Analysis

Paul E. Johnson¹

¹Center for Research Methods and Data Analysis, University of Kansas

2018

Johnson (CRMDA)

2018 2/31

Outline

1 Analysis Thumbnail

2 Regression Analysis

This is a brief overview

- Using R (R Core Team, 2017) for analysis is a huge topic
- In following days of the workshop, we investigate analysis methods in considerably more detail

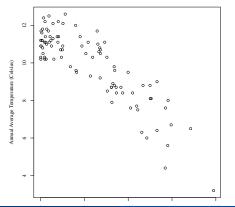
Outline

How is X related to Y?

- A predictor and an outcome.
- A simple theory: temperature in Oregon depends on the elevation above sea level.

$$tann_i = \beta_0 + \beta_1 * elevation_i + e_i$$

I'll get that Oregon temperature file again


<pre>dat1 <- read.table("data/oregon.csv", sep = ",",</pre>	
header = TRUE, stringsAsFactors = FALSE)	
head(dat1)	

		station	latitude	longitude	elevation	tann
:	1	ANT	44.917	-120.717	846	9.6
1	2	ARL	45.717	-120.200	96	12.5
:	3	ASH	42.217	-122.717	543	11.1
4	4	AST	46.150	-123.883	2	10.3
Į	5	BKA	44.833	-117.817	1027	7.6
6	6	BKK	44.783	-117.833	1050	8.4

Check The Scatterplot!

```
plot(tann ~ elevation, data = dat1,
    xlab="Elevation above sea level",
    ylab="Annual Average Temperature (Celsius)",
    main="")
```

- The "formula" interface, " $y \sim x$ ". Same is used in regression estimation.
- Because both variables are numeric, R makes a standard "scatterplot".

A Simple One-Predictor Regression

• The linear regression function is "Im"

mod1 <- lm (tann \sim elevation, data = dat1)

- If that command succeeds, it generates no "output". Nothing is written out, the command prompt simply returns.
- Part of the R philosophy is that we should interact with the model, ask it for info, make plots of it, etc

Follow-up 1: summary

summary(mod1)

5

```
Call:
  lm(formula = tann \sim elevation. data = dat1)
  Residuals:
      Min 10 Median 30 Max
  -2.6841 -0.6026 -0.1081 0.7613 2.1034
  Coefficients:
                Estimate Std. Error t value Pr(>|t|)
  (Intercept) 11.6881385 0.1502978 77.77 <2e-16 ***
10
  elevation -0.0032377 0.0002016 -16.06 <2e-16 ***
   _ _ _
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  Residual standard error: 0.9582 on 90 degrees of freedom
15
  Multiple R-squared: 0.7413, Adjusted R-squared: 0.7385
  F-statistic: 257.9 on 1 and 90 DF, p-value: < 2.2e-16
```

Digression: Generic Functions

 Note: the summary() function does something very different with mod1 than it did with a data frame.

Generic Function: A function for which "methods" have been written to customize R's response to input objects.

summary() is one of the generic functions because there are specialized method implementation named summary.lm .

• An invention due to the ATT S development team in the 1980s.

KI J

What goes on inside the R Runtime engine?

- When you run summary(mod1), the R runtime system says to itself
 - Hmm. I've got summary.default() , and I also I have summary.lm()

and summary.data.frame() . And summary.anova() and

```
summary.glm() . And . . ..
```

- Which do they expect me to use? Its a puzzler!
- Let's ask the object itself for a hint

class(mod1)

[1] "lm"

- Aha! It is an "Im" object, that means I use summary.Im() to display that.
- If you happen to have myUnknownObject , then R will use summary.default() when you run summary(myUnknownObject).

What goes on inside the R Runtime engine? ...

• An explanation of how objects are assigned into classes, and where these "method functions" like summary.lm() come from, is left for another day.

summary creates an object

mod1sum <- summary(mod1)</pre>

- And running the function coef() does something different with the summary object and the object itself.
- Observe coef(mod1) simply splats out the regression coefficients

coef(mod1)

(Intercept) elevation 11.688138523 -0.003237686

• But the output from coef on the summary object is a coefficient table

coef(mod1sum)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	11.688138523	0.1502978171	77.76652	2.556377e-84
elevation	-0.003237686	0.0002015983	-16.06009	3.638765e-28

KI I

summary creates an object ...

• That last one is actually calling a method coef.summary.lm(mod1sum) because the class of the summary object is

class(mod1sum)

[1] "summary.lm"

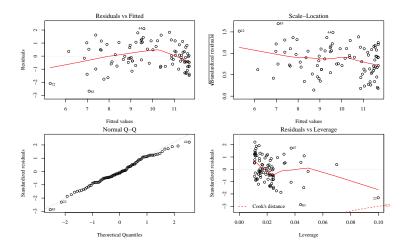
Regression Analysis

Follow-up 2: confidence intervals

confint(mod1)

	2.5 %	97.5 %
(Intercept)	11.389545676	11.986731369
elevation	-0.003638196	-0.002837176

Follow-up 3: plot diagnostics


- When run interactively, the command plot(mod1) will pause between 4 graphs.
- This code creates a 2 x 2 plot including those 4 graphs

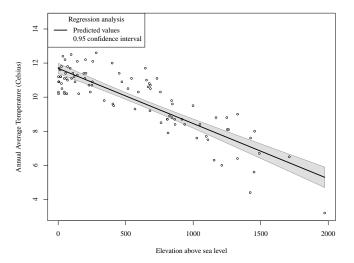
```
par(mfcol = c(2,2))
plot(mod1)
par(mfcol = c(1,1))
```

And then it sets the default display back to one graph per device.

• If you want fancy control of page "layout", the layout() function in R is recommended.

Follow-up 3: plot diagnostics ...

Follow-up 4: plot predictive relationship


 Because I do this all the time with my classes, I wrote a function in rockchalk called plotSlopes() for this purpose. I think its output is nicer.

```
library(rockchalk)
plotSlopes(mod1, plotx = "elevation", interval =
    "confidence", xlab = "Elevation above sea
    level", ylab = "Annual Average Temperature
    (Celsius)", main="")
```

KI J

Regression Analysis

Follow-up 4: plot predictive relationship

Follow-ups: many many more exist

> m.e	thods(class = "lm")			
[1]	add1.lm*	alias.lm *	anova.lm*	case.names.lm*
[5]	confint.lm	cooks.distance.lm*	deviance.lm *	dfbeta.lm *
[9]	dfbetas.lm *	drop1.lm *	dummy.coef.lm	effects.lm *
[13]	extractAIC.Im *	family.lm*	formula.lm*	hatvalues.lm*
[17]	influence.lm*	kappa.lm	labels.lm *	logLik.lm*
[21]	model.frame.lm*	model.matrix.lm	nobs.lm *	plot.lm *
[25]	predict.lm	print.lm *	proj.lm *	qr.lm *
[29]	residuals.lm	rstandard.lm *	rstudent.lm *	simulate.lm*
[33]	summary.lm	variable.names.lm*	vcov.lm*	

10

5

- I know what one-half of these are for.
- If I were you, I would understand the R "predict" method, especially its "newdata" argument. That's where most of my work in rockchalk has been concentrated.

Use a table writer to make a table

```
library(rockchalk)
or10 <- outreg(list("Temperature" = mod1))</pre>
```

	T		
	Temperature		
	Estimate		
	(S.E.)		
(Intercept)	11.688***		
	(0.150)		
elevation	-0.003***		
	(0.000)		
N	92		
RMSE	0.958		
R^2	0.741		
p < 0.05 p < 0.01 p < 0.001			
cat(or10)			

Use a table writer to make a table ...

	Temperature
	Estimate
	(S.E.)
(Intercept)	11.688***
	(0.150)
elevation	-0.003***
	(0.000)
N	92
RMSE	0.958
R^2	0.741

 $*p \le 0.05 ** p \le 0.01 *** p \le 0.001$

Use a table writer to make a table

		Temperature	
dat1\$elevationP1000 <-		Estimate	
dat1\$elevation / 1000			
		(S.E.)	
mod2 <- lm(tann \sim	(Intercept)	11.688***	(Inter
elevationP1000, data	(intercept)		(inten
= dat1)		(0.150)	
	Elev. per 1000 ft	-3.238***	Elev.
or20 <-	•	(0.202)	
outreg(list("Temperatur	e <u>"</u>	()	
= mod2), varLabels =	Ν	92	Ν
-	RMSE	0.958	RMSE
list("elevationP1000"	R^2	0.741	R^2
= "Elev. per 1000	<u>11</u>	0.741	n
ft"))	$*p \leq 0.05 **p < 0.05$	$0.01 * p \le 0.001$	$*p \leq$
cat(or20)			_

Outline

Where is R different than other Programs?

- In some programs (SPSS), the user runs a command, and the program "spits out" everything worth knowing.
- SAS and Stata, to a lesser degree, still have that approach, although they do leave a door open to export fitted models and do some follow-up work with them.
- R is almost completely different. If SPSS is "idiot proof", the R approach is "idiots not welcome".

KI J

Fit, then Follow Up

- $\bullet\,$ The S/R approach has us create a fitted model object
- And then run follow-up functions, such as
 - summary()
 - o plot()

What to work on next

- Find code that works, and then test variations on that.
- The example folders
 Example-els
 Example-mpg
 have full worked examples. Look for R/import-1.R, R/analysis-1.R.
- WorkingExamples in

http://pj.freefaculty.org/R/WorkingExamples. Exciting new feature!: HTML files are browsable in there

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Conclusions

Session

sessionInfo()

```
R version 3.6.0 (2019-04-26)
   Platform: x86_64-pc-linux-gnu (64-bit)
   Running under: Ubuntu 19.04
  Matrix products: default
5
   BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
   LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
   locale:
    [1] LC_CTYPE=en_US.UTF-8
                                   LC_NUMERIC=C
10
        LC TIME=en US.UTF-8
    [4] LC_COLLATE=en_US.UTF-8
                                   LC_MONETARY=en_US.UTF-8
        LC\_MESSAGES = en\_US.UTF-8
    [7] LC PAPER=en US.UTF-8
                                   LC NAME = C
                                                               LC ADDRESS=C
   [10] LC_TELEPHONE=C
                                   LC_MEASUREMENT = en_US.UTF-8
       LC_IDENTIFICATION=C
15
   attached base packages:
   [1] stats
                 graphics grDevices utils datasets methods base
   other attached packages:
   [1] rockchalk_1.8.144
```

Conclusions

Session ...

20	loaded via a namespace (and not attached):						
		Rcpp_1.0.1	lattice_0.20-38		grid_3.6.0		
	[7]	plyr_1.8.4 xtable_1.8-4	nlme_3.1-140 stats4_3.6.0	zip_2.0.2	carData_3.0-2		
	[13]	minqa_1.2.4 Matrix_1.2-17	nloptr_1.2.1 pbivnorm_0.6.0	boot_1.3-22	openxlsx_4.1.0		
_		splines_3.6.0	lme4_1.1-21	-	1 –		
25		tools_3.6.0 mnormt_1.5-5	foreign_0.8-71 lavaan_0.6-3	kutils_1.69	compiler_3.6.0		