Stat Overview

Paul E. Johnson ${ }^{1} \quad 2$
${ }^{1}$ Department of Political Science
${ }^{2}$ Center for Research Methods and Data Analysis, University of Kansas

Outline

(1) Getting Started
(2) Major Super-Big Gigantic Points

- Variable Types
- Interrogate the object
- Keep all the pieces (at no extra charge!)
(3) GSS Data
(4) Descriptive
(5) Cross tabulation
(6) Graphs
- Scatterplots
- Boxplots
- Barplots
(7) Basic Stats
(8) Quick: Make Up Some Data!
(9) Conclusion

Outline

(1) Getting Started
2) Major Super-Big Gigantic Points

- Variable Types
- Interrogate the object
- Keep all the pieces (at no extra charge!)

GSS Data

Descriptive
Cross tabulation
Graphs

- Scatterplots
- Boxplots
- Barplots

Basic Stats
(8) Quick: Make Up Some Data!
(9) Conclusion

Check your packages

- The base install of R (R Core Team, 2017) loads the stats module. See?

```
sessionInfo()
```

```
R version 3.6.0 (2019-04-26)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 19.04
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
locale:
    [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
        LC_TIME=en_US.UTF-8
    [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8
        LC_MESSAGES=en_US.UTF-8
    [7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C
    LC_MEASUREMENT=en_US.UTF-8
        LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
```


Check your packages ...

```
loaded via a namespace (and not attached):
[1] compiler_3.6.0 tools_3.6.0
```

- The presence of "stats" means that functions like these are available.
- mean
- Im
- See about the stats package
help(package="stats")

For anything else, run library

- Specialized stat procedures are generally provided in separate packages
- Possibly most famous stat-oriented packages are associated with stats textbooks

MASS Venables, William and Ripley, Brian, Modern Applied Statistics with S
car Fox, John, Applied Regression Analysis and Generalized Linear Models and Companion to Applied Regression
nIme Pinheiro, Jose and Bates, Douglas Mixed-Effects Models in S and S-PLUS.

Outline

Getting Started

(2) Major Super-Big Gigantic Points

- Variable Types
- Interrogate the object
- Keep all the pieces (at no extra charge!)

GSS Data

Descriptive
Cross tabulation
Graphs

- Scatterplots
- Boxplots
- Barplots

Basic Stats
Quick: Make Up Some Data!

variable types: numeric versus factors

- Numbers can be logged, squared, added, etc
- Factors cannot be logged, squared

religion	
label	R's internal integer for record keeping
Catholic	1
Protestant	2
Jewish	3
Muslim	4

- In R, categorical variables are called factors (see functions factor(), ordered(), levels())
- Many functions will "promote" character variables to factors automatically

R functions adapt to data

- Most R statistical procedures try to "do the right thing" if we use a factor variable
- Regression Example. As we all know regression coefficients are only defined for numeric predictors. However, factor predictors can be included).
- Suppose sex $\in\{$ Male, Female $\}$.
- Including sex as a predictor in a regression will cause R to
- Notice sex is not numeric. It is an unordered factor.
- R will create a "dummy variable" named sexFemale (Male=0, Female=1). (Also known as an "indicator variable", "binary variable", "dichotomous variable")

R functions adapt to data ...

- If the predictor were rel $\in\{$ Cath, Prot, Jewi, Musl, Hind $\}$, a regression routine would typically create 4 "dummies", relProt, relJewi, relMusl, relHind, the last 4 columns here.

religion	numeric score	relCath	relProt	relJewi	relMusl	relHind
Cath	1	1	0	0	0	0
Prot	2	0	1	0	0	0
Jewi	3	0	0	1	0	0
Musl	4	0	0	0	1	0
Hind	5	0	0	0	0	1

- However, user can adjust the regression formula to request estimation of both sexFemale and sexMale or all 5 levels of religion.

R functions adapt to data

- Example 2. The plot function responds differently to inputs
plot ($\mathrm{y} \sim \mathrm{x}$)
will make
- a scatterplot if y and x are numeric
- a box plot if y is numeric and x is a factor
- a bar plot if both are factors

Output

You only get what you know how to ask for (Paul Johnson, 2016)

- Most procedures return minimal output. This is silent, unless there is an error message

```
m1 <- lm(mydv ~ x1 + x2 + x3 + x4, data =
    wonderful)
```

- m 1 is an "object", waiting to be quizzed and investigated.

For Functions within R's recommended packages

- we can be fairly sure that functions like print(), summary(), plot(), coef() will work as expected
- Almost always, summary() will create a new object which can be further explored
- If you download additional packages, all bets are off.

Cultural Norms versus Coding Requirements

- R is an open, flexible culture
- opinion leaders
- mutual expectations
- shorthand symbolic references
- R allows creation of new symbols and functions
- Until now, the most respected voices have been authors coming out of the ATT S tradition
- They are focused on re-usability of function names across contexts.
- summary() is supposed to work on any kind of object, and change understandably across contexts
- anova() is supposed to be a general purpose way to compare fitted statistical objects
- These are recommended practices, but not universally followed.

Open Source/Free Software

If it breaks, you get to keep all the pieces (Anon)

- R is an engine congenial to the addition of contributed packages
- Perhaps R is the "lingua franca of statistics" ("Data Analysts Captivated by R's Power", New York Times, January 6, 2009), but it is not a corporation.
- r-help email list, Stackexchange forums

Fish follow glittering objects

- Some of the most enticing R packages are also the most frustrating
- Fancy model appears, our dissertation advisor says "use that", and it doesn't work.
- Download the package source code, to find out how they did it
- Bad news: The code a complicated tangle we have no hope of learning from it.

Outline

Getting Started
2. Major Super-Big Gigantic Points

- Variable Types
- Interrogate the object
- Keep all the pieces (at no extra charge!)
(3) GSS Data

Descriptive
(5) Cross tabulation

Graphs

- Scatterplots
- Boxplots
- Barplots

Basic Stats
Quick: Make Up Some Data!
(9) Conclusion

Some example data I made a long time ago

I have a file in "data" called "gss-subset2.Rda". If you don't have it, it can be downloaded:
http://pj.freefaculty.org/guides/stat/DataSets/GSS/ gss-subset2.Rda

- Lets check the workspace before loading
(ls.old <- ls())

```
[1] "opts.orig" "par.orig" "pjmar" "tdir"
```

- This is an RData structure, it can drop any number of objects into my workspace
- Check workspace after loading
(ls.new <- ls())

Some example data I made a long time ago ...

| [1] "dat" "ls.old" "opts.orig" "par.orig" "pjmar" "tdir" |
| :--- | :--- |
| setdiff(ls.new, ls.old) |
| |
| $[1]$ "dat" "ls.old" |

- setdiff() is a handy function, it goes along with the R functions union() and intersect()

Outline

Getting Started
2) Major Super-Big Gigantic Points

- Variable Types
- Interrogate the object
- Keep all the pieces (at no extra charge!)

3) GSS Data

(4) Descriptive

Cross tabulation
Graphs

- Scatterplots
- Boxplots
- Barplots
(7) Basic Stats
(8) Quick: Make Up Some Data!
(9) Conclusion

summary ()

summary (dat)

INDEPENDENT :997 Min. :18.00
NOT STR DEMOCRAT :736 1st Qu.:34.00
STRONG DEMOCRAT :700 Median :46.00

NOT STR REPUBLICAN:637 Mean :47.14
IND,NEAR DEM :527 3rd Qu.:59.00

summary() ...

summary() ...

summary() ...

```
1st Qu.:32.80 Probably should : 617
Median :42.20 Probably shouldnt be : 200
Mean :49.41 Definitely shouldnt be: 77
3rd Qu.:64.10 NA's :3128
Max. :97.20
NA's :268
mhgvthme lessreg
Definitely should : 311 STRONGLY IN FAVOR: 251
Probably should : 701 IN FAVOR : 518
Probably shouldnt be : 278 NEITHER : 406
Definitely shouldnt be: 97 AGAINST : 236
NA's :3123 STRONGLY AGAINST : 69
NA's :3030
    numwomen nummen
Min. : 0.000 Min. : 0.000
1st Qu.: 0.000 1st Qu.: 0.000
Median : 0.000 Median : 1.000
Mean : 9.479 Mean : 9.286
3rd Qu.: 4.000 3rd Qu.: 3.000
Max. :997.000 Max. :997.000
NA's :2204 NA's :2214
sexsex5 evstray
EXCLUSIVELY MALE :1059 YES : 350
BOTH MALE AND FEMALE: 40 NO :1414
EXCLUSIVELY FEMALE : 893 NEVER MARRIED: 623
```


summary() ...

NA's $: 2518 \quad N^{\prime}$'s 2123

KU

rockchalk::summarize()

- summary() has been that way since, well, forever
- output is text, not an object with numbers we can re-use
- no diversity values (variance, skewness, kurtosis)
- I prefer to separate the numeric and factor variables, and to alphabetize the output
- entropy is a diversity measure for discrete sets.
- normedEntropy range
- 0 (all scores observed in one category)
- 1 (all outcomes equally likely)

Mean, Variance, etc

- There are functions in stats package for basic descriptive statistics

purpose	R function
sample average	$\operatorname{mean}(x)$
sample variance	$\operatorname{var}(x)$
sample standard deviation	$\operatorname{sd}(x)$
range	$\operatorname{range}(x)$
minimum	$\min (x)$
maximum	$\max (x)$
quantiles (range values)	quantile (x)

But there's a "gotcha" I need to warn you about

- Observe

```
mean(dat$age)
```


[1] NA

The age variable is average is missing in GSS. WTF?

- The range does not exist either? And no maximum?

```
range(dat$age)
```

```
[1] NA NA
```

```
max(dat$age)
```

```
[1] NA
```


Missing values

- The symbol NA is used for "missing data" in R vectors and data frames
- At least quantile throws us a warning

```
quantile(dat$age)
Error in quantile.default(dat$age) :
missing values and NaN's not allowed if 'na.rm' is FALSE
```

- passive-aggressive approach to missings in R

```
mean(dat$age, na.rm = TRUE)
```

```
[1] 47.14159
```

range (dat\$age, na.rm = TRUE)

```
[1] 18 89
```


Missing values ...

```
quantile(dat$age, na.rm = TRUE)
```

0%	25%	50%	75%	100%
18	34	46	59	89

- Some functions will automatically ignore missings (plot(), Im()). Simple stats will not. Grrrr!

Outline

Getting Started
2. Major Super-Big Gigantic Points

- Variable Types
- Interrogate the object
- Keep all the pieces (at no extra charge!)

3) GSS Data

Descriptive
(5) Cross tabulation

Graphs

- Scatterplots
- Boxplots
- Barplots
(7) Basic Stats
(8) Quick: Make Up Some Data!
(9) Conclusion

Sometimes, a Cross Tabulation is the best you can do

The Iron Laws of Crosstabs. 3 rules for a happy life.
(1) IV on top, DV on left
(Convert to percentages (or proportions) on the columns
(Compare the across, find if columns are distributed

The FX Network is	Column	Percentages
	Respondent	Sex
male	female	
really infantile	25%	60%
OK	50%	18%
really great	25%	22%
N	343	288

Here's a Table I Typed By hand

	Does		
Sespondent Own a Gun?			
Stance on Gun Registration	Yes	No	Refused To Say
Favor	70.7%	84.9	62.9
Oppose	29.3	15.1	38.0
Number of Cases	656	1128	27

Found 2 typographical errors when reviewing against real numbers below.

R base tools for tables can be made to work

```
t1 <- table(dat$gunlaw, dat$owngun)
t1
```

	YES	NO	REFUSED
FAVOR	464	1085	17
OPPOSE	192	193	10

prop.table(t1, 2)

	YES	NO	REFUSED
FAVOR	0.7073171	0.8489828	0.6296296
OPPOSE	0.2926829	0.1510172	0.3703704

addmargins (t1)

	YES	NO	REFUSED	Sum
FAVOR	464	1085	17	1566
OPPOSE	192	193	10	395
Sum	656	1278	27	1961

package gmodels introduced SPSS style CrossTable function

```
library(gmodels)
CrossTable(dat$gunlaw, dat$owngun)
```


Total Observations in Table: 1961

package gmodels introduced SPSS style CrossTable function

rockchalk has pctable

- While CrossTable was a welcome invention, it did not boil down to the sort of table that I required of my students.
- We explored alternatives, some of which are very nice (packages memisc, vcd, and descr).
- But, now, feast your eyes on this:

```
library(rockchalk)
pctable(gunlaw ~ owngun, data = dat, rvlab =
    "Stance on Gun Registration", cvlab = "Does
    Respondent Own a Gun?")
```


rockchalk has pctable ...

```
Count (column %)
    Does Respondent Own a Gun?
Stance on Gun Registration YES NO REFUSED
    FAVOR 464(70.7%) 1085(84.9%) 17(63%)
    OPPOSE 192(29.3%) 193(15.1%) 10(37%)
    Sum 656 1278 27
    Does Respondent Own a Gun?
Stance on Gun Registration Sum
    FAVOR 1566
    OPPOSE 395
    Sum 1961
```

- which can be wrestled into a nice looking table, either in html or $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$. Here's the ${ }^{\left[4 T_{E}\right.} \mathrm{X}$

tabsum	YES	NO	REFUSED	Sum
FAVOR	$464(70.7 \%)$	$1085(84.9 \%)$	$17(63 \%)$	1566
OPPOSE	$192(29.3 \%)$	$193(15.1 \%)$	$10(37 \%)$	395
Sum	656	1278	27	1961

Outline

Getting Started

Major Super-Big Gigantic Points

- Variable Types
- Interrogate the object
- Keep all the pieces (at no extra charge!)

GSS Data

Descriptive

Cross tabulation

(6) Graphs

- Scatterplots
- Boxplots
- Barplots

Basic Stats
Quick: Make Up Some Data!

Scatterplot: 2 numeric variables

- Socio-economic status and education

```
plot(sei ~ educ, data = dat, cex = 0.5, lwd =
    0.2, main = "",
    xlab = "Education (years)", ylab =
            "Socio-economic Status", ylim = c(0, 100))
```


Scatterplot: 2 numeric variables

- Color Coded Men and Women

Scatterplot: 2 numeric variables ...

```
plot(sei ~ educ, data = dat, main = "", xlab =
    "Education (years)",
        ylab = "Socio-economic Status", ylim =
        c(0,120), type = "n")
sexcolor <- ifelse(dat$sex == "MALE", "black",
    "gray60")
sexpch <- ifelse(dat$sex == "MALE", 1, 4)
points(sei ~ educ, data = dat, cex = 0.5, lwd =
    0.2,
    col = sexcolor, pch = sexpch)
legend("topleft", legend = c("Male","Female"),
    col = c("black","gray80"), pch = c(1,4))
```


Scatterplot: 2 numeric variables

"Piled up observations" Problem

- I made the symbols light to give a hint: There are lots of repeated scores.
- The most common quick fix for this is to "jitter" the observations so they don't overlap quite so much.

```
plot(jitter(sei) ~ jitter(educ), data = dat, cex
    = 0.5, lwd = 0.2, main = "", xlab =
    "Education (years)", ylab = "Socio-economic
    Status", ylim = c(0, 100))
```


"Piled up observations" Problem ...

Lately, People are looking at smarter plot types

- CRAN package "hexbin"
- You should install "hexbin", then run

```
library(hexbin)
help(package = "hexbin")
example(hexbin)
vignette("hexabon_binning")
```

- Following usage is in classic R style
- An object "hbin" is created (class $=$ hexbin)
- Then a plot method is used (which responds to common R style arguments xlab, ylab, etc)

Lately, People are looking at smarter plot types ...

```
library(hexbin)
hbin <- hexbin(dat$educ, dat$sei, xbins = 40)
plot(hbin, xlab = "Education", ylab = "Socio
    Economic Status",
        main = "Hexagon-binned Data Plot",
        lcex = 0.6)
```

- I had some difficulty understanding how that worked, believe answer is in " ?gplot.hexbin " (maybe you also run "methods (class = "hexbin") " to retrace my steps
- Creates six sided shapes, counts observations within
- plot method draws color-coded hexagons

Lately, People are looking at smarter plot types ...

Hexagon-binned Data Plot

Counts

The R lattice package implements 'Trellis" plots

- The lattice package is a huge accomplishment by U. Wisc. PhD Deepayan Sarkar (see Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R).
- To get the flavor of it, run

```
library(lattice)
example(xyplot)
?xyplot
```

- The hexbin package includes a function that calls lattice tools, hexbinplot

```
hexbinplot(sei ~ educ, dat,
    xlab = "Education", ylab = "Socio
        Economic Status",
    main = "Hexagon via lattice graphics")
```


The R lattice package implements "Trellis" plots ...

Hexagon via lattice graphics

Compare Male and Female

- Lattice graphs are intended to "scale up" to display many sub-groups compactly.
- Syntax uses bar "|" to indicate grouping variable
- Elaborate framework for specifying style details of panels inside xyplot
- plot method draws color-coded hexagons

```
hexbinplot(sei ~ educ | sex, dat,
    xlab = "Education", ylab = "Socio
        Economic Status",
    main = "Hexagon via lattice graphics")
```


Compare Male and Female ...

Hexagon via lattice graphics

Boxplot: Like a Histogram Turned on its Side

- A boxplot is John Tukey's invention
- Dark line at Median
- Box has 25% of cases above and below (IQ range)
- "Whiskers" default to reach out 1.5 interquartile range

- Dots represent extreme cases.

```
boxplot(x)
text(0.8, median(x),
    paste("median is",
    round(median(x), 2)),
    pos=2)
text(1.2, 37,
    paste("box=interquartile
    \n range"))
```


Boxplot: Like a Histogram Turned on its Side ...

This variable is symmetric, with mean near median of 50 .

Boxplot: For a Nonsymmetric Variable


```
boxplot(x, xlim=c(0,2))
text(0.8, median(x),
    paste("median is",
    round(median(x), 2)),
    pos=2)
text(1.2, mean(x),
    paste("mean is",
    round(mean(x),1)), pos=4)
```


Boxplot Case Study in GSS Data

- A histogram can display only one group of respondents
- Boxplot can offer more compact multi-group view.
- GSS has questions about the total number of sexual partners that a person has had in their lifetimes, both male and female (what self-respecting 13 year old boy is not interested in that?)

```
dat$totnum <- dat$nummen + dat$numwomen
hist(dat$totnum, prob=TRUE, xlab="Total sexual
    partners (Male + Female)", main = "All
    Respondents")
```


Boxplot Case Study in GSS Data ...

I concluded we'd better exclude respondents with more than 99 partners

Boxplot Case Study in GSS Data ...

Histograms for Number of Sexual Partners(GSS 2006)

Respondents: Male

Respondents: Female

Boxplot Case Study in GSS Data ...

Use a Box Plot Instead

Boxplot Case Study in GSS Data ...

I spent about 1 million hours on this in 2007, so I insist you look

Boxplot Case Study in GSS Data ...

Barplot

- Barplot: graphic presentation of a tabulation
- Horizontal: discrete variable
- Vertical: Any numeric value (summary score ,mean, proportion, count)
- Problem: The width of the bar has no "substantive" meaning (Unlike a histogram, where the width \times height represents the area)

Barplot

- In R, we are asked to assemble a barplot in 2 steps
(1) Create a table that includes the values we intend to plot
(0) Usually table(), or
(3 prop.table(table()), or
3 Any other matrix-making function, like memisc::genTable.
(2) Run the barplot() function to create the graphic

Gender Gap in 2004

	Respondent	
Mender		
Mresidential Choice	Female	
Kerry	45%	52
Bush	53	47
Nader	2	1
Didn't Vote*	1	1
Number of Cases	1137	1487

* Respondent voted, but
did not cast vote in
Presidential contest

Voter Participation Dynamics

Voter Participation Dynamics ...

```
\(\operatorname{par}(x p d=T R U E)\)
ptvote <- 100 *prop.table (table (dat\$vote04,
    dat \(\$\) vote00), 2)
mycolors <- c("gray76", "gray80", "gray90")
bpbeside <- barplot (ptvote, ylim=c \((0,100)\), beside
    \(=\) TRUE, col = mycolors, density =
    \(c(30,20,40)\), angle \(=c(45,-45,0), x l a b=\)
    "Participation in 2000", ylab =
    "Participation in 2004")
legend("topright", legend =
    levels (factor (dat\$vote04)), col = mycolors,
    density \(=c(30,20,40)\), angle \(=c(45,-45,0))\)
text (as.vector (bpbeside), as.vector (ptvote),
    labels=round (as.vector (ptvote), 1), pos=3)
```


Barplot: Partisanship in 2004

Barplot: Partisanship in 2004 ...

```
opar <- par (no.readonly = TRUE)
newmar <- par ("mar") +c(3, 0,0,0)
par (mar = newmar)
\#\#From the 2010 midterm notes
dat\$partyid[dat\$partyid \%in\%
    levels (dat\$partyid) [8]] <- NA
dat\$partyid <- factor (dat\$partyid)
levels(dat\$partyid) <- c("Strong Dem.", "Dem.",
    "Ind Near Dem", "Independent", "Ind. Near
    Repub.", "Repub.", "Strong Repub.")
dat\$pres04[dat\$pres04 \%in\%
    levels (dat\$pres04) [3:10]]<-NA
dat\$pres04 <- factor (dat\$pres04)
t1 <- with(dat, prop.table (table (pres04,
    partyid), 2))
barplot (t1, beside \(=\) TRUE, las \(=2\), ylim \(=c(0,1)\) )
abline (h=seq (0.05,1,by=0.05), lty=4, lwd=0.2)
```


Barplot: Partisanship in 2004

$$
\begin{aligned}
& \text { legend("top", legend=c("J.Kerry","G.W.Bush"), } \\
& \text { fill=gray.colors(2), bg="white") } \\
& \text { par <- opar }
\end{aligned}
$$

A German Student Helped me Figure this out

- Is was not truly interested in bar plots, but a young student from Germany was
- I learned a great deal, and you will too, if you step through these examples:
http://pj.freefaculty.org/R/WorkingExamples/
plot-barplot-1.R
http://pj.freefaculty.org/R/WorkingExamples/
plot-barplot-2.R
- There are "html" output files there too
- These help not only with barplots, but also with the problem of "writing outside the plot region"

A German Student Helped me Figure this out

NB: Many Other Types of Plots

- "spinogram" is a barplot that scales the widths of the bars according to the numbers of observations
- dot plot replaces the "big boxy bars" with smaller dots to mark the tops of the bars.
- pie charts are awful, every reasonable person would agree they should never be used for anything. (my definition of reasonable is based on your answer: "do you hate pie charts?").

Outline

Getting Started
2. Major Super-Big Gigantic Points

- Variable Types
- Interrogate the object
- Keep all the pieces (at no extra charge!)

3) GSS Data

Descriptive
Cross tabulation
Graphs

- Scatterplots
- Boxplots
- Barplots
(7) Basic Stats

Quick: Make Up Some Data!
(9) Conclusion

t.test

- Does GSS report different SES for men and women?
- $H_{0}: \mu_{\text {men }}=\mu_{\text {women }}$

```
t.test(sei ~ sex, data = dat)
```

```
    Welch Two Sample t-test
data: sei by sex
t = 0.39224, df = 4015.9, p-value = 0.6949
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -0.9520256 1.4282301
sample estimates:
    mean in group MALE mean in group FEMALE
        49.54071 49.30261
```

- In 2002 (or so), R Core decided to use "Welch's unequal variance correction" for this

```
t.test(sei ~ sex, data = dat, var.equal = TRUE)
```


t.test ...

```
    Two Sample t-test
data: sei by sex
t = 0.39354, df = 4240, p-value = 0.6939
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -0.9480687 1.4242732
sample estimates:
    mean in group MALE mean in group FEMALE
    49.54071 49.30261
```


t.test

- I suppose the expected value of age is smaller than 46
- NULL $H_{0}: \mu_{\text {age }} \geq 46$ Alternative $H_{A}: \mu_{\text {age }}<46$
t.test(dat\$age, mu = 46, alternative = "less")

```
    One Sample t-test
data: dat$age
t = 4.5289, df=4491, p-value = 1
alternative hypothesis: true mean is less than 46
95 percent confidence interval:
    -Inf 47.55629
sample estimates:
mean of x
    47.14159
```


Outline

Getting Started

2) Major Super-Big Gigantic Points

- Variable Types
- Interrogate the object
- Keep all the pieces (at no extra charge!)

3) GSS Data

Descriptive
Cross tabulation
Graphs

- Scatterplots
- Boxplots
- Barplots
(7) Basic Stats
(8) Quick: Make Up Some Data!

Conclusion

Easy access to random number generators

- R provides a family of random number generators
- When we find new methods, it is easiest to understand them if we make up some data, so we know what we are supposed to get
- Simulation offers a "low barrier to entry" for people who want to learn more about statistical distributions

What is that Gamma thing?

- I'll create 4 variables with the same expected values
- Which should have roughly the same means in a sample of 500

```
set.seed(234234)
N <- 500
dat2 <- data.frame(x1 = rnorm(N, m = 4, sd = 5),
    x2 = rpois(N, lambda = 4),
    x3 = rgamma(N, shape = 0.4,
    scale = 10),
    x4 = rbinom(N, size = 8, prob
    = 0.5))
```

rockchalk: :summarize (dat2)

What is that Gamma thing?

Numeric variables				
	x 1	x 2	x3	x 4
min	-11.064	0	0	0
med	3.983	4	1.428	4
\max	22.772	10	47.616	8
mean	4.101	4.052	3.903	3.968
sd	5.163	1.999	6.273	1.453
skewness	0.203	0.450	2.954	-0.074
kurtosis	0.346	-0.084	10.911	-0.410
nobs	500	500	500	500
nmissing	0	0	0	0

I Cannot See Too Much in the Scatterplot Matrix

$$
\begin{aligned}
& \text { pairs (dat2, lwd } \\
& =0.8)
\end{aligned}
$$

Compare Histograms

KU

Compare Histograms ...

```
\(\operatorname{par}(\mathrm{mfcol}=\mathrm{c}(2,2))\)
hist (dat2\$x1, main = "Normal", prob = TRUE,
    breaks = 20, \(x l a b=p a s t e(" E[x]=4 "), x l i m\)
    \(=c(-16,24))\)
hist (dat2\$x2, main = "Poisson", prob = TRUE,
    breaks = 20, xlab = paste("E[x] = 4"), xlim =
    c ( \(-16,24\) ) )
hist (dat2\$x3, main = "Gamma", prob = TRUE, breaks
    = 20, xlab = paste("E[x] = 4"), xlim =
    c \((-16,24)\) )
hist (dat2\$x4, main = "Binomial", prob = TRUE,
    breaks \(=20, x l a b=p a s t e(" E[x]=4 "), x l i m=\)
    c \((-16,24))\)
```


Outline

Getting Started
2) Major Super-Big Gigantic Points

- Variable Types
- Interrogate the object
- Keep all the pieces (at no extra charge!)

GSS Data

Descriptive
Cross tabulation
Graphs

- Scatterplots
- Boxplots
- Barplots
(1) Basic Stats
(3) Quick: Make Up Some Data!
(9) Conclusion

The R Experience is What You Make of It

- If you are completely inexperienced, hooray!
- It seems certain to me that R is the best statistical \& programming learning environment the planet Earth has ever known
- R is
- open to experimentation
- invention of new tools
- And yet R is disciplined and structured
- If you are experienced with other statistical software, hooray!
- You will experience the same trauma and struggle that I did
- Look for similarities, but don't assume they will exist
- Other stat packs are gradually adapting to be more like R, I expect the differences will not be so start for the students in the future
- Stata and SAS now have facilities similar to R factors, for example.

References

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Session

sessionInfo()

```
R version 3.6.0 (2019-04-26)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 19.04
```

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
LC_TIME = en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8
LC_MONETARY=en_US.UTF-8
LC_MESSAGES = en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS = C
[10] LC_TELEPHONE=C
LC_MEASUREMENT = en_US.UTF-8
LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:

Session

```
    [1] memisc_0.99.17.2 MASS_7.3-51.4
                        Hmisc_4.2-0
[6] ggplot2_3.2.0 Formula_1.2-3 survival_2.44-1.1
    lattice_0.20-38
    rockchalk_1.8.144
[11] gmodels_2.18.1
loaded via a namespace (and not attached):
    [1] jsonlite_1.6
        gtools_3.8.1
    [5] assertthat_0.2.1
        cellranger_1.1.0
    [9] pbivnorm_0.6.0
        glue_1.3.1
[13] digest_0.6.20
    minqa_1.2.4
[17] colorspace_1.4-1
    plyr_1.8.4
[21] pkgconfig_2.0.2
    xtable_1.8-4
[25] scales_1.0.0 gdata_2.18.0 openxlsx_4.1.0
    rio_0.5.16
[29] lme4_1.1-21
htmlTable_1.13.1
tibble_2.1.3
    car_3.0-2
[33] withr_2.1.2
    repr_1.0.1
    nnet_7.3-12
```


Session

[37] mnormt_1.5-5
crayon_1.3.4 \quad readxl_1.3.1 \quad magrittr_1.5

