.
| getXyz

function(mi, m2){
resl <- paste(ml, x, sep = "_")
res2 <- paste(aa, m2, sep = "_what?_")
list(resl, res2)

5 |}

Note: No parens, no arguments
This works with any R function. Type its name. Even q .

@ Ask R to “stop” whenever it tries to use your function with debug() .
‘ debug (getXYZ) ‘

After that, when you use that function, R will offer an interactive view
of what that function does.

KU

Johnson (K.U.)

functions 2018 36 /44

Interacting with function objects

browser() and debug() ...

o result depends on which editor you are using, I'll demonstrate.
] debug cheatsheet
keystroke result
n move into next sub-process or next line
Enter run current line (similar to “n")
c let the function run
Q abort the function at its current position

© Put the function call browser() in the middle of your function’s code.

getXYZ <- function(ml, m2){

resl <- paste(ml, x, sep = "_")
res2 <- paste(aa, m2, sep = "_what?_")
browser ()

5 list (resl, res?2)

Johnson (K.U.) functions

Interacting with function objects

browser() and debug() ...

This is the same as debug() , except that the function runs up to the
point at which you inserted browser() .

e especially handy when you have a long function and you don’t want to

won

run “n” over and over again.

Johnson (K.U.) functions 2018 38 /44

Conclusion

Johnson (K.U.) functions

Conclusion

The Ease of Creating Functions

@ The ease of creating (and packaging) new functions is, no doubt, an
important part of the R success story

@ We hope these slides give the user some confidence about writing
functions, or reading more about writing functions.

@ There is a chapter about writing functions in the Introduction to R that
is provided with R itself.

Johnson (K.U.) functions 2018 40 /44

Conclusion

Additional Readings

o Additional readings that | enjoy are

o Matloff, Norman. S. (2011). The Art of R Programming: a tour of
statistical software design. San Francisco: No Starch Press.

e Chambers, J. M. (2008). Software for Data Analysis: programming with
R. London: Springer.

e Wickham, Hadley (2014). Advanced R. Boca Raton, FL: CRC.

Johnson (K.U.) functions

Conclusion

vignettes in the rockchalk package

@ Rstyle: Commentary about how your code ought to look.

@ Rchaeology: more advanced function writing tips, especially
concentrating on terminology about “calls”, “eval”, and R functions to
interpret function arguments.

Johnson (K.U.) functions 2018 42 /44

Conclusion

References

R Core Team (2017). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.

Johnson (K.U.) functions

Conclusion

Session

‘ sessionInfo ()

R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04 LTS

5 |Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so0.3.7.1
LAPACK: /usr/1lib/x86_64-linux-gnu/lapack/liblapack.s0.3.7.1

locale:
0 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8
LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8

LC_IDENTIFICATION=C

5 |attached base packages:
[1] stats graphics grDevices utils datasets base

loaded via a namespace (and not attached):
[1] compiler_3.4.4 tools_3.4.4

Johnson (K. functions

	Functions differentiate R from Others
	Roxygen markup is increasingly popular
	Example of a function
	Problems/Opportunities to be Aware Of
	Another example
	Interacting with function objects
	Conclusion
	References

