
Git it Together

Beginner Slides

Paul Johnson1

1Center for Research Methods and Data Analysis

2018

Paul Johnson (K.U.) Git it Together 2018 1 / 71

Outline

1 Motivation

2 Git BASH: Gitting to Know You

3 3 Common Scenarios

Scenario 1: Track one professor’s GitHub repository

Scenario 2: Create your own Repository

Scenario 3: Interact with a Remote

Customs for Managing Branches

4 Conclusion

Paul Johnson (K.U.) Git it Together 2018 2 / 71

Why Bother?

Motivation

CRMDA has a Git page

https://crmda.ku.edu/git-help

We have

a long-ish note/essay, “Git it Together! Version Management For Research Projects” CRMDA
Guide #31, which also offers these slides
a short-ish note about using “GitLab: Instructions for Getting Started” CRMDA Guide #34

And some scribbles (in the folder http://crmda.dept.ku.edu/guides/31.git) about
details like

The “Large File Storage (LFS)” problem
http://crmda.dept.ku.edu/guides/31.git/31.git-lfs.md

There is an endless supply of Websites and self-help manuals for Git. A full-sized book named
Pro Git (Chacon & Straub, 2014) is among the most helpful.

Paul Johnson (K.U.) Git it Together 2018 4 / 71

https://crmda.ku.edu/git-help
https://crmda.ku.edu/guides-31-git_it_together
http://crmda.dept.ku.edu/guides/31.git/31.git-slides.pdf
https://crmda.ku.edu/guide-34-GitLab
http://crmda.dept.ku.edu/guides/31.git
http://crmda.dept.ku.edu/guides/31.git/31.git-lfs.md
https://git-scm.com/book/en/v2

Motivation

Cheat sheet

Basic Usage for Git version-tracking repositories
git clone - Copies a version-tracking repository (and all of its history). Usually for inter-

acting with remote servers.
git init - Initiates a new version-tracking repository in current working directory.

git pull/push - Keep up to date with remote repository (retrieve/send).

git add - Tell Git to begin monitoring a file.

git commit - Tell Git to take a “snapshot” of altered files.

git status - Ask for report on files in project. Suggest “git status .”.

git log - Ask for history report on project.

Paul Johnson (K.U.) Git it Together 2018 5 / 71

Git BASH: Gitting to Know You

Git in a BASH Terminal Session

Assume you have Git installed.

If not, stop and install it. See instructions in chapter 3 of “Git it Together”.

Whether on Windows, Linux, or Mac, system will have a “Bash Terminal” where the user can
interact with Git

Windows: In explorer, notice right-click “Git BASH Here”
On Linux or Macintosh, any Terminal will have access to Git if it is installed. Open terminal, run
“ git --version ” to make sure.

Paul Johnson (K.U.) Git it Together 2018 6 / 71

http://crmda.dept.ku.edu/guides/31.git/31.git.pdf

Git BASH: Gitting to Know You

Good Opportunity to Learn about the Terminal

Biggest challenge for novices will be understanding“where am I” in the directories. Commands
to run:

1 pwd Ask your system to print (p) name of the current working directory (wd)

2 cd dirname Change (c) current working directory (d) to dirname

3 mkdir dirname Creates a new directory named dirname

For more command line advice, see

the “Intro Terminal” guides on my Computing-HOWTO pages
my “shell notes” from the Software Carpentry workshop:
https://github.com/pauljohn32/sc_shell

For now, just relax and believe this can work, if you have some patience.

Paul Johnson (K.U.) Git it Together 2018 7 / 71

http://pj.freefaculty.org/guides/Computing-HOWTO
https://github.com/pauljohn32/sc_shell

Git BASH: Gitting to Know You

Uncle Paul’s Advice: Keep Your Git Together

Figure out where you want to keep a folder named GIT

Clone all Git repositories in there, so you can always find them

My GIT repository is in my home folder at the top level, /home/pauljohn/GIT

Perhaps a Windows or Mac user would like /home/username/Documents/GIT .

DO NOT

put this in a Dropbox or other automagical network file server
allow any directories with spaces or non-alphanumeric characters.

Paul Johnson (K.U.) Git it Together 2018 8 / 71

3 Common Scenarios

Focus on 3 Common Use Cases

In following sections, we consider 3 typical usage scenarios.
1 Track a remote repository, keep up to date
2 Create your own repository in your own computer
3 Interact with a server by pulling and pushing changes

We expect novices can follow along with the first 2 scenarios without too much trouble.

The third, which puts the pieces together, will probably take some practice.

Paul Johnson (K.U.) Git it Together 2018 9 / 71

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

Outline

1 Motivation

2 Git BASH: Gitting to Know You

3 3 Common Scenarios

Scenario 1: Track one professor’s GitHub repository

Scenario 2: Create your own Repository

Scenario 3: Interact with a Remote

Customs for Managing Branches

4 Conclusion

Paul Johnson (K.U.) Git it Together 2018 10 / 71

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

Retrieve a set of class notes

Paul Johnson has a GitHub account named “pauljohn32”

He keeps a couple of projects there, but not most things for CRMDA (for which we use a
GitLab server that we administer)

Paul Johnson (K.U.) Git it Together 2018 11 / 71

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

Browse first

Browse to https://github.com/pauljohn32/RHS

Paul Johnson (K.U.) Git it Together 2018 12 / 71

https://github.com/pauljohn32/RHS

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

Browse first

See the Green “Clone or download” button (top right?).

That’s information, not for action
It gives instructions to download with secure shell (SSH) or a password (HTTPS).
Using “Clone with SSH” will require you to have a GitHub account with which you have
registered an SSH security key.

You are allowed to “Clone with HTTPS” even if you don’t have a GitHub account.

This will be a read-only clone repository

You don’t have permission to alter that material on GitHub
Implication: You will never “push” changes back to server

Paul Johnson (K.U.) Git it Together 2018 13 / 71

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

Choose the HTTPS

The small box under “Clone with HTTPS” will offer an address

That gives the address of the repository you want to clone

https://github.com/pauljohn32/RHS.git

Paul Johnson (K.U.) Git it Together 2018 14 / 71

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

Choose the HTTPS ...

In your terminal, type this:

1 $ g i t c l o n e h t t p s : // g i t h u b . c o m / p a u l j o h n 3 2 / RHS.g i t

Here’s the response:

Cloning into ’RHS’...
remote: Counting objects: 871, done.
remote: Compressing objects: 100% (36/36), done.
remote: Total 871 (delta 21), reused 37 (delta 11), pack-reused 824

5 Receiving objects: 100% (871/871), 10.14 MiB | 7.81 MiB/s, done.
Resolving deltas: 100% (353/353), done.

Paul Johnson (K.U.) Git it Together 2018 15 / 71

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

Inspect the result

$ ls

RHS

$ cd RHS

$ ls -lah

total 32K
drwxrwxr-x 6 pauljohn32 pauljohn32 4.0K Feb 17 12:18 .
drwxr-xr-x 3 pauljohn32 pauljohn32 4.0K Feb 17 12:18 ..
drwxrwxr-x 43 pauljohn32 pauljohn32 4.0K Feb 17 12:18 exercises

5 drwxrwxr-x 8 pauljohn32 pauljohn32 4.0K Feb 17 12:18 .git
-rw-rw-r-- 1 pauljohn32 pauljohn32 242 Feb 17 12:18 .gitignore
drwxrwxr-x 6 pauljohn32 pauljohn32 4.0K Feb 17 12:18 guides
drwxrwxr-x 4 pauljohn32 pauljohn32 4.0K Feb 17 12:18 notes
-rw-rw-r-- 1 pauljohn32 pauljohn32 810 Feb 17 12:18 README.md

Paul Johnson (K.U.) Git it Together 2018 16 / 71

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

Inspect the result ...

The “.git” folder is the historical archive, it is your local “record keeper”. DO NOT DELETE
IT!

Paul Johnson (K.U.) Git it Together 2018 17 / 71

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

Use git log to review the history

Default output is verbose, going from recent to past. To break off the page-by-page listing,
hit the letter ’q’ on the keyboard.

$ git log

commit df12636913e00881cb2b715339c1e41dd19b77b1 (HEAD -> master , origin/master ,
origin/HEAD)

Author: Paul E. Johnson <pauljohn@ku.edu >
Date: Tue Feb 13 15:38:03 2018 -0600

5 downloader for smoking data

commit 829 a4d2bc298358b93a28c94d2f3471010ebb8af
Author: Paul E. Johnson <pauljohn@ku.edu >
Date: Tue Feb 13 15:30:10 2018 -0600

11 Ex-01.3

commit 99 c14e866f4e12e597172948d184039c714c240e
Author: Paul E. Johnson <pauljohn@ku.edu >
Date: Thu Feb 8 17:37:21 2018 -0600

Paul Johnson (K.U.) Git it Together 2018 18 / 71

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

Use git log to review the history ...

17 Ex-02.2-ghq:

Ex-02.2-ghq: Rmd , R and html

Ex-02.2-ghq: build out update

23 commit 65 d8c484d0aab78eb3660dba7d142e3883026d7c
Author: Paul E. Johnson <pauljohn@ku.edu >
Date: Thu Feb 8 10:22:01 2018 -0600

Ex-02.1-pefr worked fully

If you ask Mr Google or check stackoverflow.com for advice, you’ll see that “git log” can be
run with many arguments to beautify the output.

I generally ignore that.
I avoid customizing my user account with aliases and shortcuts.

Paul Johnson (K.U.) Git it Together 2018 19 / 71

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

Checking for Updates

This Git repo is updated periodically, users will want the latest and greatest.

Open a Terminal, and from the RHS directory, run:

$ git pull

As long as you have not changed any files, or damaged settings in the .git directory, this will
work

Except if it does not (See next slide).

Paul Johnson (K.U.) Git it Together 2018 20 / 71

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

There is only one thing to worry about: pull fails if you edit files

The repository you have is a “read only” clone

However, You are Allowed to Edit the files.

If
1 you edit a file, and
2 the repo manager edits a file

then “git pull” will fail.

It fails because git wants to protect your edits, it does not want to erase them.

Paul Johnson (K.U.) Git it Together 2018 21 / 71

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

How your edit causes conflict

If you both edit “README.md”, here’s the error message that results

$ git pull

remote: Counting objects: 3, done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 3 (delta 2), reused 3 (delta 2), pack-reused 0
Unpacking objects: 100% (3/3), done.

5 From https://github.com/pauljohn32/RHS
df12636..37518f8 master -> origin/master

Updating df12636..37518f8
error: Your local changes to the following files would be overwritten by merge:

README.md
Please commit your changes or stash them before you merge.

11 Aborting

Ignore the advice to “commit or stash”, that is for contributors, not read-only repo watchers

Paul Johnson (K.U.) Git it Together 2018 22 / 71

3 Common Scenarios Scenario 1: Track one professor’s GitHub repository

How your edit causes conflict ...

If you want to edit a file

copy it to another file name and edit that

If you forget that and do edit a file, then recover it.
1 rename the file you edited
2 recover the original copy from the history:

1 $ git checkout -- name-of-removed-file

3 this will work, but not if you committed your changes.

Paul Johnson (K.U.) Git it Together 2018 23 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Outline

1 Motivation

2 Git BASH: Gitting to Know You

3 3 Common Scenarios

Scenario 1: Track one professor’s GitHub repository

Scenario 2: Create your own Repository

Scenario 3: Interact with a Remote

Customs for Managing Branches

4 Conclusion

Paul Johnson (K.U.) Git it Together 2018 24 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Track your own effort, locally

A remote server is not necessary

This is just about keeping notes and history for yourself

I tell students to track any project they start, no matter what.

If you don’t track your effort, please stop and think if your effort is worthwhile.

Paul Johnson (K.U.) Git it Together 2018 25 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Step 1. Create a repo in a directory

Start in your GIT directory
Create an empty directory.

e.g.

$ mkdir fun1

change into that directory

$ cd fun1

Run “git init” to create your local repo

If your directory is not in a network file server, run

$ git init

Initialized empty Git repository in /tmp/fun1/.git/

On a network file server, can allow teammates access by adding “ –shared=group ”

$ git init --shared=group

Paul Johnson (K.U.) Git it Together 2018 26 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Add some content

Step 2. Add a file, any file you like

Use any editor you like
Windows may make this frustrating, try “ touch README.md ” first to create an empty file.
Look at directory in file manager, then use Emacs, Notepad++, or some other adequate editor
after that.

Step 3. Tell git to track that file

$ git add README.md

Step 4. Commit the file (means take a snapshot). Don’t run this yet!*

$ git commit README.md

An editor will pop up. This editor, “vi”, may be unfamiliar to you. If you want to avoid vi for
now, add a commit message on the command line

$ git commit afile.txt -m "this is the new fabulous report"

Paul Johnson (K.U.) Git it Together 2018 27 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Add some content ...

Then edit README.md, then commit it again.

Repeat several times

* see next slide!

Paul Johnson (K.U.) Git it Together 2018 28 / 71

3 Common Scenarios Scenario 2: Create your own Repository

If you run ”git commit README.md” and vi opens . . .

1 hit the letter “i”, which turns on
insert mode. You should be able to
type a message in first line of file.
Only use keyboard arrows to move
cursor. The mouse is not going to
work.

2 After typing your message, hit these
4 keys (in sequence)

1 “Esc” (The escape key on top
left).

2 “:” (the colon key: causes vi to be
ready for commands)

3 “w” (writes the file)
4 “q” (quits vi)

My student jb sells needlepoint projects
on Etsy:

Paul Johnson (K.U.) Git it Together 2018 29 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Review History with ”git log”

The Git log

$ git log

commit 3e6a036db79705a5dcd0167bb312c98bb6a982f2 (HEAD -> master)
Author: Paul E. Johnson <pauljohn@ku.edu >
Date: Sun Feb 18 12:29:04 2018 -0600

5 Edit README a third time

commit 24 b03668d86254ae2a44e47105bb3f047420ae4c
Author: Paul E. Johnson <pauljohn@ku.edu >
Date: Sun Feb 18 12:28:36 2018 -0600

11 edit readme

commit 620 a52fbde42c366138e8709b54b08e7a5776c54
Author: Paul E. Johnson <pauljohn@ku.edu >
Date: Sun Feb 18 12:28:12 2018 -0600

17 readme added for git tracking

Paul Johnson (K.U.) Git it Together 2018 30 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Review History with ”git log” ...

If you ask a randomly chosen Russian teenager, they will say run

1 $ git log --oneline

or

$ git log --oneline --decorate

Paul Johnson (K.U.) Git it Together 2018 31 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Status check

This command surveys the project folder and makes a report (which will not be very
interesting at the moment)

$ git status

On branch master

nothing to commit , working tree clean

Make 2 changes

Add another file in the project. Any kind, any name (e.g., “iamasuperhero.txt”)

Edit README.md and save it, but do not commit it.

Paul Johnson (K.U.) Git it Together 2018 32 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Status check ...

After that, git status will be more interesting.

$ git status

On branch master
Changes not staged for commit:

(use "git add <file >..." to update what will be committed)
(use "git checkout -- <file >..." to discard changes in working directory)

5

modified: README.md

Untracked files:
(use "git add <file >..." to include in what will be committed)

11 iamasuperhero.txt

no changes added to commit (use "git add" and/or "git commit -a")

Paul Johnson (K.U.) Git it Together 2018 33 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Cautions 1: don’t carelessly add material

We do not add/commit

Trash folders, tmp files, backup files
password files, confidential client data

To avoid accidental additions, DO NOT add/Commit whole directories. Add file-by-file.

Difficult to completely expunge confidential information without ruining repository.

Paul Johnson (K.U.) Git it Together 2018 34 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Cautions 2: Careful with ”git commit -a”

I suggest adding and committing individual files

A shortcut to commit all revisions is to add “-a”:

$ git commit -a

editor will warn you about changes, so not horribly unpredictable

However, if you carelessly run this:

$ git commit -a -m "your message here"

then you have no chance to review your actions.

Suppose you have accidentally deleted or removed a file. Even if you don’t explicitly run
“ git rm filename ”, Git will remove files from project when you run “ git commit -a ”.

Paul Johnson (K.U.) Git it Together 2018 35 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Create a branch

Suppose your repo files look good, but you want to work on a new feature

$ git branch pj-xfix

Check your branch was created

$ git branch -avv

* master 3e6a036 Edit README a third time

pj-xfix 3e6a036 Edit README a third time

Change the working directory onto files tracked by the branch

$ git checkout pj-xfix

Switched to branch ’pj-xfix ’

Paul Johnson (K.U.) Git it Together 2018 36 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Create a branch ...

Note that the untracked file, “ iamasuperhero.txt ” is still floating loose. If we edit it while in
this branch, there will be trouble later.

Do some edits. Add some files. commit the changes. Don’t forget the commits, or else the
edits are ignored.

When it is perfect, put the revisions into the master branch

$ git checkout master

$ git merge pj-xfix

Updating 3e6a036..2d30518

Fast-forward

README.md | 2 ++

4 newfile1.txt | 2 ++

2 files changed , 4 insertions (+)

create mode 100644 newfile1.txt

Paul Johnson (K.U.) Git it Together 2018 37 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Create a branch ...

Review the history:

$ git log

commit 2d3051817f91887d921613305943a32370f7bb2f (HEAD -> master , pj-xfix)
Author: Paul E. Johnson <pauljohn@ku.edu >
Date: Sun Feb 18 12:37:33 2018 -0600

5 README: edit inside branch pj-xfix
newfile1: edit inside branch pj-xfix

commit 3e6a036db79705a5dcd0167bb312c98bb6a982f2
Author: Paul E. Johnson <pauljohn@ku.edu >
Date: Sun Feb 18 12:29:04 2018 -0600

11

Edit README a third time

commit 24 b03668d86254ae2a44e47105bb3f047420ae4c
Author: Paul E. Johnson <pauljohn@ku.edu >
Date: Sun Feb 18 12:28:36 2018 -0600

17

edit readme

Paul Johnson (K.U.) Git it Together 2018 38 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Create a branch ...

commit 620 a52fbde42c366138e8709b54b08e7a5776c54
Author: Paul E. Johnson <pauljohn@ku.edu >
Date: Sun Feb 18 12:28:12 2018 -0600

Delete the (now unneeded) branch

$ git branch -d pj-xfix

Deleted branch pj-xfix (was 2d30518).

Review

$ git status .

Paul Johnson (K.U.) Git it Together 2018 39 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Create a branch ...

On branch master
Untracked files:

(use "git add <file >..." to include in what will be committed)

5 iamasuperhero.txt

nothing added to commit but untracked files present (use "git add" to track)

This was simple branch/merge because there were no other users involved.

We were sure master had not changed after we checked out the branch

There was no fear of conflicts between ourself on master and ourself on the branch

Paul Johnson (K.U.) Git it Together 2018 40 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Future TODO for you: .gitignore

As time goes by, your project folder may have files you don’t want to track (such as backup
files, error logs, photos of my lovely gardens, your fake ID from high school, or your most
recent love letter to George Bush, etc.)

Output from “git status” will always mention these files and suggest you track them.

Create a file “.gitignore” in the top of the project to tell git to stop warning you about those
files.

Paul Johnson (K.U.) Git it Together 2018 41 / 71

3 Common Scenarios Scenario 2: Create your own Repository

Future TODO for you: git rebase to squash commits

You commit 10 times to correct 1 problem, 6 of which are goofups

Clean up the project history by squashing those commits together

$ git rebase -i HEAD∼10

will launch an interactive session. Enter 1 commit ungoofed message.

Read more: http://crmda.dept.ku.edu/guides/31.git/31.git-squash.md

Paul Johnson (K.U.) Git it Together 2018 42 / 71

http://crmda.dept.ku.edu/guides/31.git/31.git-squash.md

3 Common Scenarios Scenario 3: Interact with a Remote

Outline

1 Motivation

2 Git BASH: Gitting to Know You

3 3 Common Scenarios

Scenario 1: Track one professor’s GitHub repository

Scenario 2: Create your own Repository

Scenario 3: Interact with a Remote

Customs for Managing Branches

4 Conclusion

Paul Johnson (K.U.) Git it Together 2018 43 / 71

3 Common Scenarios Scenario 3: Interact with a Remote

Interacting with Teammates via A Remote Repo

“git clone” retrieves a copy, as we have seen before.

The git folder knows where its remote server is. Nickames it “origin”

User has ability to “push” changes and “pull” updates.

After commits, “git push” sends changes to server
“git pull” fetches and merges updates from remote (some subtle problems come up, see “Git it
Together”).

Paul Johnson (K.U.) Git it Together 2018 44 / 71

3 Common Scenarios Scenario 3: Interact with a Remote

Visualize your workflow

Paul Johnson (K.U.) Git it Together 2018 45 / 71

3 Common Scenarios Scenario 3: Interact with a Remote

Remote magic, or not

Setting up the remote repo requires some specialized knowledge.

A “bare” repository

Definition: allows “clone”, “pull” and “push” commands.

Can be done, but not too easy to correctly regulate user access

“GitHub”, “GitLab”, “BitBucket” simplify that with Web server GUI.

Our workers in CRMDA almost NEVER need to create bare repos anymore.

Paul Johnson (K.U.) Git it Together 2018 46 / 71

3 Common Scenarios Scenario 3: Interact with a Remote

Standard Workflow

1 Manager creates repo, tells teammates the address

2 Worker clones a copy of project

$ git clone <address provided >

3 Worker creates personal branch (with informative name)

$ git branch pj-docs

4 Inspect to see if branch was created

$ git branch -avv

5 Worker decides to work inside the new branch.

$ git checkout pj-docs

This turns the working directory into a view of files in the new branch.

Paul Johnson (K.U.) Git it Together 2018 47 / 71

3 Common Scenarios Scenario 3: Interact with a Remote

Standard Workflow ...

Shortcut achieve both creation of branch and checkout in one step

$ git checkout -b pj-docs

6 User edits files. Uses “git add” or “git commit” as usual.

7 Send a copy back to the server:

$ git push -u origin pj-docs

8 Figure out way (or ask manager) to merge revisions onto the main project.

Paul Johnson (K.U.) Git it Together 2018 48 / 71

3 Common Scenarios Scenario 3: Interact with a Remote

Standard Workflow ...

Big Mystery

Question: How can the branch “pj-docs” stay in harmony with larger project?

Answer: this as much a social science as computer science problem! Must develop team
expectations and cultivate communication

Paul Johnson (K.U.) Git it Together 2018 49 / 71

3 Common Scenarios Scenario 3: Interact with a Remote

Review branches within local and remote repos

Suppose there is no remote server. Then the branches are all local.

$ git branch -avv

* master 819 fb77 [origin/master: ahead 1] multilevel
random-intercepts-2:

pj-temp 28f9b31 presentation/ordinalSEM.lyx: minor edits.

I’ve got the “master branch” (which is checked out) and a branch named “pj-temp” where I’m
experimenting with a new feature

Suppose now a remote is added and pulled. After that I see more branches

* master 819 fb77 [origin/master: ahead 1] multilevel random-intercepts-2:
pj-temp 28f9b31 presentation/ordinalSEM.lyx: minor edits.
remotes/origin/HEAD -> origin/master

4 remotes/origin/px-msha c713097 msha/import: change outdir to workingdata
remotes/origin/master b806ee4 random-intercepts-1: 2018 style update
remotes/origin/kk-maxilikeli d3ba2c4 hbsc-subset2-key2

remotes/origin/red-gx b30ccdc summeR-1.4 getwd insert initProjects

Paul Johnson (K.U.) Git it Together 2018 50 / 71

3 Common Scenarios Scenario 3: Interact with a Remote

Review branches within local and remote repos ...

“remotes/origin/xxx” are “remote branches”. I don’t edit them directly, they are copied from
the server

Suppose I run “ git checkout px-msha ”. After that, the output from “git branch -avv” will
show a local “tracking” branch “px-msha”

*px-msha c713097 [origin/px-msha] msha/import: change outdir
master 819 fb77 [origin/master: ahead 1] multilevel random-intercepts-2:
pj-temp 28f9b31 presentation/ordinalSEM.lyx: minor edits.
remotes/origin/HEAD -> origin/master

5 remotes/origin/px-msha c713097 msha/import: change outdir to workingdata
remotes/origin/master b806ee4 random-intercepts-1: 2018 style update
remotes/origin/kk-maxilikeli d3ba2c4 hbsc-subset2-key2
remotes/origin/red-gx b30ccdc summeR-1.4 getwd insert initProjects

The “local tracking branch” px-msha is currently synchronized with origin/px-msha. We can
see that because the most recent commit is “C713097” for both.

However, if I edit and commit in px-msha , it will be different than “origin/px-msha”

Paul Johnson (K.U.) Git it Together 2018 51 / 71

3 Common Scenarios Scenario 3: Interact with a Remote

Review branches within local and remote repos ...

And if the owner of px-msha makes changes from his computer and pushes to the server, then
the copy on the server, which is referred to as “origin px-msha” is different from the others.

Understand the effect of committing and pushing.

1 commit: update information in px-msha

2 push:

1 updates origin/px-msha the local copy of the server branch

2 copies branch to remote, thus synchronizing “origin px-msha”.

Paul Johnson (K.U.) Git it Together 2018 52 / 71

3 Common Scenarios Scenario 3: Interact with a Remote

fetch versus pull

If we are in a branch, say master, and run “ git pull ”, here is what git does

Retrieve the newest from “ origin master ”

save that in local “ origin/master ”

pull updates from “ origin/master ” and apply to master

If we run “ git fetch ” the records on all of the remote branches are pulled, so “origin/master”

(or any branch named “origin/xxx”) is retrieved.

fetch does not apply the changes in “origin/master” to “master” automatically.

Paul Johnson (K.U.) Git it Together 2018 53 / 71

3 Common Scenarios Scenario 3: Interact with a Remote

Branches Confusing, but Helpful

We discuss recovering from mistakes in the manual Git it Together

origin/px-msha is a “safe place” to revert to.

If we fiddle with px-msha and make errors, it is very easy to reset px-msha to

origin/px-msha .

Paul Johnson (K.U.) Git it Together 2018 54 / 71

3 Common Scenarios Customs for Managing Branches

Outline

1 Motivation

2 Git BASH: Gitting to Know You

3 3 Common Scenarios

Scenario 1: Track one professor’s GitHub repository

Scenario 2: Create your own Repository

Scenario 3: Interact with a Remote

Customs for Managing Branches

4 Conclusion

Paul Johnson (K.U.) Git it Together 2018 55 / 71

3 Common Scenarios Customs for Managing Branches

master and other branches

All git repositories have at least one “branch”, which is called the master branch

master

solid dots represent commits.

For CRMDA, master is the “correct”“currently working” version of a project.

We don’t allow users to push onto the master branch.

A project manager is supposed to make sure that master is good at any moment

Paul Johnson (K.U.) Git it Together 2018 56 / 71

3 Common Scenarios Customs for Managing Branches

Visualize the branch & merge

The “stable mainline” branching
model

Paul Johnson (K.U.) Git it Together 2018 57 / 71

3 Common Scenarios Customs for Managing Branches

Schematic overview

1 Users “git clone” our project repo

2 Create personal branch (git branch pj-fix)

master

pj-fix

3 Check out the branch (git checkout pj-fix)

4 Edit files, add, commit, etc

5 Push the branch onto the server (git push -u origin pj-fix)

(see caution below)

Paul Johnson (K.U.) Git it Together 2018 58 / 71

3 Common Scenarios Customs for Managing Branches

Schematic overview ...

6 Request a merge onto the master branch

master

merge

pj-fix

Paul Johnson (K.U.) Git it Together 2018 59 / 71

3 Common Scenarios Customs for Managing Branches

Caution: teamwork is difficult

Workers create branches

px-msha / red-gx / kk-maxilikeli

Race to Push: If one of the workers finishes her work first, and requests a merge onto
master, and the manager does the merge, then

All of the other workers branches may become

1 out of date, useless, irrelevant or
2 contradictory, harmful, conflicted.

Paul Johnson (K.U.) Git it Together 2018 60 / 71

3 Common Scenarios Customs for Managing Branches

How We Deal With That?

1 Avoid having different team members edit same files

2 Require team members to keep branches up-to-date with the master branch
Use the magic 4 step sequence OFTEN:

$ git checkout master

$ git pull

$ git checkout pj-docs

4 $ git merge master

The picture describing the branches will look like this

master

merge

pj-fix
merge

Paul Johnson (K.U.) Git it Together 2018 61 / 71

3 Common Scenarios Customs for Managing Branches

How We Deal With That? ...

When merge request happens, the first thing the manager does is check to see if the branch is
fully up to date with master branch. If not, reject.

Paul Johnson (K.U.) Git it Together 2018 62 / 71

3 Common Scenarios Customs for Managing Branches

Preserve Sanity: short lived branches

Name Branches in Obvious Ways (e.g. initials and purpose):

pj-graphs

Branches don’t live forever. Merge and Remove branches!

Users delete (prune) local copies of branches that were removed on server

$ git fetch -p

Paul Johnson (K.U.) Git it Together 2018 63 / 71

3 Common Scenarios Customs for Managing Branches

How does this look from a manager point of view?

A worker says “I want you to merge px-msha”.

The merge can be done in

GitLab graphical iterface
Command line on manager workstation

On workstation, do this

$ git fetch

$ git branch -avv

Inspect the changes

$ git checkout px-msha

If satisfactory, merge px-msha and delete:

Paul Johnson (K.U.) Git it Together 2018 64 / 71

3 Common Scenarios Customs for Managing Branches

How does this look from a manager point of view? ...

$ git checkout master

$ git merge px-msha

remove old branch local and server

$ git branch -d px-msha

5 $ git push origin --delete px-msha

$ git fetch -p

Danger Will Robinson: author of px-msha continues changing and pushing. My checked out
local copy is stale.

$ git fetch

$ git checkout px-msha

$ git merge origin/px-msha

or, equivalently:

Paul Johnson (K.U.) Git it Together 2018 65 / 71

3 Common Scenarios Customs for Managing Branches

How does this look from a manager point of view? ...

$ git checkout px-msha

$ git pull

Paul Johnson (K.U.) Git it Together 2018 66 / 71

3 Common Scenarios Customs for Managing Branches

TODO for you: Git-LFS

Git is very efficient with text files. It only stores changes between versions.

Git is not efficient with binary files like movies, pictures, Excel sheets, etc.

Git will save historical copies of each version that is revised.

Storage will grow because .git folder keeps all old copies

Git will run slower and slower because of these hard-to-manage files

Currently, solution we are using “Git-LFS”, an add-on program that handles the binary files,
keeps them in separate server.

To read more: http://crmda.dept.ku.edu/guides/31.git/31.git-lfs.md

Paul Johnson (K.U.) Git it Together 2018 67 / 71

http://crmda.dept.ku.edu/guides/31.git/31.git-lfs.md

Conclusion

Good chance to learn the ”command line”

All programmers & data scientists will need to go beneath the Graphical User Interface at
times

Using Git BASH in Windows offers a good way to get some practice because it is a general
purpose shell.

Paul Johnson (K.U.) Git it Together 2018 68 / 71

Conclusion

Practice is required

Git will require practice, it is easy to forget “commit”“add”“push”.

Users should create their own “cheat sheets” so they can remember what works.

Avoid blindly following advice you find in the Internet.

For personal convenience on personal notes, I use SparkleShare (www.sparkleshare.org). It
is an “auto git” program that always adds and commits all changes and copies them to the
remote all the time.

Paul Johnson (K.U.) Git it Together 2018 69 / 71

www.sparkleshare.org

Conclusion

Git is a Priority for Career Preparation

Git is an industry standard for data science researchers and programmers

Most people who work in data science are expected to be familiar with Git, if not enthusiastic
about it.

Watch out for the koolaid, however. We’ve had several workers who become infatuated with
Git jargon and the sprawling Internet community.

Paul Johnson (K.U.) Git it Together 2018 70 / 71

Conclusion

References

Chacon, S. & Straub, B. (2014). Pro Git. New York, NY: Apress.

Paul Johnson (K.U.) Git it Together 2018 71 / 71

	Motivation
	Git BASH: Gitting to Know You
	3 Common Scenarios
	Scenario 1: Track one professor's GitHub repository
	Scenario 2: Create your own Repository
	Scenario 3: Interact with a Remote
	Customs for Managing Branches

	Conclusion

