
Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Terminal 1: The Shell and Scripting
Stuff Worth Knowing, Chapter 1

Paul E. Johnson1,2

1Department of Political Science

2Center for Research Methods and Data Analysis
University of Kansas

2016

Terminal 1 1 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Outline

1 Introduction: Why Look Behind the GUI Curtain?

2 VITALS

3 IMPORTANTs

4 Scripting

Terminal 1 2 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Practical Reasons to explore the Command Line

Some tools only available for “command line interface”
rsync

Some chores too tedious for “point and click”
find all files with letters “doc” and change to “odt”
download 33000 Ukrainian election data files and squeeze out
data
resize 1000 images to change their resolution from 1600x1200
to 800x600
count the number of pdf files produced by a program that
creates 1000s of directories and subdirectories
find the longest length of filename in a giant file hierarchy

Only way to see “error” output in many programs.
GUI always lags behind what’s possible in the “command line”

Terminal 1 3 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

More Practical Reasons

Networking may not allow a GUI remote connection (May
need to get by without a GUI or mouse)
GUI may “crash” or “stall”, but CLI access may still work.
Linux is the standard Web server platform.
Linux is the High Performance Computing platform.
Linux is development environment preferred in neuro-science
(http://neuro.debian.net)

Terminal 1 4 / 65 University of Kansas

http://neuro.debian.net

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

There is Always a Terminal (Under There, Somewhere)

Microsoft “DOS Box” is a
terminal program

Menu: Under Start
Menu/Accessories
Run prompt:
“command”

“Command” is the default
“shell” program on MS
Windows, but there are
others.

Mac also supplies a Terminal
program
Linux/Unix systems (of course)
also offer many terminal
programs.

Every desktop framework
chooses its own favorite
I like “MLterm” because of
multi language support and
Graphics options
Emacs (text editor) is
delivered with its own
terminal programs “M-x shell”
and “M-x eshell”

Terminal 1 5 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

What is a (Virtual) Terminal?

AKA: Terminal Emulator or Console

Terminal 1 6 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

What is a (Virtual) Terminal? ...
Olden days: A terminal is box with keyboard.

Terminal 1 7 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

What is a (Virtual) Terminal? ...
Now: A terminal emulator is a box on the screen, showing this
or another computer (It as if she were sitting in front of the
remote system.)

Only rely on secure shell connections
“Secure Shell” means that the user’s password is never
“exposed” as non-encrypted text as it travels.

Terminal 1 8 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

What is a (Virtual) Terminal? ...

ssh login2.acf.ku.edu # goes to our ACF headnode
rsync -e ssh -rav some-dir login2.acf.ku.edu: # copies
updates in folder some-dir to my accoung on ACF
scp -r some-dir login2.acf.ku.edu: # almost same as rsync,
but this copies even files that are the same.

“telnet” and “ftp” are old fashioned protocols, considered
insecure because the password is not encrypted. Avoid if
possible.

Terminal 1 9 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Difference between “Terminal” and “Shell”

terminal A program that prompts, accepts input, renders
output. It immitates a “physical terminal” connected
to a computer.

shell A program that interprets user commands, supplies
information to programs.

environment A collection of settings that “exist” for access by
programs and can be set by users
Run: “env” or “set” to see the environment.

Terminal 1 10 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Examine Your Environment

In Windows
Open a Command Shell
Type “set”
Run a program: Type
“notepad” or the name of
any other “exe” file you
see in the Windows folder.
Or “iexplore”.
Control Panel -> System
-> Advanced ->
Environment

In Mac or Linux
Open a Terminal (many ways to
do it).
Type “env” and “env | grep
PATH” or “env | grep HOME”
type one letter and hit TAB a
few times. A list of programs
appears.
Run some programs. Try
“firefox” or “safari”

Terminal 1 11 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Shell Features: Tab Completion and Command History

All Terminal programs (as of 2009) had “tab completion” of
program and file names.
All Terminal programs had “command history”. Usually
up-arrow cycles through past commands

Terminal 1 12 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Things to remember about Command Line Interaction: &

By default, most programs “occupy” the shells until they are
closed
Hence, user cannot run new commands until previous is
finished.
Workaround: Put function into shell’s background by
appending &

Example: I can’t run any new commands until I close emacs

$ emacs myFabulousProgram .R

This free’s up the command line

$ emacs myFabulousProgram .R &

At one time, it seemed as though all GUI programs would
“control” the terminal, however, some programs now will
automatically background themselves.

Terminal 1 13 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Things to remember about Command Line Interaction: &
...

Example: gvim will free the terminal once it is launched

$ gvim myFabulousProgram .R
$

Terminal 1 14 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Things to remember about Command Line Arguments

ls lists files, but
"ls -la"

-a show all files & directories, including hidden files (begin
with a period)
-l detailed listing includes ownership, file size information

"ls -la –color=no" or "ls -la –color=yes" or . . .

Terminal 1 15 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Things to remember about Command Line Interaction: -
or --

Unfortunate: There are quite a few ways to give command line
arguments

R, itself
R CMD ___<one of: BATCH, INSTALL, build, check,
Sweave, Stangle>___

$ R CMD BATCH myFabulousProgram .R
#or
$ R CMD INSTALL rockcha lk_1 . 9 . t a r . gz

single dash with a script file name

$ R −f myFabulousProgram .R

double dash with no argument

$ R - -v a n i l l a −f myFabulousProgram .R

Terminal 1 16 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Things to remember about Command Line Interaction: -
or -- ...

qxlogin
Ever notice that the ACF qxlogin accepts arguments like this:

$ q x l o g i n 1 1

or this

$ q x l o g i n 1 2 , program=mplus

GNU style {is, was, has been} an effort to standardize this
Relatively widely practiced style.
Two dashes and an equal sign and an argument

$ myprogram - -ava r=1 - -bvar=2

or
One dash with no equal sign, as a flag:

$ myprogram −a −b

Terminal 1 17 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Things to remember about Command Line Interaction: -
or -- ...

One dash with a value smashed up against the argument (no
equal sign or space between)

$ myprogram −a1 −b2

Many GNU programs have both the
verbose –argument=1 style
less verbose -a1 style

Some programs do whatever they want
ps “ps -aux” or “ps aux”
tar
java, -option=value

Terminal 1 18 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Important Concepts in All Shells in Any OS

PATH: list of directories
where OS searches for
programs
Linux path is colon
separated list, eg: mine is:
PATH=/home/ pau l j ohn /

b in : / u s r / l o c a l /
s b i n : / u s r / l o c a l /
b i n : / u s r / s b i n : /
u s r / b i n : / s b i n : /
b i n : / u s r /games

Referred to as $PATH in
other commands

In Windows, the semicolon is a
separator, slashes backwards
PATH=C:\Windows ;C : \

Windows\ system32 ;C : \
Program F i l e s \ Moz i l l a
F i r e f o x ;

Referred to in other commands
as %PATH%

Terminal 1 19 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Home, Working Directory

HOME. User’s personal “folder”, default place where files go.
Working Directory. Most programs will read & write from
current working directory
pwd # lists the working directory
cd # sets the working directory
Windows Icon GUI calls this “Start In” option

Terminal 1 20 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Is the current working directory in the path? Maybe

Suppose you install a program that is not in the path. What
happens?
Can run by typing full address of program

“C:\Program Files\GNU Emacs 23.2\bin\runemacs.exe”
/usr/bin/emacs

Suppose you cd to that folder
Windows allows to run by “name” b/c current dir is in path
Linux does not have current dir in path, hence, run as: ./name

The inherent problem with spaces and special characters in
directory or file names. We can workaround, but don’t create
work for yourself

Terminal 1 21 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Things to Keep on the Tip of Your Tongue

1. ls list directory contents
2. mkdir create a directory

3. cd change the current working directory
4. mv move (for renaming files or relocating directories)
5. cp copy
6. rm remove

Terminal 1 22 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

1. ls :List Files

ls
ls -la
ls -la | more
ls -s1
ls --color=auto
ls --color=no

Terminal 1 23 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

View Permissions with “ls -la”

$ l s − l a
t o t a l 89724
drwxr−xr−x 182 pau l j ohn pau l j ohn 20480 2011−01−24 01 :28 .
drwxr−xr−x 7 r oo t r oo t 4096 2010−11−16 20 :41 . .
−rw−r- -r- - 1 r oo t r oo t 3460 2010−11−07 22 :55 50emacs−ess−ku . e l
−rw−r- -r- - 1 pau l j ohn pau l j ohn 19661 2010−07−26 11 :37 ABM. b ib
drwx- -- -- - 5 pau l j o hn pau l j o hn 4096 2010−10−03 21 :48 . adobe
drwxr−xr−x 3 pau l j o hn pau l j o hn 4096 2009−08−03 21 :37 Adobe
−rw−r- -r- - 1 pau l j ohn pau l j ohn 15 2010−12−13 01 :57 #ad s f .R#
−rw−r- -r- - 1 pau l j ohn pau l j ohn 120 2009−07−19 13 :27 . album . con f
drwxr−xr−x 25 pau l j o hn pau l j o hn 4096 2009−02−28 23 :38 . amaya
−rw−r- -r- - 1 pau l j ohn pau l j ohn 528 2011−01−23 15 :36 . anyconnect
−rw−r- -r- - 1 pau l j ohn pau l j ohn 406 2010−12−31 23 :33 #armani . t x t#

perms owner group filesize date filename

“.” at top is current working directory name
“..” in 2nd line is directory above corrent working directory

Terminal 1 24 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Focus on “drwxr-xr-w”
There are 3 types of Users declared for each file or directory

owner
group
others: every account excluding owner & group

d is it a directory (if -, a file)
rwxr-xr-x permissions of 3 user types

r: read, w: write, x: execute
owner has rwx
group members have only rx
others (the “world”) have only rx
permissions can be revised by the program
“chmod”
ownership can be revised by “chown” or
“chgroup”

Terminal 1 25 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Regular and Hidden and Backup Files

. dot files, by custom are hidden (not displayed by “ls”
unless you specifically ask for them). Used for
configurations

backup files, created by editors.

Terminal 1 26 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

2. mkdir : Make directory

directory = “folder” = collection of files and directories
mkdir some-dir-name # creates directory some-dir-name
mkdir -p some-dir-name/ sub-dir-name/ sub-sub-dir

Terminal 1 27 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

3. cd : change directories

cd some-dir-name #changes current working directory to
some-dir-name
cd # changes to user’s HOME
cd / # changes to “top level”
cd some-dir-name/subdir-name/subsub-name # ok to
nest
cd ../ # changes to higher directory
cd ../../some-dir-name # 2 dir up, down into
some-dir-name

Terminal 1 28 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

4. mv: move file or directory

mv some-file-name some-other-name # “renames” file
mv some-dir some-other-dir

If some-other-dir exists, this relocates some-dir inside
some-other-dir
If some-other-dir does not exist, this effectively “renames”
some-dir as some-other-dir.

Terminal 1 29 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Moving Example

$ mkdir t e s t
$ cd t e s t
$ mkdir a

$ mkdir b
$ l s − l a
t o t a l 16
drwxr−xr−x 4 pau l j o hn pau l j o hn 4096 2011−01−24 01 :11 .
drwxr−xr−x 3 pau l j o hn pau l j o hn 4096 2011−01−24 01 :10 . .
drwxr−xr−x 2 pau l j o hn pau l j o hn 4096 2011−01−24 01 :10 a
drwxr−xr−x 2 pau l j o hn pau l j o hn 4096 2011−01−24 01 :11 b

$ mv a b
$ l s − l a
t o t a l 12
drwxr−xr−x 3 pau l j o hn pau l j o hn 4096 2011−01−24 01 :11 .
drwxr−xr−x 3 pau l j o hn pau l j o hn 4096 2011−01−24 01 :10 . .
drwxr−xr−x 3 pau l j o hn pau l j o hn 4096 2011−01−24 01 :11 b

$ l s b
a
$ l s − l a b
t o t a l 12
drwxr−xr−x 3 pau l j o hn pau l j o hn 4096 2011−01−24 01 :11 .
drwxr−xr−x 3 pau l j o hn pau l j o hn 4096 2011−01−24 01 :11 . .
drwxr−xr−x 2 pau l j o hn pau l j o hn 4096 2011−01−24 01 :10 a

$ mv b c

Terminal 1 30 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Moving Example ...

$ l s − l a
t o t a l 12
drwxr−xr−x 3 pau l j o hn pau l j o hn 4096 2011−01−24 01 :11 .
drwxr−xr−x 3 pau l j o hn pau l j o hn 4096 2011−01−24 01 :10 . .
drwxr−xr−x 3 pau l j o hn pau l j o hn 4096 2011−01−24 01 :11 c

Terminal 1 31 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

5. cp: copy file or directory

cp some-file-name some-other-name
cp some-dir some-other-dir # does not work
cp -R some-dir some-other-dir # -R means “recursive”
cp -a some-dir some-other-dir # -a recursive and also
preserves file attributes (modification time, etc)
like mv in semantics:

If some-other-dir exists, this creates a copy of some-dir inside
some-other-dir
If some-other-dir does not exist, this creates a copy of some-dir
called some-other-dir.

Terminal 1 32 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

6. rm: remove
rm some-file-name some-other-name
rm may be very dangerous, can remove things immediately,
without confirmation
Run like this to ask for interactive yes/no approval: rm -i
I forget that, so on my systems, I insert a fail-safe that asks
for confirmation of deletions. I suggest all Linux systems
should do this, an surprised many do not.
Find out if your system is “safe”: Run “type rm”
On my System, I get
“rm is aliased to ‘rm -i”
rm -f some-file-name some-other-name # -f=force
rm -rf some-dir # removes directory, -r means “recursive”
If you forget the -f
$ mkdir a
pau l j ohn@po l s 124 : tmp$ rm a
rm : cannot remove ‘ a ’ : I s a d i r e c t o r y

Terminal 1 33 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Important, Useful, Handy (but not quite Vital)

cat dump file output to the screen
grep scan text for terms

| the pipe
> redirect to new file
» redirect and augment file

find find files by various characteristics
tar contraction of “tape archive”
df report disk usage (“disk free”)

free report on free memor (“RAM”)
top display running programs and memory usage
kill kill a program by PID
ps ps displays running processes (ps aux)

Terminal 1 34 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

cat

Suppose a file “whatever.txt” exists
List file contents on the screen
$ ca t whateve r . t x t

more and less are 2 competing “text pagers”. more was
commercial, so less was offered as a free competitor
$ ca t whateve r . t x t | l e s s
$ ca t whateve r . t x t | more

Either will break up cat output into screen-sized pages

Terminal 1 35 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

grep: Text scanning

scans all non-hidden files for text string “flopper”
$ grep f l o p p e r ∗

Sends cat output to grep for line-by-line scanning to check for
“flopper”

$ ca t some− f i l e | g rep f l o p p e r

| is pronounced “pipe”

Terminal 1 36 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

The Difference between > and >>

Append from output from cat|grep into a text file
$ ca t some− f i l e | g rep f l o p p e r >> n ew f i l e . t x t

Erases original “newfile.txt”, writes output into newfile.txt
$ ca t some− f i l e | g rep f l o p p e r > n ew f i l e . t x t

Terminal 1 37 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

The Mighty Pipe: |

prog | other program The “pipe”, diverts “stdout” from prog to
program after pipe

stdout: “standard output”
stderr: “standard error”

Example: Handle a tar.gz “tarball”.
What is a tarball?

tar groups files together into an archive
gzip is a compression program.
A tar.gz file is the result of “tarring” and “gzipping”

Could do this in 2 steps
$ g z i p −d f i l e . t a r . gz ## decompres se s to

c r e a t e " f i l e . t a r "
$ t a r x v f f i l e . t a r ## de−a r c h i v e s f i l e . t a r

Terminal 1 38 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

The Mighty Pipe: | ...

Do this in 1 step with pipe
$ g z i p −dc f i l e . t a r . gz | t a r x v f −

c the gzip option -c means send results to
standard output

- the minus sign on tar means “standard input”

tar authors noticed complications and created command line
options to handle decompression without pipe (see below).
I use grep that way all the time to scan stdout
$ whatever | g rep magicWord

Terminal 1 39 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Check what’s running: ps

ps lists processes that are running under user’s name in the current
shell
$ ps

PID TTY TIME CMD
18023 p t s /17 00 : 00 : 00 bash
18034 p t s /17 00 : 00 : 00 ps

ps Run something, so you can see the effect
$ emacs &
$ ps

PID TTY TIME CMD
16912 p t s /13 00 : 00 : 00 bash
18095 p t s /13 00 : 00 : 00 emacs
18104 p t s /13 00 : 00 : 00 ps

ps aux list processes by all users

Terminal 1 40 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Check what’s running: ps ...
$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
roo t 1 0 .0 0 .0 182852 5640 ? Ss Sep10 0 :11 / s b i n / i n i t

s p l a s h
r oo t 1339 0 .0 0 .0 167144 6540 ? S l Sep10 0 :00 l i gh tdm - -

s e s s i o n −c h i l d 12 19
pau l j o hn 1373 0 .0 0 .6 1660908 53344 ? S<l Sep13 0 :14 / u s r /NX/ b in /

nxnode . b i n
r oo t 1401 0 .0 0 .1 335628 9588 ? S s l Sep10 0 :14 / u s r / l i b /upower

/upowerd
pau l j o hn 1414 0 .0 0 .4 1542012 35744 ? S l Sep13 0 :04 / u s r /NX/ b in /

n x c l i e n t . b i n - -mon i to r - -p i d 24
r t k i t 1432 0 .0 0 .0 168956 2592 ? SNsl Sep10 0 :02 / u s r / l i b / r t k i t /

r t k i t −daemon
roo t 1444 0 .0 0 .1 2103936 8484 ? S s l Sep10 0 :02 / u s r / s b i n /

conso l e−k i t−daemon - -no−daemon

pipe and filter Scan for programs running that have letters “fire”
$ ps aux | g rep f i r e

kill To eliminate an undesired program, run the kill function.
$ k i l l −9 1373

Terminal 1 41 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Check what’s running: ps ...

kill sounds violent, but it is a standard shutdown signal to
programs.
-9 is violent/agressive, however. It means “get out and don’t try
to save your work”

Terminal 1 42 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

top: a more interactive sort of ps

Terminal 1 43 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Keyboard interaction with top

kill. Letter k causes a prompt to ask which process should be
killed.
Then it asks how severely do you mean that. -9 is an
aggressive choice for stalled programs.
q to quit

Terminal 1 44 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

find

find . -iname “*some*”
Beginning in “.”, the current directory Scan file names,
ignoring capitalization, for all files that have the letters
“some” anywhere in them.
find . -name “*some*”
Capitalization counts.
find /usr/local -name “*some*”
Search in /usr/local instead
find . -name “*some*” -exec emacs {} \;
Opens the selected files in Emacs.
find has many search options, to look for files by size,
modification time, or other details.
Many systems have a less formal/powerful alternative “locate”

Terminal 1 45 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

find has many super powers that can save you
Examples based on the DLM project Summer 2015

Program creates 100s of directories, 1000s of subdirectories
inside them, then writes pdf files (and other files in there).
Question: How many pdfs are there altogether in a directory
structure
$ f i n d myoutd i r −name " ∗ . pd f " | wc

Question: Drop a list of those pdfs into a text file
$ f i n d myoutd i r −name " ∗ . pd f " > r e p o r t s . t x t

Question: List pdfs have total names (directory path
beginning at current location) longer than 200 characters:
$ f i n d −r e g e x t yp e pos i x−extended −r e g ex ’ . { 200 ,

} ’

Terminal 1 46 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

find has many super powers that can save you ...

Question: List files with the name “Jerry” in them:
$ f i n d . −name "∗ J e r r y ∗ . pd f "

Question: List files created within the last 60 minutes
$ f i n d . −cmin −60

cmin: creation time
mmin: modification time
Question: find all the files named .log and delete them
$ f i n d . −name " ∗ . l o g " - -d e l e t e

Terminal 1 47 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

tar: “tape archive” program

tar czvf progs-2011.tar.gz some-dir-name
Creates a GNU zipped archive of a folder “some-dir-name”
tar tzvf progs-2011.tar.gz
Scans and lists the contents of “progs-2011.tar.gz”
tar xzvf progs-2011.tar.gz
Decompresses and un-tars the files. Creates “some-dir-name”
tar can deal with other types of compression

bzip: tar xjvf progs-2011.tar.bz2
see man tar for other types

Terminal 1 48 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Zip files less common, but still encountered

“zip”: Archives created by proprietary algorithm PK-zip
unzip -t whatever-2011.zip # tests the archive
unzip whatever-2011.zip # extracts the archive

Terminal 1 49 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Emacs has shells built in

Start Emacs, run
M-x shell
or
M-x eshell
and it will be obvious how you can keep records on your sessions.

Terminal 1 50 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Difference between > and 2>&1

prog > file.txt # only diverts stdout into file.txt
prog > file.txt 2>&1 # diverts stdout and stderr into file
Example usage: run “make” on a huge program, tons of
output appears on screen
run “make > build.out 2>&1 “ and all output goes into file.

Terminal 1 51 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Do I Love Perl More Than Bash? Does Bash Mind?

Bash shell is the Linux default shell
see “man bash”
For simple chores, Bash scripts are sufficient
Interesting exercise: Convert a DOS script into a Linux shell
script.
For elaborate scripting, I have much more experience with Perl
Perl-CGI was (in 2000) the predominant approach for writing
interactive Web pages
Many other scripting languages have their advocates, I don’t
intend to disparage (Python)

Terminal 1 52 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Example Bash scripting exercise

Vacation photos too huge to email to family
Need to shrink them

#!/ b in / bash

f o r i i n ∗ . j pg ; do base=‘basename $ i . jpg ‘ ;
c on v e r t $ i − r e s i z e 800 x600 −q u a l i t y 85 $base −800x600 . j pg ;
done

Method 1: Executable script
Save that in a file “resize.sh”
Use chmod to make it executable
Run with ./

$ chmod +x r e s i z e . sh
$. / r e s i z e . sh

Method 2: Run a shell, which executes this program.
$ sh r e s i z e . sh

Terminal 1 53 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Example Bash scripting exercise ...
Result: All jpg in current directory will have smaller versions
written.
2 details worth mentioning

The script “resize.sh” is not executable, and it is not in the
path.
Method 1 uses chmod to make it executable, and then runs it
with the “./” prefix. That means “In the current directory, find
this program.”
The OS reads the “shebang” line, #!/bin/bash, and is uses
the bash program to run the script.
Method 2. Note that “bash” is a shell program, and “sh” is
also a shell program. I’m in the habit of using “sh” to run
things, but “bash” would be more correct. Both work in this
case because the script does not use any special features that
are unique to bash (so sh can do the job).

If we were doing this over and over, we should
Move the file into the path, say in $HOME/bin

Terminal 1 54 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Example Bash scripting exercise ...

Make sure the file is executable (chmod)

Terminal 1 55 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

rename-perl.pl: A Perl Gem

This was written by the authors of Perl, and was distributed
as “rename” on most Linux systems in the olden days.

#!/ u s r / b i n / p e r l

Example usage : rename s c r i p t examples from l w a l l :
#rename−p e r l ’ s /\ . o r i g $ // ’ ∗ . o r i g

$op = s h i f t ;
f o r (@ARGV) {

$was = $_;
e v a l $op ;
d i e $@ i f $@ ;
rename ($was , $_) u n l e s s $was eq $_;

}

Line 1 is the "shebang" line
When this script is executed, like this

$ rename−p e r l . p l some−op t i on s−he r e

The OS reads line 1 and executes this for us:

Terminal 1 56 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

rename-perl.pl: A Perl Gem ...

p e r l rename−p e r l . p l some−op t i on s−he r e

That only works because the script is executable. Otherwise,
we’d have to explicitly call perl, like so:
$ p e r l rename−p e r l . p l some−op t i on s−he r e

The latter approach does NOT require that rename-perl.pl is
an executable file.

Terminal 1 57 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

rename-perl.pl Travels With Me

I keep "rename-perl.pl" in the $HOME/bin folder on any
system I go to.
I make sure it is an executable file
rename-perl is a SUPER powerful, easy to customize approach
for renaming lots of files.
Suppose you accidentally put the wrong number in a lot of file
names
$. / rename−p e r l s /1988/1993/ b a s e b a l l ∗

The "s" notation means "here is a sed script". Sed is a very
powerful text manipulation framework. Here, we scan for the
"1988" and replace with "1993".

Terminal 1 58 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

I use rename-perl ALL THE TIME

$ l s − l a
t o t a l 572
drwxr−xr−x 3 pau l j ohn pau l j ohn 4096 Ju l 26 14 :33 .
drwxr−xr−x 11 pau l j ohn pau l j ohn 4096 Aug 12 13 :07 . .
−rw−r- -r- - 1 pau l j o hn pau l j o hn 52778 Mar 2 13 :41 hpcexample −1. l y x
−rw−r- -r- - 1 pau l j o hn pau l j o hn 48753 Feb 26 16 :41 hpcexample −1. l y x ~
−rw−r- -r- - 1 pau l j o hn pau l j o hn 468913 Mar 2 13 :41 hpcexample −1. pdf
drwxr−xr−x 6 pau l j ohn pau l j ohn 4096 Aug 12 13 :06 . svn
% $

I want to change the basename of all of these files from
“hpcexample” to “HPC-Overview”
A silly Windows/Mac user would click each one individually
and re-type
If there were 1000 files, the Windows/Mac user would be
discouraged.

Terminal 1 59 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

I use rename-perl ALL THE TIME ...

$ rename−p e r l s / hpcexample /HPC−Overv iew / ∗

$ l s − l a
t o t a l 572
drwxr−xr−x 3 pau l j ohn pau l j ohn 4096 Aug 12 13 :08 .
drwxr−xr−x 11 pau l j ohn pau l j ohn 4096 Aug 12 13 :07 . .
−rw−r- -r- - 1 pau l j o hn pau l j o hn 52778 Mar 2 13 :41 HPC−Overview −1. l y x
−rw−r- -r- - 1 pau l j o hn pau l j o hn 48753 Feb 26 16 :41 HPC−Overview −1. l y x ~
−rw−r- -r- - 1 pau l j o hn pau l j o hn 468913 Mar 2 13 :41 HPC−Overview −1. pdf
drwxr−xr−x 6 pau l j ohn pau l j ohn 4096 Aug 12 13 :06 . svn

Terminal 1 60 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

More about Perl

I’ve used Perl to manage computer simulations (earmark:
"replicator.pl")
Perl is fairly widely used, plenty of documentation
Somewhat "dangerous" because of changing styles and bad
habits of authors who offer advice on Iternet
Self defense in "use strict" and warnings pragma.

Terminal 1 61 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

In the old MP3 days

One could use Napster (or similar) to download songs in MP3
format
Challenge: convert those to the right format and put on an
audio CD
Before writing MP3 -> CDROM, it is good to know if all of
the songs “fit” on the disk.

#!/ u s r / b i n / p e r l
#This mp3est imate p e r l program j u s t checks whether a d i r e c t o r y
#o f mp3 ’ s w i l l f i t on a d i s k .

#Determine whether MPEG : : MP3Info i s p r e s e n t and l oad i t
$no_mp3info = 1 ;
e v a l " use ␣MPEG : : MP3Info ; " ;
u n l e s s ($@) {

unde f $no_mp3info ;
use MPEG : : MP3Info ;

}
use Getopt : : Std ;
use F i l e : : Basename ;

Terminal 1 62 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

In the old MP3 days ...
my $ t ime_a l l o c a t e d = " 74 :00 " ;

g e t op t s (’ ac : dt : o : ’ , \%opt s) ;

($min , $ s e c)=s p l i t (/ \ : / , $ t ime_a l l o c a t e d) ;

my @mp3 l i s t = <∗.mp3>;

f o r ($ i = 0 ; $ i <= $#mp3 l i s t ; $ i++) {
d i e "$ mp3 l i s t [$ i] ␣ does ␣ not ␣ e x i s t " u n l e s s (− f $ mp3 l i s t [$ i]) ; #Check to s e e i f

f i l e e x i s t s
$ f i f o [$ i] = $ tmpd i r . basename $mp3 l i s t [$ i] ; #s e t the names o f the f i f o s
$ f i f o [$ i] =~ s /mp3$/ cdr / i ; #foo .mp3 −> foo . cd r
i f ($ s e c) {

i f (− l $ mp3 l i s t [$ i]) { #mp3info doesn ’ t work on s ym l i n k s
$ f i l e = r e a d l i n k $ mp3 l i s t [$ i] ;

} e l s e {
$ f i l e = $mp3 l i s t [$ i] ;

}
$ i n f o = get_mp3info $ f i l e ; #Let ’ s ge t the mp3 ’ s t ime
$ t o t s e c s += ($ i n f o−>{MM}∗60) + $ i n f o−>{SS} + 4 ; #Ca l c u l a t e t o t a l t ime add ing

a fudge f a c t o r o f 4 s e c s
}

}

$ totmin=i n t $ t o t s e c s /60 ;
$ t o t s e c=$ t o t s e c s % 60 ;
i f (($ t o t s e c s > (($min∗60)+$ sec)) && $ sec) {

p r i n t f "The␣max␣ t ime ␣ a l l o c a t e d ␣was␣ [%d :%.2d] . \ n" , $min , $ s e c ;
p r i n t f "The␣ t o t a l ␣ t ime ␣came␣ to ␣ [%d :%.2d] . \ n" , $ totmin , $ t o t s e c ;

Terminal 1 63 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

In the old MP3 days ...
}
i f ($ s e c) {

p r i n t f " Tota l ␣ t ime ␣ i s ␣ [%d :%.2d] \n" , $ totmin , $ t o t s e c ;
}

Perl names
variables: dollar signs ($)
arrays: at signs (@)

Hash symbol (#) begins comments
"use" accesses modules that are found elsewhere
Many customs common across computer languages

Conditional "if" "then"
Note "+=": Add following to previous
printf similar to C (note % format for variables)

Some weird unique-to-Perl
$@ most recently evaluated result
my declaration for variables (otherwise global!)

die, unless stops program gracefully
Terminal 1 64 / 65 University of Kansas

Introduction: Why Look Behind the GUI Curtain? VITALS IMPORTANTs Scripting

Template for two-column slide: Blank

item
item

Right column

Terminal 1 65 / 65 University of Kansas

	Introduction: Why Look Behind the GUI Curtain?
	VITALS
	IMPORTANTs
	Scripting

