
Recoding

Paul E. Johnson1 2

1Department of Political Science

2Center for Research Methods and Data Analysis, University of Kansas

2018

Johnson (K.U.) recoding 2018 1 / 134

Outline

1 Variable Types

2 Numeric

3 Strings

4 Factors

5 Create your “workingdata” rds files

6 NES

7 Object Oriented R: Why Factors?

8 Conclusion

Johnson (K.U.) recoding 2018 2 / 134

What’s the big idea?

“They” give us variables that need to be cleaned up

Recoding:

change variable names
alter numeric values
assign labels to values

Difficult record-keeping process, requires teamwork

Johnson (K.U.) recoding 2018 3 / 134

Variable Types

Outline

1 Variable Types

2 Numeric

3 Strings

4 Factors

5 Create your “workingdata” rds files

6 NES

7 Object Oriented R: Why Factors?

8 Conclusion

Johnson (K.U.) recoding 2018 4 / 134

Variable Types

numbers, strings, and factors (oh my!)

Today focus on R (R Core Team, 2017) variable classes
1 integers
2 numeric floating point numbers (AKA “doubles”),
3 character strings, and
4 factors

Not discussing “Date” or “POSIXct” for date/time information

Johnson (K.U.) recoding 2018 5 / 134

Variable Types

Be Careful, Check your work

Always check effect of recodes.

Don’t erase old variables & values
Do create new variables or new data frame

One way is to rename every variable

Sometimes I’ll do the following
1 Make a backup copy

dat.orig <- dat

2 Do recodes in dat
3 Can compare variable across data.frames

table(dat$x123 , dat.orig$x123)

Numeric variables: Scatterplot

plot.default(dat$x456 , dat.orig$x456)

compare side by side

cbind(dat$x456 , dat.orig$x456)

Johnson (K.U.) recoding 2018 6 / 134

Variable Types

Variable modes in R

A vector is a collection of scores, all of which are stored in the same
storage “mode”.

Mode examples:

integer
numeric (floating point number, AKA“double”precision floating number)
character (letters, non-number characters, or numbers that are quoted
(“3”))
logical (legal values TRUE and FALSE represent 1 and 0)

Most common methods to create vectors are

The c() function (c = concatenate) will guess the storage mode from

your input

The vector() function will explicitly ask for a vector using a storage

mode.

Character vector

x <- c("alpha", "beta", "gamma", "omega", "psi")
is.character(x)

Johnson (K.U.) recoding 2018 7 / 134

Variable Types

Variable modes in R ...

[1] TRUE

If you create a vector with one character-value and some numbers,
guess what happens?

x <- c("alpha", 2, 3, 3, 4)

R converts (demotes?) the numbers to characters.

x

[1] "alpha" "2" "3" "3" "4"

Why? All elements in a vector must be of the same type.

Ways to check:

is.character(x)

[1] TRUE

Johnson (K.U.) recoding 2018 8 / 134

Variable Types

Variable modes in R ...

mode(x)

[1] "character"

Conversion back to numeric will replace the character with the missing
value symbol (because there is no number for the character “alpha”)

as.numeric(x)

[1] NA 2 3 3 4

If you enter data that appears to be integers, R guesses you wanted
floating point numbers (double-precision real-valued numbers)

x <- c(55, 2, 3, 3, 4)
x

[1] 55 2 3 3 4

Johnson (K.U.) recoding 2018 9 / 134

Variable Types

Variable modes in R ...

is.double(x)

[1] TRUE

is.integer(x)

[1] FALSE

Johnson (K.U.) recoding 2018 10 / 134

Variable Types

Variable modes in R ...

But if you really do want integer data, you can signal R about that by
the letter“L”(short for“long integer”storage format) with your integers:

x <- c(55L, 2L, 3L, 3L, 4L)
x

[1] 55 2 3 3 4

is.integer(x)

[1] TRUE

Johnson (K.U.) recoding 2018 11 / 134

Variable Types

Variable modes in R ...

What if you combine integers and floating point numbers?

x <- c(2L, 3L, 3L, 4L, 5.5323)
is.integer(x)

[1] FALSE

x

[1] 2.0000 3.0000 3.0000 4.0000 5.5323

is.double(x)

[1] TRUE

R has “promoted” the integers to floating point numbers in order to store
them along with the floating value.

Johnson (K.U.) recoding 2018 12 / 134

Variable Types

Variable modes in R ...

Does not help if you explicitly create a vector by declaring its storage
mode:

x <- vector(mode = "integer", length = 5)
is.integer(x)

[1] TRUE

x <- c(1, 2, 3, 4, 5)
is.integer(x)

[1] FALSE

R is hiding the decimals from you
x

[1] 1 2 3 4 5

mode(x)

[1] "numeric"

Johnson (K.U.) recoding 2018 13 / 134

Variable Types

Recoding Examples

Replace 999 with NA (in an age variable, perhaps)

Create new columns, such as “xlog” or “xsquared”.

Change “Male” to “M” in a string variable

Correct the misspelling of “Cincinnati”

Re-group observations, to combine “aged”“elderly”“old” and “senior” in a
character variable or a factor.

Numeric and string recodes are comparatively easy

“atomic” data types (they have no R “attributes”)

Factor variables require more effort, more internal components have to
be fixed properly.

Johnson (K.U.) recoding 2018 14 / 134

Numeric

Outline

1 Variable Types

2 Numeric

3 Strings

4 Factors

5 Create your “workingdata” rds files

6 NES

7 Object Oriented R: Why Factors?

8 Conclusion

Johnson (K.U.) recoding 2018 15 / 134

Numeric

Recoding Numeric Variables is easy

We are interested in 3 particular problems

1 Setting some values as missings

2 Re-scaling and transforming values

3 Re-grouping values

Johnson (K.U.) recoding 2018 16 / 134

Numeric

Small test data frame

dat <- readRDS(file = "data/smtest.rds")
str(dat)

’data.frame ’: 48 obs. of 4 variables:
$ x: num 235.7 35.3 52 415.7 412.2 ...
$ y: int 11 14 15 10 17 10 15 14 10 8 ...
$ w: chr "g" "f" "i" "h" ...

5 $ z: Factor w/ 4 levels "eenie","meanie",..: 1 1 1 1 1 1 1 1 1 1 ...

dat.orig <- dat ## spare copy

Johnson (K.U.) recoding 2018 17 / 134

Numeric

Two Styles for Setting missing values

Suppose every score for y greater than 11 is bogus, must be reset as
missing

1 The index approach

dat$y[dat$y > 11] <- NA

Find all values for which y > 11 and change them to symbol NA

2 The ifelse function

dat$y <- ifelse(dat$y > 11, NA, dat$y)

If the value of y exceeds 11, return NA, but return y otherwise

Either way, all values above 11 become missing.

To understand the detail here, I suggest you look at the TRUE-FALSE

vector dat$y > 11 . I’ll show first 10 values:

head(dat$y > 11, 10)

[1] FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE

Johnson (K.U.) recoding 2018 18 / 134

Numeric

Always double-check recodes

Always Double-check

I’ve got the original data set, so I can compare easily

table(is.na(dat$y), dat.orig$y, exclude = NULL)

6 8 9 10 11 12 13 14 15 16 17 18 <NA >
FALSE 2 4 5 4 7 0 0 0 0 0 0 0 0
TRUE 0 0 0 0 0 1 6 5 5 4 3 2 0
<NA > 0 0 0 0 0 0 0 0 0 0 0 0 0

“exclude = NULL” means “show me everything, missings and all”

Otherwise, create new variables with new names.

Johnson (K.U.) recoding 2018 19 / 134

Numeric

Always double-check recodes ...

This creates a new variable y2
dat$y2 <- dat$y
dat$y2[dat$y2 > 11] <- NA
I run this to save space in output
table(is.na(dat$y2), dat$y, exclude = NULL)

6 8 9 10 11 12 13 14 15 16 17 18
FALSE 2 4 5 4 7 0 0 0 0 0 0 0
TRUE 0 0 0 0 0 1 6 5 5 4 3 2

Could as well do
table(dat$y2, dat$y, exclude = NULL)

“exclude = NULL” means “show me everything, missings and all”

Johnson (K.U.) recoding 2018 20 / 134

Numeric

Any Logical Vector can be applied

I don’t know why this might happen, but suppose a co-author reports
that all odd numbers between 11 and 19 are invalid

Did I show you the seq() function yet?

seq(11, 19, by = 2)

[1] 11 13 15 17 19

Did I show you about %in% yet?

c(10, 11, 12, 13, 14, 15, 16) %in% seq(11, 19, by = 2)

[1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE

Put those together

dat$y[dat$y %in% seq(11, 19, by = 2)] <- NA

Any y in the sequence 11, 13, . . . , 19 are set to NA

Johnson (K.U.) recoding 2018 21 / 134

Numeric

Rescaling and transforming

R has math functions like +, -, /, log(), sqrt(), exp(), and so forth.

Run “help(“+”)”, or “?log”, etc.

It is as simple as column in, column out

dat$x2 <- 0.01 * dat$x
dat$xexp <- exp(dat$x)
dat$xlog <- log(dat$x)
dat$xsqrt <- sqrt(dat$x)

Note
1 I created new variables, but you are allowed to destroy/replace x itself

if you want to
2 I strongly prefer to name new variables by appending a suffix(“ xlog ”

yes!, “ logx ” no!)

Johnson (K.U.) recoding 2018 22 / 134

Numeric

Alternative declaration approach

I often use this method instead:

dat[, "xlog.2"] <- log(dat$x)

Because
1 I can use a calculated value in the newly named column

newname <- paste0("xlog", ".3")
dat[, newname] <- exp(dat$x)

2 It works with matrices (with which $ does not)

Johnson (K.U.) recoding 2018 23 / 134

Numeric

Use cut to create categorical ranges

This converts a numeric variable into a factor variable

Divide a numeric range into groupings, use the cut function

dat$xcut <-cut(dat$x,
breaks = c(-5, 60, 100, 1000000) ,
labels = c("Minimal", "Medium", "Huge"))

table(dat$xcut , exclude = NULL)

Minimal Medium Huge
6 7 35

Johnson (K.U.) recoding 2018 24 / 134

Numeric

Conditional Recodes are Easy As Well

The function ifelse() is convenient

arguments are a “logical condition”, and a value if the condition is true,
and one if it is false.

y <- c(31, 33, 41, 61)
ifelse(x < 3, y, x)

[1] 31 33 3 4 5

Johnson (K.U.) recoding 2018 25 / 134

Numeric

The only dangers are . . .

1 You don’t understand the function you apply:

z <- c(-2, -0.4 , 0, 1, 2, 3)
log(z)

[1] NaN NaN -Inf 0.0000000 0.6931472 1.0986123

2 Floating point numbers deserve caution: digitial computers are
vulnerable to “rounding error”.

Comparison of a numeric variable against a particular numeric value is
hazardous/fatal.
Math: 2/3 is not exactly equal to 0.666667, but it may look like it.

2/3

[1] 0.6666667

print(2/3, digits = 20)

[1] 0.66666666666666662966

Johnson (K.U.) recoding 2018 26 / 134

Numeric

The only dangers are

The R-FAQ has a section explicitly devoted to this question: “7.31 Why
doesn’t R think these numbers are equal?” Conclusion: This is not an R
problem, it is a digital computing problem.

Because computers have finite, discrete storage, it is technically
impossible to represent the continuum of the real number line in a
computer variable

Johnson (K.U.) recoding 2018 27 / 134

Numeric

Example: Ambiguous Subtraction

Until 2015, I thought >=and <= were safe from trouble, but here’s a
counter-example

a <- 0.58; b <- 0.08

(a-b) >= 0.5

[1] FALSE

WTF?

First look here:

a

[1] 0.58

b

[1] 0.08

Johnson (K.U.) recoding 2018 28 / 134

Numeric

Example: Ambiguous Subtraction ...

a-b

[1] 0.5

Turn up the precision of the display, the problem is easy-enough to see.
First, I’ll fiddle my environment

op.orig <- options ()
options(digits =20)

a

[1] 0.57999999999999996003

b

[1] 0.080000000000000001665

a-b

Johnson (K.U.) recoding 2018 29 / 134

Numeric

Example: Ambiguous Subtraction ...

[1] 0.49999999999999994449

Then I put the environment back the way it was

options(op.orig)

From this, I am humbled

Johnson (K.U.) recoding 2018 30 / 134

Numeric

A real life example

This is from a project in Spring, 2017.

a <- 100*(23/40)
b <- (100*23)/40
all.equal(a, b)

[1] TRUE

But...

round(a)

[1] 57

round(b)

[1] 58

Need some hints?

print(a, digits = 20)

Johnson (K.U.) recoding 2018 31 / 134

Numeric

A real life example ...

[1] 57 .499999999999992895

print(b, digits = 20)

[1] 57.5

100/40 has an exact representation in floating point numbers in base 10, 2.5

print ((100/40)*23, digits = 20)

[1] 57.5

It is reasonable to expect 100*23/40 = 2.5 * 23 should be exactly 57.5

23/40 is a non-repeating decimal in base 10

print (23/40, digits = 20)

[1] 0.57499999999999995559

Johnson (K.U.) recoding 2018 32 / 134

Numeric

Yet another example and the take-away

Surprise: Even a simple decimal like 0.1 has no exact representation in
digital numbers, it must be approximated by a nearby value

0.1

[1] 0.1

print(0.1, digits = 22)

[1] 0.1000000000000000055511

x <- 0.1
x = = 0.1

[1] TRUE

x = = 0.1000000000000000055511

[1] TRUE

Johnson (K.U.) recoding 2018 33 / 134

Numeric

Yet another example and the take-away ...

Computers try to tell us what they think we want.

Should “==” succeed in both of those cases? I think NO!

Major takeaway message: The use of “==” with numeric, non integer
variables is very problematic

The use of inequalities “>=” or “<=” should be cautious, possibly
requiring re-design of an algorithm to allow some “numerical wobble”

Johnson (K.U.) recoding 2018 34 / 134

Strings

Outline

1 Variable Types

2 Numeric

3 Strings

4 Factors

5 Create your “workingdata” rds files

6 NES

7 Object Oriented R: Why Factors?

8 Conclusion

Johnson (K.U.) recoding 2018 35 / 134

Strings

Character variables

Why bother with character variables?

The names of the columns need tidying.

Character columns have errors

We need beautiful labels. Convert country names, abbreviate states, etc.

Johnson (K.U.) recoding 2018 36 / 134

Strings

Creating Character Variables: paste and paste0

The most frequently used string functions

Manufacture a vector of integers, convert them to characters

dat$rn <- as.character (1: NROW(dat))

The paste() function combines vectors, using an indicated separator

dat$wn <- paste(dat$w, dat$rn, sep = "_")
head(dat[,c("w", "rn", "wn")])

w rn wn
1 g 1 g_1
2 f 2 f_2
3 i 3 i_3

5 4 h 4 h_4
5 g 5 g_5
6 i 6 i_6

If you forget to specify sep, then a space will be inserted.

A convenience function paste0() , was created to save us the trouble of

typing sep = ”” when we don’t want a separator of any kind.

Johnson (K.U.) recoding 2018 37 / 134

Strings

Creating Character Variables: paste and paste0 ...

dat$wn <- paste0(dat$w, dat$rn)
head(dat[,c("w", "rn", "wn")])

w rn wn
1 g 1 g1
2 f 2 f2
3 i 3 i3

5 4 h 4 h4
5 g 5 g5
6 i 6 i6

Johnson (K.U.) recoding 2018 38 / 134

Strings

I often need to clean up colnames

Retrieve column names

oldnames <- colnames(dat)
oldnames

[1] "x" "y" "w" "z" "y2" "x2" "xexp"
"xlog" "xsqrt" "xlog.2"

[11] "xlog.3" "xcut" "rn" "wn"

Sometimes, the needed change is simple, like changing to all CAPITAL
letters

colnames(dat) <- toupper(oldnames)
head(dat , 2)

X Y W Z Y2 X2 XEXP XLOG

1 235 .69505 11 g eenie 11 2.3569505 2.296468e +102 5.462539

2 35 .26574 14 f eenie NA 0.3526574 2.068785e +15 3.562912

XSQRT XLOG.2 XLOG.3 XCUT RN WN

5 1 15 .352363 5.462539 2.296468e +102 Huge 1 g1

2 5.938496 3.562912 2.068785e +15 Minimal 2 f2

Johnson (K.U.) recoding 2018 39 / 134

Strings

I often need to clean up colnames ...

Sometimes they need more information, before combining with other
data sets

colnames(dat) <- paste0(oldnames , "_", 2017)
head(dat , 2)

x_2017 y_2017 w_2017 z_2017 y2_2017 x2_2017
1 235 .69505 11 g eenie 11 2.3569505
2 35 .26574 14 f eenie NA 0.3526574

xexp_2017 xlog_2017 xsqrt_2017 xlog.2_2017
5 1 2.296468e +102 5.462539 15 .352363 5.462539

2 2.068785e +15 3.562912 5.938496 3.562912
xlog.3_2017 xcut_2017 rn_2017 wn_2017

1 2.296468e +102 Huge 1 g1
2 2.068785e +15 Minimal 2 f2

I’d better replace the original names now

colnames(dat) <- oldnames

Johnson (K.U.) recoding 2018 40 / 134

Strings

Renaming columns can be a tricky business

In one recent project, all of the column names have an accidentally
repeated word, as in {”religion religion 1”, “religion religion 2”,
“gender gender 1”, ...}. To fix that, we extracted the column names and
applied some fancy “regular expression” code.

Project had 9 data input files from different prison hospitals. In each
one, there were hundreds of columns that represented the SAME
information with different variable names. The goal was to reduce the
unique names to standard names like dxcode1, dxcode2, dxcode3 .

Client had an employee make a “name old” and “name new” roster for
each file in an Excel sheet. We import those values, apply without
retyping them (avoid typos).

Johnson (K.U.) recoding 2018 41 / 134

Strings

Brief list of string functions

1 paste . Mentioned above. Combines vectors, often used for creating
row names for data frames.

2 substr(x, start, stop). Chops a character vector x, keeping only the
characters from the positions between start and stop

x <- c("hello", "jello", "fellow", "mellow")
substr(x, 2, 5)

[1] "ello" "ello" "ello" "ello"

3 strsplit(x, splt) . Creates a new list, in which the elements of x are

chopped into pieces separated by the symbol splt .

strsplit(x, "ll")

Johnson (K.U.) recoding 2018 42 / 134

Strings

Brief list of string functions ...

[[1]]
[1] "he" "o"

[[2]]
5 [1] "je" "o"

[[3]]
[1] "fe" "ow"

10 [[4]]
[1] "me" "ow"

CAUTION: Regular Expressions are discussed in more depth in the 4th
day of this workshop. REs are a specialized language that offers
powerful filtering tools

4 grep(pattern, x): “GNU regular expression parser”, scans for presence of
“pattern” in string “x”,

the argument fixed = TRUE turns off regex support, treats the pattern
and like ordinary letters.
Check for “ee” in dat$z. Note return is index number of matches

Johnson (K.U.) recoding 2018 43 / 134

Strings

Brief list of string functions ...

ees <- grep("ee", dat$z, fixed = TRUE)
head(ees)

[1] 1 2 3 4 5 6

Want a vector of matching values?

ees <- grep("ee", dat$z, value = TRUE , fixed = TRUE)
head(ees)

[1] "eenie" "eenie" "eenie" "eenie" "eenie" "eenie"

5 “regex” pattern matching (a staple of formal computer science training)

ˆ and $: 2 key symbols in RE:

The “ˆ” symbol stands for “the beginning of the string”
The “$” symbol stands for the end of the string

Example: which values of dat$wn that begin with g

startswd <- grep("^g", dat$wn, value = TRUE)
head(startswd , 10)

Johnson (K.U.) recoding 2018 44 / 134

Strings

Brief list of string functions ...

[1] "g1" "g5" "g10" "g14" "g17" "g19" "g22" "g24" "g29"
"g31"

The grepl function returns logical TRUE/FALSE instead

startswdl <- grepl("^g", dat$wn)
head(startswdl , 10)

[1] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
TRUE

6 gsub(x, y, var) : “Substitute all occurrences of x with the characters y

in var”.
Allows regex, but fixed = TRUE can disable regex support.

dat$wn2 <- gsub("f", "PJ", dat$wn, fixed = TRUE)
head(dat[, c("wn", "wn2")], 7)

Johnson (K.U.) recoding 2018 45 / 134

Strings

Brief list of string functions ...

wn wn2
1 g1 g1
2 f2 PJ2
3 i3 i3

5 4 h4 h4
5 g5 g5
6 i6 i6
7 h7 h7

We have a project that imports name data.

Character strings for names should not include any characters except

letters, numbers, ’ () and - . Remove all other characters.

y <- gsub("[^ a-zA-Z0-9 \\\\’_()-]", "", x)

Regular expression

“[]” in regular expression means “any of the following”
ˆ negation in first position, converts that to “anything but the following”
dash between 2 letters or numbers is interpreted as a range
dash before] literally means dash
four backslashes before ’. Will explain Thursday.

Johnson (K.U.) recoding 2018 46 / 134

Factors

Outline

1 Variable Types

2 Numeric

3 Strings

4 Factors

5 Create your “workingdata” rds files

6 NES

7 Object Oriented R: Why Factors?

8 Conclusion

Johnson (K.U.) recoding 2018 47 / 134

Factors What’s a Factor?

Factor Variables = Categorical Variables

A factor is a categorical variable, discrete values like {Catholic,
Protestant} or {left, right, middle}
A factor that is subjectively ordered is called an “ordered factor”, or
simply an “ordered” variable.

Factors have attributes (the “levels”).

Functions notice that and customize calculations and beautify displays

Johnson (K.U.) recoding 2018 48 / 134

Factors What’s a Factor?

Factor Variables = Categorical Variables

Inside R, a factor has an integer index, always beginning with 1

From the user’s point of view, the factor’s values usually appear as text
strings.

table(dat$z)

eenie meanie miney mo
12 12 12 12

Inside R, there’s a “lookup table”, so the value is really stored as 1, 2, 3,
4, but often, when you interact with it, it behaves like a character string
variable.

Internal Integer Level

1 “eenie”
2 “meanie”
3 “miney”
4 “mo”

Johnson (K.U.) recoding 2018 49 / 134

Factors How are Factors Created?

Creating Factors

We’ve already seen that the cut() function can create a factor variable

Functions that create factors

factor() : Unordered categories

ordered() : ordinal variables, subjectively ranked levels

factor() has 3 key arguments,

a variable: something with values that need to be converted to a factor
levels: values to be used, in order we want them to appear

labels: character strings. If omitted, R runs as.character(levels) to

manufacture labels.

Johnson (K.U.) recoding 2018 50 / 134

Factors How are Factors Created?

Creating Factors ...

factor() example: Convert a character string to a factor

R guesses levels and labels. It guesses levels in alphabetical order

See what you got

table(dat$w)

f g h i j
8 14 8 13 5

w2 is the default factor

dat$w2 <- factor(dat$w)

w2 looks like w, superficially

table(dat$w2, dat$w)

Johnson (K.U.) recoding 2018 51 / 134

Factors How are Factors Created?

Creating Factors ...

f g h i j
f 8 0 0 0 0
g 0 14 0 0 0
h 0 0 8 0 0

5 i 0 0 0 13 0
j 0 0 0 0 5

but the internal structures are different:

str(dat$w)

chr [1:48] "g" "f" "i" "h" "g" "i" "h" "f" "j" "g" "f" "h" "h"
"g" "j" "f" "g" "j" "g" "f" "i" ...

str(dat$w2)

Factor w/ 5 levels "f","g","h","i",..: 2 1 4 3 2 4 3 1 5 2 ...

Johnson (K.U.) recoding 2018 52 / 134

Factors How are Factors Created?

Internal integers are always 1, 2, 3, . . .

SPSS and Stata allow any integer values with labels

R will “throw away” the integers

myintegers <- c(1, 3, 5, 7, 9, 9, 7, 5, 3, 1)
myfactor <- factor(myintegers , levels = c(1, 3, 5, 7, 9),

labels = c("E", "D", "C", "B", "A"))

Note the numbers for the levels

str(myfactor)

Factor w/ 5 levels "E","D","C","B",..: 1 2 3 4 5 5 4 3 2 1

Internal Integer Level

1 “E”
2 “D”
3 “C”
4 “B”
5 “A”

Johnson (K.U.) recoding 2018 53 / 134

Factors How are Factors Created?

Internal integers are always 1, 2, 3,

The original numbers cannot be recovered

as.integer(myfactor)

[1] 1 2 3 4 5 5 4 3 2 1

Johnson (K.U.) recoding 2018 54 / 134

Factors How are Factors Created?

Internal integers are always 1, 2, 3,

Can Specify particular values

myintegers <- c(1, 3, 5, 7, 9, 9, 7, 5, 3, 1)
yourfactor <- factor(myintegers , levels = c(1, 9, 7),
labels = c("cold", "warm", "hot"))

But you still lose the original integer values

str(yourfactor)

Factor w/ 3 levels "cold","warm",..: 1 NA NA 3 2 2 3 NA NA 1

Observe:

table(as.integer(myfactor), as.integer(yourfactor), exclude = NULL)

Johnson (K.U.) recoding 2018 55 / 134

Factors How are Factors Created?

Internal integers are always 1, 2, 3,

1 2 3 <NA >
1 2 0 0 0
2 0 0 0 2
3 0 0 0 2

5 4 0 0 2 0
5 0 2 0 0

Johnson (K.U.) recoding 2018 56 / 134

Factors How are Factors Created?

A Related Problem: Accidental factor-ization of an integer

factor() example: Convert an integer variable to a labeled factor

x <- c(1, 2, 1, 2, 2, 7)
xf <- factor(x, levels = c(7, 2, 1), labels = c("seven","two", "one"))
levels(xf)

[1] "seven" "two" "one"

levels= tells R “in which order should the values of x come in?” I jumbled
the order to make a point.

original value R assigned internal value label for the level
integer

7 1 “seven”
2 2 “two”
1 3 “one”

Suppose we forget the labels argument in the factor function.

Johnson (K.U.) recoding 2018 57 / 134

Factors How are Factors Created?

A Related Problem: Accidental factor-ization of an integer
...

xf2 <- factor(x, levels = c(7, 2, 1))
levels(xf2)

[1] "7" "2" "1"

All appears well, the labels are just the numbers, but with quotation marks.

Now the part that has caused plenty of confusion:
Internal numbers are 1, 2, 3, but the named labels are “7”, “2”, “1”.

original value R assigned internal value label for the level
7 1 “7”
2 2 “2”
1 3 “1”

Do you want the face-value labels to turn back into the 7-2-1 scores you
started with? (Not so fast, my friend!)

as.numeric(xf2)

Johnson (K.U.) recoding 2018 58 / 134

Factors How are Factors Created?

A Related Problem: Accidental factor-ization of an integer
...

[1] 3 2 3 2 2 1

In the help page “?factor”, they recommend this method to convert a
“levels are numbers” factor back to the numbers:

xnew <- as.numeric(levels(xf2))[xf2]
xnew

[1] 1 2 1 2 2 7

table(xnew , x)

x
xnew 1 2 7

1 2 0 0
2 0 3 0

5 7 0 0 1

The more obvious method is

Johnson (K.U.) recoding 2018 59 / 134

Factors How are Factors Created?

A Related Problem: Accidental factor-ization of an integer
...

xnew2 <- as.numeric(as.character(xf2))
xnew2

[1] 1 2 1 2 2 7

table(xnew2 , x)

x
xnew2 1 2 7

1 2 0 0
2 0 3 0

5 7 0 0 1

But it is not recommended in ?factor

Johnson (K.U.) recoding 2018 60 / 134

Factors Factor Benefits

Benefits of Using Factors

Using factors reduces human errors associated with integer scores. “Is
’1’ a male or female?”

Procedures notice the levels. Regression in R will notice and create
’dummy variables’ (“contrast” variables).

m1 <- lm(x ∼ z + w2, data = dat)
summary(m1)

Call:
lm(formula = x ∼ z + w2, data = dat)

Residuals:
5 Min 1Q Median 3Q Max

-132.500 -82.180 9.085 50.083 227 .877

Coefficients:
Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 114 .782 42.010 2.732 0.00932 **
zmeanie 8.354 42.119 0.198 0.84378
zminey -31.003 41.900 -0.740 0.46366
zmo 20.530 46.373 0.443 0.66036
w2g 69.495 45.117 1.540 0.13136

15 w2h 147 .206 52.430 2.808 0.00768 **

Johnson (K.U.) recoding 2018 61 / 134

Factors Factor Benefits

Benefits of Using Factors ...

w2i 8.909 49.897 0.179 0.85919
w2j 109 .503 58.473 1.873 0.06843 .

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

20

Residual standard error: 100.8 on 40 degrees of freedom
Multiple R-squared: 0.2233 , Adjusted R-squared: 0.08734
F-statistic: 1.643 on 7 and 40 DF, p-value: 0.1516

If you give the factor variable to a plotting function, that function
should notice it is not a numeric variable and act accordingly.

plot(xf, main = "plot noticed its a factor!", xlab = "xf: a
factor", ylab = "Count")

text(0.2, 2, "R noticed xf \n is a factor. \n So R ran table \n
and sent output \n to barplot", pos=4)

Johnson (K.U.) recoding 2018 62 / 134

Factors Factor Benefits

Benefits of Using Factors ...

seven two one

plot noticed its a factor!

xf: a factor

C
ou

nt

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

R noticed xf
 is a factor.
 So R ran table
 and sent output
 to barplot

Johnson (K.U.) recoding 2018 63 / 134

Factors Recoding Factors

Examples of Needed Recodes

Combine erroneously coded labels, reduce labels {Male, Man, Female,
Woman} to {M, F} or something like that.

Take verbose labels and make them shorter. Convert {Strongly
Disagree, Disagree, ...} to {SD, D, N, A, SA}
R’s built in tools work well, but have a number of technical details that
will frustrate new uses.

In the rockchalk package, I created a function “combineLevels()” that
can work on a problem like that, and it does some error checking to
make sure it works correctly.

In the plyr package, there is a very elegant function (mapvalues())

that can be used and it makes this kind of chore rather painless.

Johnson (K.U.) recoding 2018 64 / 134

Factors Recoding Factors

Working with factors

1 Use levels() to read and set levels.

Check existing levels. Use a copy so we don’t mangle the original

dat$w5 <- dat$w2
levels(dat$w5)

[1] "f" "g" "h" "i" "j"

Replace by assigning a new vector of same length.

levels(dat$w5) <- c("John", "Paul", "George", "Ringo", "Eric")
table(dat$w5, dat$w2)

f g h i j
John 8 0 0 0 0
Paul 0 14 0 0 0
George 0 0 8 0 0

5 Ringo 0 0 0 13 0
Eric 0 0 0 0 5

Vital: Must provide names for all levels

Johnson (K.U.) recoding 2018 65 / 134

Factors Recoding Factors

Working with factors ...

Use the factor function and assign levels and labels (here, levels means
“current values”)

dat$w6 <- factor(dat$w2, levels = c("f", "g", "h", "i", "j"),
labels = c("John", "Paul", "George", "Ringo", "Eric"))

table(dat$w6, dat$w2, exclude = NULL)

f g h i j
John 8 0 0 0 0
Paul 0 14 0 0 0
George 0 0 8 0 0

5 Ringo 0 0 0 13 0
Eric 0 0 0 0 5

2 rockchalk::combineLevels has some handy sanity-preserving features :)

library(rockchalk)
dat$w5 <- combineLevels(dat$w2, levs = c("f", "j"), newLabel =

c("fandj"))

The original levels f g h i j
have been replaced by g h i fandj

Johnson (K.U.) recoding 2018 66 / 134

Factors Recoding Factors

Working with factors ...

table(dat$w5, dat$w2)

f g h i j
g 0 14 0 0 0
h 0 0 8 0 0
i 0 0 0 13 0

5 fandj 8 0 0 0 5

If dat$w5 is an ordinal variable, combineLevels will refuse to “put
together” levels that are not adjacent with one another

3 A good general purpose discrete variable recoder is plyr::mapvalues .

1 mapvalues(x, value old, value new)

value old and value new must be vectors with the same numbers of
elements

2 works well if x is an integer, character, or factor variable
3 example

Johnson (K.U.) recoding 2018 67 / 134

Factors Recoding Factors

Working with factors ...

library(plyr)
dat$w5 <- mapvalues(dat$w2, from = c("f", "g", "h", "i",

"j"), to = c("John", "Paul", "George", "Ringo", "Erik"))
str(dat$w5)

Factor w/ 5 levels "John","Paul",..: 2 1 4 3 2 4 3 1 5 2 ...

4 To reduce human error (avoid mis-matched elements), I usually create a
named vector:

newvals <- c("f" = "John", "g" = "Paul", "h" = "George", "i" =
"Ringo", "j" = "Erik")

That puts the paired (old=new) items together, and we can extract the
names like so

names(newvals)

[1] "f" "g" "h" "i" "j"

or put them to use as:

Johnson (K.U.) recoding 2018 68 / 134

Factors Recoding Factors

Working with factors ...

dat$w6 <- mapvalues(dat$w2, from = names(newvals), to = newvals)
table(dat$w6, dat$w5)

John Paul George Ringo Erik
John 8 0 0 0 0
Paul 0 14 0 0 0
George 0 0 8 0 0

5 Ringo 0 0 0 13 0
Erik 0 0 0 0 5

Can use this to reset just a few levels:

dat$w8 <- mapvalues(dat$w2, from = c("f", "g"), to =
c("Roosevelt", "Lincoln"))

table(dat$w8)

Roosevelt Lincoln h i j
8 14 8 13 5

To combine some levels and re-label all of them as “fgh”:

Johnson (K.U.) recoding 2018 69 / 134

Factors Recoding Factors

Working with factors ...

dat$w9 <- mapvalues(dat$w2, from = c("f", "g", "h"),
to = c("fgh", "fgh","fgh"))

table(dat$w9)

fgh i j
30 13 5

Johnson (K.U.) recoding 2018 70 / 134

Factors Recoding Factors

Convert factor values to missings

Can reset values “i” and “j” as NA either by “indexing”

dat$w7 <- dat$w2
dat$w7[dat$w7 %in% c("i","j")] <- NA
table(dat$w7, exclude = NULL)

f g h i j <NA >
8 14 8 0 0 18

Or explicitly relabeling the vector

dat$w8 <- dat$w2
levels(dat$w8) <- c("f", "g", "h", NA, NA)
table(dat$w8)

f g h
8 14 8

table(dat$w8, exclude = NULL)

f g h <NA >
8 14 8 18

Johnson (K.U.) recoding 2018 71 / 134

Factors Recoding Factors

Convert factor values to missings ...

Tip: When factor values have long, hard-to-type names,

copy the levels vector

use that with indices, as in

(xl <- levels(dat$w2))

[1] "f" "g" "h" "i" "j"

xl[4:5]

[1] "i" "j"

dat$w10 <- dat$w2
dat$w10[dat$w10 %in% xl [4:5]] <- NA

Johnson (K.U.) recoding 2018 72 / 134

Factors Recoding Factors

The Unused Levels problem

Suppose there are possible levels (“a”, “b”, ..., “g”)

However, for some reason, in a sample, we only collect data on (“a”, “b”,
“c”).

If the factor is created on the range of possible scores, then there will be
many “unused levels”

x <- c(1, 2, 3, 3, 2, 1)
xf <- factor(x, levels = 1:7, labels = letters [1:7])
str(xf)

Factor w/ 7 levels "a","b","c","d",..: 1 2 3 3 2 1

The table function displays the empty “unused levels” (by default):

table(xf)

xf
a b c d e f g
2 2 2 0 0 0 0

This creates ugly reports, we might want to get rid of those “unused
levels” entirely.

Johnson (K.U.) recoding 2018 73 / 134

Factors Recoding Factors

2 workable ways to purge unused levels

1 factor() removes unused levels

y <- factor(y)

2 R Documentation suggests this is more meaningful (?)

y <- y[, drop = FALSE]

Johnson (K.U.) recoding 2018 74 / 134

Create your “workingdata” rds files

Outline

1 Variable Types

2 Numeric

3 Strings

4 Factors

5 Create your “workingdata” rds files

6 NES

7 Object Oriented R: Why Factors?

8 Conclusion

Johnson (K.U.) recoding 2018 75 / 134

Create your “workingdata” rds files

After Recoding, safe a reloadable set

Suppose there is a data frame named myOldDat

wdir <- "workingdata"
That ’s our preferred name for created data
saveRDS(myOldDat , file = file.path(wdir , "myWonderful.rds"))

To bring that back into a session

wdir <- "workingdata"
awesomeDat <- readRDS(file = file.path(wdir , "myWonderful.rds"))

Allows us to rename the data frame object when it is retrieved

RDS files are portable. Can email to your friend who has a Mac

Johnson (K.U.) recoding 2018 76 / 134

NES

Outline

1 Variable Types

2 Numeric

3 Strings

4 Factors

5 Create your “workingdata” rds files

6 NES

7 Object Oriented R: Why Factors?

8 Conclusion

Johnson (K.U.) recoding 2018 77 / 134

NES Got Data?

Get my subset from Nat. Election Study 2004

The data is in the “data” folder, “04245-0001-Data.dta”.

Otherwise, download:
http://pj.freefaculty.org/guides/Rcourse/DataSets/

04245-0001-Data.dta.

Assuming the file “04245-0001-Data.dta” ended up in data, then import.

library(foreign)
ddir <- "data"
fp <- file.path(ddir , "04245 -0001-Data.dta")
anes1 <- read.dta(fp)

5 anes1.orig <- anes1

Save copies of the wide and long variable keys, just for comparison

library(kutils)
keywide <- kutils :: keyTemplate(anes1 , file = "anes-widetemp.csv")

That creates “keywide” object and immediate file snapshot

Can create & inspect first, use string functions to recode, then keySave

Johnson (K.U.) recoding 2018 78 / 134

http://pj.freefaculty.org/guides/Rcourse/DataSets/04245-0001-Data.dta
http://pj.freefaculty.org/guides/Rcourse/DataSets/04245-0001-Data.dta

NES Got Data?

Get my subset from Nat. Election Study 2004 ...

keylong <- kutils :: keyTemplate(anes1 , long = TRUE)
keySave(keylong , file = "anes-longtemp.csv")

The keyTemplateStata (and keyTamplateSPSS) functions are
recently introduced. These have “value old” as the integers that were
used in original data and “value new” as the labels. This is very close to
a “programmable codebook”

Interactively, you can run View(keystata) :

keystata <- kutils :: keyTemplateStata(fp, long = TRUE)

View(keystata)

The value labels are verbose, one of the regex chores would be cleaning them
up.

We’d go edit the key files, perhaps rename them, then run keyImport

My edited key is “anes-wide.csv” in the current working directory.

Johnson (K.U.) recoding 2018 79 / 134

NES Got Data?

A Codebook Lists the Variables

Some things we can treat as numeric

V043038 B1a. Feeling Thermometer: GW Bush

V043039 B1b. Feeling Thermometer: John Kerry

V043250 Y1x. Summary: Respondent age

Some are clearly categorical

V043210 R1. R position on gay marriage

V043213 S3. National economy better/worse since GW Bush

took ofc

V045145X H5x. Summary: Pre-Post US flag makes R feel

V043116 J1x. Summary: R party ID

Some are treated as numeric by some people

V045117 G4a. Liberal/conservative 7-point scale:

self-placement

V043116 J1x. Summary: R party ID

Johnson (K.U.) recoding 2018 80 / 134

NES Use the Variable Key

This is the new way CRMDA has developed

In the section after this one, we show the line-by-line recode commands
needed

This section uses the Variable Key

This is a development enterprise in the CRMDA package kutils .

Johnson (K.U.) recoding 2018 81 / 134

NES Use the Variable Key

Key

I edited “anes-wide.csv”

Re-import that key file

key <- keyImport("anes-wide.csv")

keyImport guessed that is a wide format key.

If you are interactive, run View

View(key)

Screenshots

Johnson (K.U.) recoding 2018 82 / 134

NES Use the Variable Key

Key ...

Apply that wide key

anes2 <- keyApply(anes1 , key , drop = "vars", diagnostic = TRUE)

V041109A (old var)
V041109A 1. Male 2. Female

M 566 0
F 0 646

5 [1] "Variable V043038 has 20 unique values. Too large for a table."
[1] "Variable V043039 has 20 unique values. Too large for a table."
[1] "Variable V043048 has 20 unique values. Too large for a table."

V043116 (old var)
V043116 0. Strong Democrat (2/1/.) 1. Weak Democrat (2/5-8-9/.) 2.

Independent-Democrat (3-4-5/./5) 3. Independent-Independent 4.
Independent-Republican (3-4-5/./1) 5. Weak Republican (1/5-8-9/.)

10 SD 203 0
0 0

0
0

WD 0 179
0 0

0
0

Johnson (K.U.) recoding 2018 83 / 134

NES Use the Variable Key

Key ...

ID 0 0
210 0

0
0

I 0 0
0 118

0
0

IR 0 0
0 0
138

0
15 WR 0 0

0 0
0

154
SR 0 0

0 0
0

0
<NA > 0 0

0 0
0

0
V043116 (old var)

Johnson (K.U.) recoding 2018 84 / 134

NES Use the Variable Key

Key ...

V043116 6. Strong Republican (1/1/.) 7. Other;minor party;refuses to
say 8. Apolitical (5/./3-8-9 if apolitical) 9. DK (8/./.) <NA >

20 SD 0
0 0 0 0

WD 0
0 0 0 0

ID 0
0 0 0 0

I 0
0 0 0 0

IR 0
0 0 0 0

25 WR 0
0 0 0 0

SR 193
0 0 0 0

<NA > 0
5 0 0 12
V043210 (old var)

V043210 1. Should be allowed 3. Should not be allowed 5. Should not be
allowed to marry but should be allowed VOL 8. Don’t know 9.
Refused <NA >

30 No 0 705
0 0

0 0 0

Johnson (K.U.) recoding 2018 85 / 134

NES Use the Variable Key

Key ...

Some 0 0
41 0

0 0 0
Allow 400 0

0 0
0 0 0

<NA > 0 0
0 30

0 0 36
V043213 (old var)

35 V043213 1. Better 3. Worse 5. The same 8. Don’t know 9. Refused <NA >
Better 190 0 0 0 0 0
Worse 0 668 0 0 0 0
Same 0 0 343 0 0 0
<NA > 0 0 0 0 0 11

40 V043213 (old var)
econnew 1. Better 3. Worse 5. The same 8. Don’t know 9. Refused <NA >

Worse 0 668 0 0 0 0
Same 0 0 343 0 0 0
Better 190 0 0 0 0 0

45 <NA > 0 0 0 0 0 11
V043250 (old var)

aged 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

Johnson (K.U.) recoding 2018 86 / 134

NES Use the Variable Key

Key ...

young 8 21 17 15 19 25 22 23 18 20 28 23 15 23 14 22 19 23 17 16 23
25 19 26 19 21 26 25 27 23 24 23 25 25 25 22 19 24 28 26 0 0
0 0

old 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 14 13
20 22 27 21 21 16 14 11 10 10 9 9 10 10 8 10 16 8 6 4 5

50 V043250 (old var)
aged 82 83 84 85 86 87 88 90

young 0 0 0 0 0 0 0 0
old 10 5 4 1 4 1 4 2

[1] "Variable V043250 has 20 unique values. Too large for a table."
55 V045117 (old var)

V045117 01. Extremely liberal 02. Liberal 03. Slightly liberal 04.
Moderate;middle of the road 05. Slightly conservative 06.
Conservative 07. Extremely conservative

EL 20 0 0
0 0

0 0
L 0 103 0

0 0
0 0

SL 0 0 125
0 0

0 0

Johnson (K.U.) recoding 2018 87 / 134

NES Use the Variable Key

Key ...

60 M 0 0 0
279 0

0 0
SC 0 0 0

0 143
0 0

C 0 0 0
0 0

166 0
EC 0 0 0

0 0
0 31

<NA > 0 0 0
0 0

0 0
65 V045117 (old var)

V045117 80. Haven’t thought much {DO NOT PROBE} 88. Don’t know 89.
Refused <NA >

EL 0 0
0 0

L 0 0
0 0

SL 0 0
0 0

70 M 0 0
0 0

Johnson (K.U.) recoding 2018 88 / 134

NES Use the Variable Key

Key ...

SC 0 0
0 0

C 0 0
0 0

EC 0 0
0 0

<NA > 0 0
0 345

75 V045145X (old var)
V045145X 1. Extremely good 2. Very good 3. Somewhat good 4. Not very

good 7. Don’t feel anything {VOL} 8. Don’t know 9. Refused <NA >
EG 570 0 0

0 0 0 0 0
VG 0 338 0

0 0 0 0 0
SG 0 0 175

0 0 0 0 0
80 NVG 0 0 0

38 0 0 0 0
DFA 0 0 0

0 18 0 0 0
<NA > 0 0 0

0 0 0 0 73

Johnson (K.U.) recoding 2018 89 / 134

NES Use the Variable Key

Key ...

If interactive, use kutils::peek to scan through the variables

peek(anes2)

summarize

rockchalk :: summarize(anes2)

Numeric variables
V043038 V043039 V043048 V043250

min 0 0 0 18
med 60 60 60 47

5 max 100 100 100 90
mean 54.941 53.019 61.111 47.272
sd 33.547 26.361 19.223 17.142
skewness -0.304 -0.407 -0.347 0.213
kurtosis -1.172 -0.507 0.958 -0.809

10 nobs 1207 1191 952 1212
nmissing 5 21 260 0

Nonnumeric variables
V041109A V043116

15 M: 566 ID : 210
F: 646 SD : 203

Johnson (K.U.) recoding 2018 90 / 134

NES Use the Variable Key

Key ...

SR : 193
WD : 179
(All Others): 410

20 nobs : 1212 .000 nobs : 1195 .000
nmiss : 0.000 nmiss : 17.000
entropy : 0.997 entropy : 2.781
normedEntropy: 0.997 normedEntropy: 0.991

V043210 V043213
25 No : 705 Better: 190

Some : 41 Worse : 668
Allow: 400 Same : 343

30 nobs : 1146 .000 nobs : 1201 .000
nmiss : 66.000 nmiss : 11.000
entropy : 1.133 entropy : 1.408
normedEntropy: 0.715 normedEntropy: 0.888

econnew aged
35 Worse : 668 young: 863

Same : 343 old : 349
Better: 190

40 nobs : 1201 .000 nobs : 1212 .000
nmiss : 11.000 nmiss : 0.000
entropy : 1.408 entropy : 0.866

Johnson (K.U.) recoding 2018 91 / 134

NES Use the Variable Key

Key ...

normedEntropy: 0.888 normedEntropy: 0.866
V045117 V045145X

45 M : 279 EG : 570
C : 166 VG : 338
SC : 143 SG : 175
SL : 125 NVG: 38
(All Others): 154 DFA: 18

50 nobs : 867 .000 nobs : 1139 .000
nmiss : 345 .000 nmiss : 73.000
entropy : 2.477 entropy : 1.693
normedEntropy: 0.882 normedEntropy: 0.729

Johnson (K.U.) recoding 2018 92 / 134

NES Use the Variable Key

Create a new variable, manually

The Variable Key can’t do everything. It works one-variable-at-a-time
(so far).

Manually calculate the difference in feeling between Bush and Kerry

Review the thermometer scales

hist(anes2$V043038 , breaks = 50, xlim = c(-1, 101), main = "Bush
Thermometer Scale")

Johnson (K.U.) recoding 2018 93 / 134

NES Use the Variable Key

Create a new variable, manually ...
Bush Thermometer Scale

anes2$V043038

F
re

qu
en

cy

0 20 40 60 80 100

0
50

10
0

15
0

20
0

Create a new variable for the difference between Bush and Kerry feeling
thermometers:

anes2$th.bk <- anes2$V043038 - anes2$V043039

Johnson (K.U.) recoding 2018 94 / 134

NES Use the Variable Key

”numeric” thermometer scores

table(anes1$V043038)

0 5 7 10 15 20 25 30 35 40 45 49 50 55 60
171 1 1 4 95 3 1 81 1 90 2 1 97 1 104
65 70 75 80 85 90 95 98 100
2 155 4 6 194 12 5 1 175

Johnson (K.U.) recoding 2018 95 / 134

NES Use the Variable Key

Where do we stand?

The work’s done. We have a recoded data frame “anes2”.

Manager & GRAs have common understanding of variable names and
new values

In the next section, we proceed through the recoding process,
variable-by-variable, in the old-fashioned, time-honored tradition

Johnson (K.U.) recoding 2018 96 / 134

NES Manual Recode: Numeric Variables

Recode age into a dichotomy

Inspect the age variable

hist(anes1$V043250 , breaks = 40, main = "", xlab = "Age")

Age

F
re

qu
en

cy

20 30 40 50 60 70 80 90

0
10

20
30

40
50

Use cut to create a “dummy variable” for old people

Johnson (K.U.) recoding 2018 97 / 134

NES Manual Recode: Numeric Variables

Recode age into a dichotomy ...

anes1$aged <- cut(anes1$V043250 , breaks = c(-1, 57, 200), labels
= c("young", "old"))

table(anes1$aged)

young old
863 349

57 is this year’s definition of old, in case you wondered.

Johnson (K.U.) recoding 2018 98 / 134

NES Manual Recode: Numeric Variables

plot is a generic function, notices aged is not numeric

plot(anes1$aged , xlab = "Age dichotomized")

young old

Age dichotomized

0
20

0
40

0
60

0
80

0

Recall that the plot function notices the input type and it tries to make
the plot you want. If we were being more systematic, we’d create the
frequency table, then plot it.

Johnson (K.U.) recoding 2018 99 / 134

NES Manual Recode: Numeric Variables

plot is a generic function, notices aged is not numeric ...

t1 <- table(anes1$aged)
barplot(t1, beside = TRUE)

young old

0
20

0
40

0
60

0
80

0

Johnson (K.U.) recoding 2018 100 / 134

NES Manual Recode: Numeric Variables

Create a dependent variable: Bush vs Kerry

Create New Variable: The difference in thermometer between Bush and
Kerry

anes1$th.bk <- anes1$V043038 - anes1$V043039

hist(anes1$th.bk , breaks = 40, main = "Bush - Kerry", xlab =
"Thermometer Difference")

Bush − Kerry

Thermometer Difference

F
re

qu
en

cy

−100 −50 0 50 100

0
20

40
60

80

Johnson (K.U.) recoding 2018 101 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels

Party Identification. The impossibly long level names create havoc!

##Party
table(anes1$V043116 , exclude = NULL)

0. Strong Democrat (2/1/.) 1. Weak Democrat
(2/5-8-9/.)

203

179
2. Independent-Democrat (3-4-5/./5) 3.

Independent-Independent
210

118
5 4. Independent-Republican (3-4-5/./1) 5. Weak Republican

(1/5-8-9/.)
138

154
6. Strong Republican (1/1/.) 7. Other;minor

party;refuses to say

Johnson (K.U.) recoding 2018 102 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

193

5
8. Apolitical (5/./3-8-9 if apolitical) 9. DK

(8/./.)
10 0

0
<NA >

12

This is America. Hardly anybody in the Other party (8). Lets make
them MISSING. While we are at it, we will shorten the level names to
SD, WD, etc. Here’s my strategy to keep the records straight.

Get the old levels
Revise that as a character variable
Use the new labels as names on the old levels, so we can inspect the
conversion

Johnson (K.U.) recoding 2018 103 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

party_value_old <- levels(anes1$V043116)
party_value_new <- c("SD","WD","ID","I","IR","WR","SR", NA, NA, NA)
names(party_value_old) <- party_value_new
party_value_old

SD

WD
"0. Strong Democrat (2/1/.)" "1. Weak Democrat

(2/5-8-9/.)"
ID

I
"2. Independent-Democrat (3-4-5/./5)" "3.

Independent-Independent"
5 IR

WR
"4. Independent-Republican (3-4-5/./1)" "5. Weak Republican

(1/5-8-9/.)"
SR

<NA >

Johnson (K.U.) recoding 2018 104 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

"6. Strong Republican (1/1/.)" "7. Other;minor
party;refuses to say"

<NA >

<NA >
10 "8. Apolitical (5/./3-8-9 if apolitical)" "9.

DK (8/./.)"

levels(anes1$V043116) <- names(party_value_old)
Could instead rely on plyr
anes1$V043116 <- plyr:: mapvalues(anes1$V043116 ,
from = party_value_old ,

5 ## to = names(party_value_old))
table(anes1.orig$V043116 , anes1$V043116)

Johnson (K.U.) recoding 2018 105 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

SD WD ID I IR WR SR
0. Strong Democrat (2/1/.) 203 0 0 0 0 0 0
1. Weak Democrat (2/5-8-9/.) 0 179 0 0 0 0 0
2. Independent-Democrat (3-4-5/./5) 0 0 210 0 0 0 0

5 3. Independent-Independent 0 0 0 118 0 0 0
4. Independent-Republican (3-4-5/./1) 0 0 0 0 138 0 0
5. Weak Republican (1/5-8-9/.) 0 0 0 0 0 154 0
6. Strong Republican (1/1/.) 0 0 0 0 0 0 193
7. Other;minor party;refuses to say 0 0 0 0 0 0 0

10 8. Apolitical (5/./3-8-9 if apolitical) 0 0 0 0 0 0 0
9. DK (8/./.) 0 0 0 0 0 0 0

Drop unused levels, check final result:

anes1$V043116 <- anes1$V043116[, drop = TRUE]
table(anes1$V043116 , exclude = NULL)

SD WD ID I IR WR SR <NA >
203 179 210 118 138 154 193 17

Johnson (K.U.) recoding 2018 106 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

Ideology: We run into same problem that labels are verbose.

I’ll try a slightly different method here

##IDEO
table(anes1$V045117 , exclude = NULL)

01. Extremely liberal
20

02. Liberal
103

5 03. Slightly liberal
125

04. Moderate;middle of the road
279

05. Slightly conservative
10 143

06. Conservative
166

07. Extremely conservative
31

15 80. Haven’t thought much {DO NOT PROBE}
0

88. Don’t know
0

Johnson (K.U.) recoding 2018 107 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

89. Refused
20 0

<NA >
345

levels_old <- levels(anes1$V045117)
levels_old

[1] "01. Extremely liberal"
[2] "02. Liberal"
[3] "03. Slightly liberal"
[4] "04. Moderate;middle of the road"

5 [5] "05. Slightly conservative"
[6] "06. Conservative"
[7] "07. Extremely conservative"
[8] "80. Haven ’t thought much {DO NOT PROBE}"
[9] "88. Don ’t know"

10 [10] "89. Refused"

levels_new <- c("EL", "L", "SL", "M", "SC", "C", "EC", NA, NA, NA)
ideolevels <- data.frame(levels_old = levels_old ,

levels_new = levels_new ,
stringsAsFactors = FALSE)

5 ideolevels

Johnson (K.U.) recoding 2018 108 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

levels_old levels_new
1 01. Extremely liberal EL
2 02. Liberal L
3 03. Slightly liberal SL

5 4 04. Moderate;middle of the road M
5 05. Slightly conservative SC
6 06. Conservative C
7 07. Extremely conservative EC
8 80. Haven’t thought much {DO NOT PROBE} <NA >

10 9 88. Don’t know <NA >
10 89. Refused <NA >

anes1$V045117 <- mapvalues(anes1$V045117 ,
from = ideolevels$levels_old ,
to = ideolevels$levels_new)

anes1$V043116 <- anes1$V045117[, drop = TRUE]
5 rm(ideolevels) # remove unneeded object

table(anes1.orig$V045117 , anes1$V045117) # check

Johnson (K.U.) recoding 2018 109 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

EL L SL M
01. Extremely liberal 20 0 0 0
02. Liberal 0 103 0 0
03. Slightly liberal 0 0 125 0

5 04. Moderate;middle of the road 0 0 0 279
05. Slightly conservative 0 0 0 0
06. Conservative 0 0 0 0
07. Extremely conservative 0 0 0 0
80. Haven’t thought much {DO NOT PROBE} 0 0 0 0

10 88. Don’t know 0 0 0 0
89. Refused 0 0 0 0

SC C EC
01. Extremely liberal 0 0 0

15 02. Liberal 0 0 0
03. Slightly liberal 0 0 0
04. Moderate;middle of the road 0 0 0
05. Slightly conservative 143 0 0
06. Conservative 0 166 0

20 07. Extremely conservative 0 0 31
80. Haven’t thought much {DO NOT PROBE} 0 0 0
88. Don’t know 0 0 0
89. Refused 0 0 0

Johnson (K.U.) recoding 2018 110 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

Gender

##Gender
table(anes1$V041109A , exclude = NULL)

1. Male 2. Female
566 646

Re-label the levels

levels(anes1$V041109A) <- c("M","F")

Johnson (K.U.) recoding 2018 111 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

Gay Marriage: Note the interesting mismatch between the “value labels”
from the original data format and the levels as we see them in R

Gay Marriage
levels(anes1$V043210)

[1] "1. Should be allowed"
[2] "3. Should not be allowed"
[3] "5. Should not be allowed to marry but should be allowed"
[4] "VOL"

5 [5] "8. Don ’t know"
[6] "9. Refused"

Shorter names
levels(anes1$V043210) <- c("Allow","No","Some", NA, NA, NA)
anes1$V043210 <- anes1$V043210[, drop = TRUE]
table(anes1$V043210 , exclude = NULL)

Allow No Some <NA >
400 705 41 66

Johnson (K.U.) recoding 2018 112 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

Subjectively, those levels seem out of order. Best way to put them right
is to run factor

anes1$V043210 <- factor(anes1$V043210 , levels = c("No", "Some",
"Allow"))

table(anes1.orig$V043210 , anes1$V043210)

No Some Allow
1. Should be allowed 0 0 400
3. Should not be allowed 705 0 0
5. Should not be allowed to marry but should be allowed 0 41 0

5 VOL 0 0 0
8. Don’t know 0 0 0
9. Refused 0 0 0

Johnson (K.U.) recoding 2018 113 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

Expect the economy to get better?

Economy
anes1$V043213 <- anes1$V043213[, drop = TRUE]
table(anes1$V043213 , exclude = NULL)

1. Better 3. Worse 5. The same <NA >
190 668 343 11

Note the levels are subjectively “out of order”. User factor to re-order them

lvl <- levels(anes1$V043213)
econnew <- factor(anes1$V043213 , levels = lvl[c(2, 3, 1)], labels =

c("Worse", "Same", "Better"))
table(anes1$V043213 , econnew)

econnew
Worse Same Better

1. Better 0 0 190
3. Worse 668 0 0

5 5. The same 0 343 0

anes1$V043213 <- econnew
rm(econnew)

Johnson (K.U.) recoding 2018 114 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

How does it make you feel to see the flag?

##Flag
(lvl <- levels(anes1$V045145X))

[1] "1. Extremely good"
[2] "2. Very good"
[3] "3. Somewhat good"
[4] "4. Not very good"

5 [5] "7. Don ’t feel anything {VOL}"
[6] "8. Don ’t know"
[7] "9. Refused"

anes1$V045145X[anes1$V045145X %in% lvl [6:7]] <- NA
anes1$V045145X <- anes1$V045145X[, drop = TRUE]
table(anes1$V045145X)

1. Extremely good 2. Very good
570 338

3. Somewhat good 4. Not very good
175 38

5 7. Don’t feel anything {VOL}
18

Johnson (K.U.) recoding 2018 115 / 134

NES Manual Recode: Factor Variables

Clean up a bunch of variables and value labels ...

levels(anes1$V045145X) <- c("EG", "VG", "SG", "NVG", "DFA")
table(anes1$V045145X)

EG VG SG NVG DFA
570 338 175 38 18

What to do about “Don’t Feel Anything?”

Should we convert to an ordinal variable?

Johnson (K.U.) recoding 2018 116 / 134

NES Manual Recode: Factor Variables

End result

Bit by bit, we have brought the data.frame anes1 into the same coding

scheme as anes2

If you want the variable by variable comparison, this is a diagnostic
output adapted from some internal functions in kutils.

kutils ::: keyDiagnostic(anes1 , anes2 , kutils ::: makeKeylist(key))

The manual recodes will show as the “oldvar” columns, while the key
displays as the row tables

Johnson (K.U.) recoding 2018 117 / 134

NES Manual Recode: Factor Variables

Lets stash a copy of this working data frame

today <- format(Sys.time (), "%Y%m%d")
wdir <- "workingdata"
if(!file.exists(wdir)) dir.create(wdir)
saveRDS(anes1 , file = file.path(wdir , paste0("nes2004-", today ,

".rds")))

To re-open that, we’d use readRDS().

Johnson (K.U.) recoding 2018 118 / 134

Object Oriented R: Why Factors?

Outline

1 Variable Types

2 Numeric

3 Strings

4 Factors

5 Create your “workingdata” rds files

6 NES

7 Object Oriented R: Why Factors?

8 Conclusion

Johnson (K.U.) recoding 2018 119 / 134

Object Oriented R: Why Factors? Functions Respond Differently to Factors

Plot one numeric and one factor variable

plot(V043038 ∼ V043213 , ylab="Bush Thermometer", xlab="Economic
Expectations", data = anes1)

●

●

●●

●

●

●

●●

Worse Same Better

0
20

40
60

80
10

0

Economic Expectations

B
us

h
T

he
rm

om
et

er

plot sent the work to the boxplot function

Johnson (K.U.) recoding 2018 120 / 134

Object Oriented R: Why Factors? Functions Respond Differently to Factors

How about the Age effect?

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

● ●

●

●● ●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

● ●

●

●

● ●

●

●●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

20 30 40 50 60 70 80 90

0
20

40
60

80
10

0

Age

B
us

h
T

he
rm

om
et

er

plot(jitter(V043038) ∼ V043250 , ylab = "Bush Thermometer", xlab =
"Age", data = anes1)

The jitter() function “scatters” points, avoids pile ups

Johnson (K.U.) recoding 2018 121 / 134

Object Oriented R: Why Factors? Functions Respond Differently to Factors

How about the Age effect? ...

If you get interested in better plots for large numeric data sets, there are
alternatives in addon packages.

Johnson (K.U.) recoding 2018 122 / 134

Object Oriented R: Why Factors? Regression Responds differently

Numeric Predictor

Predict the Bush-Kerry Difference from respondent Age

mod1 <- lm(th.bk ∼ V043250 , data = anes1)
summary(mod1)

Call:

lm(formula = th.bk ∼ V043250 , data = anes1)

Residuals:

5 Min 1Q Median 3Q Max

-108.821 -42.753 -2.003 42.905 103 .340

Coefficients:

Estimate Std. Error t value Pr(>|t|)

10 (Intercept) -6.84133 4.59553 -1.489 0.137

V043250 0.18426 0.09181 2.007 0.045 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

15 Residual standard error: 53.89 on 1189 degrees of freedom

(21 observations deleted due to missingness)

Multiple R-squared: 0.003376 , Adjusted R-squared: 0.002538

F-statistic: 4.028 on 1 and 1189 DF, p-value: 0.04498

Johnson (K.U.) recoding 2018 123 / 134

Object Oriented R: Why Factors? Regression Responds differently

Add A Factor as a Predictor

mod2 <- lm(th.bk ∼ V043250 + V041109A , data = anes1)
summary(mod2)

Call:

lm(formula = th.bk ∼ V043250 + V041109A , data = anes1)

Residuals:

5 Min 1Q Median 3Q Max

-113.174 -42.222 -2.782 42.478 107 .164

Coefficients:

Estimate Std. Error t value Pr(>|t|)

10 (Intercept) -3.08501 4.83135 -0.639 0.5232

V043250 0.19128 0.09166 2.087 0.0371 *

V041109AF -7.71339 3.12318 -2.470 0.0137 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

15
Residual standard error: 53.77 on 1188 degrees of freedom

(21 observations deleted due to missingness)

Multiple R-squared: 0.008467 , Adjusted R-squared: 0.006798

F-statistic: 5.072 on 2 and 1188 DF, p-value: 0.006404

Johnson (K.U.) recoding 2018 124 / 134

Object Oriented R: Why Factors? Regression Responds differently

Now Look Back at What R did with the Gender Predictor

R creates the “design matrix”, the purely numerical representation of the
variables. Notice it creates the dummy variable for Gender.

mod2mm <- model.matrix(mod2)
head(mod2mm)

(Intercept) V043250 V041109AF
1 1 50 0
2 1 47 0
3 1 37 1

5 4 1 71 0
5 1 62 1
6 1 53 0

Johnson (K.U.) recoding 2018 125 / 134

Object Oriented R: Why Factors? Regression Responds differently

Add Party ID as a Predictor

mod3 <- lm(th.bk ∼ V043250 + V041109A + V043116 , data = anes1)
summary(mod3)

Call:

lm(formula = th.bk ∼ V043250 + V041109A + V043116 , data = anes1)

Residuals:

5 Min 1Q Median 3Q Max

-158.748 -27.161 1.873 27.349 126 .605

Coefficients:

Estimate Std. Error t value Pr(>|t|)

10 (Intercept) -53.30952 10 .34966 -5.151 3.22e-07 ***

V043250 0.02894 0.08842 0.327 0.7435

V041109AF -0.38823 2.94737 -0.132 0.8952

V043116L -1.53779 10 .46541 -0.147 0.8832

V043116SL 25 .50127 10 .32322 2.470 0.0137 *

15 V043116M 49 .84527 9.92408 5.023 6.21e-07 ***

V043116SC 79 .64971 10 .23575 7.782 2.08e-14 ***

V043116C 103 .70832 10 .14592 10.222 < 2e-16 ***

V043116EC 111 .47834 12 .37917 9.005 < 2e-16 ***

20 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 42.8 on 850 degrees of freedom

(353 observations deleted due to missingness)

Multiple R-squared: 0.4094 , Adjusted R-squared: 0.4039

25 F-statistic: 73.67 on 8 and 850 DF, p-value: < 2.2e-16

Johnson (K.U.) recoding 2018 126 / 134

Object Oriented R: Why Factors? Regression Responds differently

Check the model matrix now

mod3mm <- model.matrix(mod3)
head(mod3mm , 10)

(Intercept) V043250 V041109AF V043116L V043116SL V043116M V043116SC V043116C V043116EC

1 1 50 0 0 0 1 0 0 0

2 1 47 0 0 1 0 0 0 0

3 1 37 1 0 0 0 0 1 0

5 5 1 62 1 0 0 0 0 1 0

6 1 53 0 0 0 1 0 0 0

7 1 49 1 0 0 0 1 0 0

8 1 56 1 0 0 1 0 0 0

10 1 47 1 0 0 0 0 1 0

10 11 1 30 0 0 0 1 0 0 0

13 1 44 0 0 0 1 0 0 0

In the olden days (or now if you use some software), the user has to
create all those “dummy” columns to represent the levels. In R, we avoid
it.

Johnson (K.U.) recoding 2018 127 / 134

Object Oriented R: Why Factors? Regression Responds differently

Save the regression objects in an RData file

For my lecture about regression tables, I’ll need those fitted models, so I
might as well save them as well.

save(mod1 , mod2 , mod3 , file = file.path(wdir ,
paste0("nes2004-objects-", today , ".RData")))

Johnson (K.U.) recoding 2018 128 / 134

Conclusion

Outline

1 Variable Types

2 Numeric

3 Strings

4 Factors

5 Create your “workingdata” rds files

6 NES

7 Object Oriented R: Why Factors?

8 Conclusion

Johnson (K.U.) recoding 2018 129 / 134

Conclusion

What is the focus?

R uses variable classes which guide plotting and analysis

The classes we focus on–integer, floating point, character, and
factor–are workhorses in statistical analysis

Re-organizing data requires care, it is easy to get it wrong.

Johnson (K.U.) recoding 2018 130 / 134

Conclusion

The Variable Key is a new thing from CRMDA

The Key is our strategy to put research projects on a commonly
understood footing, avoid the danger that errors are hidden in details
understood only to the research assistants

Even if you decide you don’t want to use it now, please check back on
the kutils package from time-to-time because we introduce new features.

Johnson (K.U.) recoding 2018 131 / 134

Conclusion

References

R Core Team (2017). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.

Johnson (K.U.) recoding 2018 132 / 134

Conclusion

Session

sessionInfo ()

R version 3.6.0 (2019 -04-26)
Platform: x86_64-pc-linux-gnu (64 -bit)
Running under: Ubuntu 19.04

5 Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3

locale:
10 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8

LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8
LC_IDENTIFICATION=C

15 attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] kutils_1.69 foreign_0.8-71 plyr_1.8.4

rockchalk_1.8.144

Johnson (K.U.) recoding 2018 133 / 134

Conclusion

Session ...

20

loaded via a namespace (and not attached):
[1] Rcpp_1.0.1 lattice_0.20-38 MASS_7.3-51.4 grid_3.6.0

nlme_3.1-140 xtable_1.8-4
[7] stats4_3.6.0 zip_2.0.2 carData_3.0-2 minqa_1.2.4

nloptr_1.2.1 Matrix_1.2-17
[13] pbivnorm_0.6.0 boot_1.3-22 openxlsx_4.1.0 splines_3.6.0

lme4_1.1-21 tools_3.6.0
25 [19] compiler_3.6.0 mnormt_1.5-5 lavaan_0.6-3

Johnson (K.U.) recoding 2018 134 / 134

	Variable Types
	Numeric
	Strings
	Factors
	What's a Factor?
	How are Factors Created?
	Factor Benefits
	Recoding Factors

	Create your ``workingdata'' rds files
	NES
	Got Data?
	Use the Variable Key
	Manual Recode: Numeric Variables
	Manual Recode: Factor Variables

	Object Oriented R: Why Factors?
	Functions Respond Differently to Factors
	Regression Responds differently

	Conclusion
	References

