GITLAB SETUP: INSTRUCTIONS FOR GETTING
STARTED [< ! '

Kathleen Hrenchir, CRMDA <katieh@ku.edu> RESE(/il}El[\C]IT{EI[\(AECT)I}—{IODS
Paul Johnson, CRMDA <pauljohn@ku.edu> & DATA ANALYSIS
Benjamin Kite, CRMDA <bakite@ku.edu> Colleg; gf!.iberal Arts
Guide No: 34 Keywords: Git, GitLab Mar. 26, 2018

See https://crmda.ku.edu/guides for updates.

GitLab is a Web program that makes it easier to manage teams of users and many Git repositories.
GitLab makes it easy to create and manage repositories. It is especially convenient to regulate
user access to particular projects. From the user perspective, GitLab is a place to find projects
and request permission to participate in them. In other words, it is a “front page” for Git. The
CRMDA Git guide, Git it Together! is available separately (CRMDA Guide 31).

This write-up describes how to establish a user account on the KU CRMDA GitLab server, which
is available at http://gitlab.crmda.ku.edu. The advice here will apply to other GitLab servers
as well.

1 Access your GitLab Account on the CRMDA Server

Browse to http://gitlab.crmda.ku.edu, select the LDAP login tab, and sign in using your KU online
ID (e.g. a012b345) and password. You will not have access to projects until the administrator adds
you as a member.

Inspect the GitLab Web interface. There will be tools that appear in the left and the top. In the
top of the page, there is a navigation ribbon.

L GitLab Groups More v f

On the top left there is a project list, and on the top right there is a main user menu k&
main user menu holds the all-important User Settings item that we discuss below.

In the main display, there may be some larger panels, one of which is “Explore Public Projects”. If
you find that and open it, there should be a tab named “ALL”. That tab displays all of the open
projects on the server. These are ones that are open to all participants. Some of them are available
more broadly to users anywhere.

In the ALL list, we have some test repositories, one of which is “spr2018”. We are using that public
repository for Git teamwork training. Feel free to clone it and practice your branch skills.

The security protocols will allow you to clone the repo using the https protocol, but in order to push
changes back to the server, it will be necessary to use SSH security keys. In the next section, we
describe the process of creating an SSH key and troubleshooting the (seemingly inevitable) hiccups
that arise.

1425 Jayhawk Blvd., 470 Watson Library This work is licensed under
Lawrence, KS 66045-7594 a Creative Commons Attribution

https://crmda.ku.edu 4.0 International License

https://crmda.ku.edu/guides
http://crmda.dept.ku.edu/guides/31.git/31.git.pdf
http://gitlab.crmda.ku.edu
http://gitlab.crmda.ku.edu
https://crmda.ku.edu

2 Configure an SSH Key

An SSH key pair is required to interact with the server. A key pair is composed of two files
stored in the ~/.ssh folder of your user account. (Recall that “~/” means the user HOME

folder, which is likely to be /Users/your-name on Macintosh, C:\Users\your_name on Win-

dows, or /home/your_name on Unix/Linux.) The public key file has the suffix “.pub”, while
the private key, which must never be shared to anyone, has no suffix. By default, these will be
named “id_rsa.pub” and “id_rsa”. Below we suggest custom-naming your key, so the files might be
“pj_gitlab_20180228.pub” and “pj_gitlab_20180228”. The “*.pub” is to be shared with servers, which
then identify you by matching the private and public key parts.

To create your SSH key

1. Open a terminal. (In Windows, use Git BASH.)

2. Use the following command to create a new SSH key.

$ ssh-keygen -b 4096 -C "youremail@ku.edu" -f ~
/ .ssh/YourName_GitLab_YYYYMMDD

We recommend you create a custom-named key by including “ -f ~/.ssh/YourName_GitLab_YYYYMMDD ”.

Otherwise, your key files will be named ~/.ssh/id_rsa.pub and ~/.ssh/id_rsa . In the course
of your work, it may be necessary to create several keys for several different purposes. Give
each one a unique name. Choose any name you like.

3. Add a passphrase. Do not leave this field empty.

$ ssh-keygen -b 4096 -C "youremail@ku.edu" -f ~
/ .ssh/YourName_GitLab_YYYYMMDD

Generating public/private rsa key pair.

Enter passphrase (empty for no passphrase):

No text will appear in the terminal when you type your passphrase. You will be asked to
retype your passphrase once.

4. The terminal will display a confirmation.

$ ssh-keygen -b 4096 -C "youremail@ku.edu" -f ~
/ .ssh/YourName_GitLab_YYYYMMDD

Generating public/private rsa key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in
/home/yourname/.ssh/YourName_GitLab_YYYYMMDD.

Your public key has been saved in
/home/yourname/.ssh/YourName_GitLab_YYYYMMDD.

The key fingerprint is:

SHA256 : FRImSmfxh/CXWcXKB7BIECeGaJDCFMOmkdGOeTDidyc
youremail@ku.edu

ot

Page 2 of 8

The key’s randomart image is:
10 |[+-—-—-[RSA 4096] ----+
|+0X=..Q@+*x.0..0. |
[+++*x%x= X + %, |
| .+00.. = B. o [
[. . . + o0 |
15 || E . S |
| o I
I I
I I
I I
20 |+—----[SHA256] ----- +

3 Upload the SSH key

1. From GitLab, open User Config

2. Within Settings, select SSH Keys. This may be represented by an icon of a key.

There will be an open text box into which the key should be pasted. If you are careful, a
simple copy/paste from the public key file into the server window will succeed. However,
users often have errors in pasting due to line breaks. Because of some bad experiences, we
are following the lead of the GitHub and GitLab documentation, which suggests a platform

specific approach.

on the top right and access Settings.

(a) Copy the public key. This can be done from the terminal.

i. Windows (Git BASH)

‘cat ~/ .ssh/YourName_GitLab_YYYYMMDD.pub | clip

ii. Mac

‘pbcopy < ~/.ssh/YourName_GitLab_YYYYMMDD.pub

iii. Linux (using xclip package)

‘xclip -sel clip < ~/.ssh/YourName_GitLab_YYYYMMDD.pub

These will work only if your system has the required clipboard software. Linux does
not have xclip installed by default. One can either install it, or try the old fashioned
method. Open the public key file in an editor that does not impose linebreaks (e.g.,

Gedit, Emacs), then copy the key in its entirety.

(b) Paste your key into the Key field of the GitLab form. How to paste? Any of the usual
ways seem to work. A right-click -> paste works in any Web browser we have tried.
Give your key a descriptive title, then select Add Key. The title is never used, except
to remind yourself about which key is being pasted in. We suggest the custom name of

your custom-named key for this, but anything will work.

Page 3 of 8

4 Access GitLab projects

After the key is accepted, you are a fully functioning member of the community on http://gitlab.
crmda.ku.edu. Our GitLab server defaults to protect the master branch from commits by all users
except the owner or master. Users are required to create branches, which they are allowed to push,
and for which they can file merge requests.

As a test of your setup, try to clone the project named “test/spr2018”. Open a terminal and run

$ git clone git@gitlab.crmda.ku.edu:test/spr2018.git

If you are lucky, and your operating system cooperates, all is well if you see:

Cloning into ’spr2018°...

X11 forwarding request failed on channel O
remote: Counting objects: 3, done.

remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 0O (delta O0)
Receiving objects: 100% (3/3), done.

On the other hand, if you see this:

git@gitlab.crmda.ku.edu’s password:

it means that the SSH key setup needs some correction.

5 One Last Gotcha: The ssh-agent

Here is the symptom. The Git server responds like this to any git command (clone, pull, push, or
fetch):

‘git@gitlab .crmda.ku.edu’s password:

Typing a password will not help. The SSH key setup needs fixing.

We’ll guide you through some temporary adjustments and, if they work, we’ll make them permanent.

1. Double-check that the SSH key was uploaded correctly. Sometimes users accidentally insert
a line break in the SSH key. Open the key’s .pub file in an editor. Notice it is one really long
line. Check the server, make sure there are no accidental line breaks.

2. Supposing you did not err at 1, then it is likely the ssh-agent program is not running, or it
does not know about the key you want to use. We can fix that.

3. Supposing you did not err at 1 or 2, then you have the “too many keys” problem. We can fix
that.

This problem escaped our understanding for quite a long time because it arises intermittently on
different computers. On a Linux system, the ssh-agent will generally be running. However, in
Windows and Macintosh it is more likely to be a problem. On Linux under the XFCE4 desktop,
users need to activate the option to “Launch Gnome services on startup” in the desktop settings
(Sessions -> Advanced).

Page 4 of 8

http://gitlab.crmda.ku.edu
http://gitlab.crmda.ku.edu

Checking on the ssh-agent problem

To read more about this, see “Working with non-default SSH key pair paths” on the GitLab doc-
umentation site. The same is discussed in the GitHub documentation, see “Generating a new SSH
key and adding it to the ssh-agent”.

The following are temporary changes that you run within a single terminal session. They will not
be remembered if you start a new terminal.

First, launch the ssh-agent program:

‘$ eval $(ssh-agent -s)

Second, tell SSH about your custom-named key.

‘$ ssh-add ~/.ssh/YourName_GitLab_YYYYMMDD

That works in Linux and Windows. On a Macintosh computer, the “-K” flag is needed:

‘$ ssh-add -K ~/.ssh/YourName_GitLab_YYYYMMDD

Type your SSH key’s passphrase when requested.

Here’s an example of a success on a Windows computer:

$ eval $(ssh-agent -s)
Agent pid 6276

$ ssh-add ~/.ssh/Paul_Johnson-windowsvm-20180318

Enter passphrase for
/c/Users/pauljohn32/.ssh/Paul_Johnson-windowsvm-20180318:

Identity added:
/c/Users/pauljohn32/.ssh/Paul_Johnson-windowsvm-20180318
(/c/Users/pauljohn32/.ssh/Paul_Johnson-windowsvm-20180318)

Again, these changes are temporary. We will make them permanent, if they work.

Testing the ssh-agent

Run an ssh function that attempts to interact with the server as the user “git”. Try the following;:

$ ssh -T git@gitlab.crmda.ku.edu
Welcome to GitLab, Paul E. Johnson!

That’s a success. We understand what went wrong and, in section “Make a Permanent Setup for
ssh-agent” below, we will explain how to make a permanent solution.

On the other hand, the problem is not fixed if you again see:

$ ssh -T git@gitlab.crmda.ku.edu
g g
git@gitlab.crmda.ku.edu’s password:

Use Ctl-c to break out of that.

Page 5 of 8

https://docs.gitlab.com/ce/ssh/README.html
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/

The “Too Many keys” Problem

If your key was uploaded correctly, and your ssh-agent is configured correctly, you may have too
many keys. Do you have several keys? SSH uses an odd sequential key checking process. Your
system offers your keys one-by-one, as if it is a drunk trying every key on the ring to open the front
door. If your custom-named key is at the end of the list of keys, the server may disconnect before
your key is tried. The server gives up asking for keys. The administrator determines how many
tries are allowed.

Here’s how to fix it. Create a file named config in the ~/.ssh folder. Put a stanza in there like
this

Host gitlab
HostName gitlab.crmda.ku.edu
IdentityFile ~/.ssh/YourName_GitLab_YYYYMMDD
KeepAlive yes
IdentitiesOnly yes

Save that file. On Linux and Macintosh, permissions on the .ssh folder should be 700 (no read-
/write/execute for the group or the other users) and the SSH engine may reject your config file. To
set permissions, run

‘$ chmod 700 config

On Windows, we notice the permissions are not adjustable from the shell, but the SSH engine does
not seem to mind.

This config file is not a supplement for running ssh-agent and ssh-add as described above. It is step
which is done in addition.

Suppose that did not fix it. Try this!

At some point, we have to say “sorry”. We recommended a custom-named key, but some problem
we don’t understand still remains. Almost certainly, if you had created a key with the default
name, this would have worked by now. Sorry again. Like the noble leader says in Animal House,
“you ’'screwed’ up. You trusted us.”

There is good news. It is not necessary to go generate a new key named id_rsa and upload it

again. Go into the ~/.ssh folder and copy the custom key parts to “id_rsa” and “id_rsa.pub ”.
Don’t alter the key files, just copy and rename them. After that, test git or “ssh -T” again. If the
ssh connection succeeds, then we know the custom-named key is the problem.

After that, it still does not work? Troubleshooting

Get some diagnostic output. Run:

$ ssh -Tvv git@gitlab.crmda.ku.edu

That will generate many lines (perhaps 150 or 200). Let us see that. We can check whether your
SSH folder, ~/.ssh, was found, whether your config file was found, and we can also see if keys were
offered.

Page 6 of 8

11

12

13

16

17

18

19

20

22

Make a Permanent Setup for ssh-agent

Holy cow! I don’t want to re-launch ssh-agent every time I open a terminal. The change can be
integrated into the login environment for the user account.

In our Linux systems, the desktop usually has some startup code that launches the ssh-agent in
the background. That’s in Gnome Startup Services in the session managers. It even remembers
the passphrases between sessions. On the Macintosh systems after Sierra, the same is true (the
ssh-agent is launched automatically and it remembers passphrases after the first use).

Adjustments in Windows can achieve the same benefits. In Windows, the user account environment
can be corrected by inserting a file in the user home directory named ~/.profile (see Auto-launching
ssh-agent on Git for Windows). We have tested this with success. We use the standard program,
with one major exception. Our custom-named key must be named. Twice! Notice lines 17 and
19 in the following.

env=~/.ssh/agent.env
agent_load_env () { test -f "$env" && . "$env" >| /dev/null ; }
agent_start () {
(umask 077; ssh-agent >| "$env")
"$env" >| /dev/null ; }
agent_load_env
agent_run_state: O=agent running w/ key;

l=agent w/o key; 2= agent not running
agent_run_state=$(ssh-add -1 >| /dev/null 2>&1; echo $7)

if [! "$SSH_AUTH_SOCK"] || [$agent_run_state = 2]; then
agent_start
ssh-add ~/.ssh/YourName_GitLab_YYYYMMDD

elif ["$SSH_AUTH_SOCK" 1 && [$agent_run_state = 1]; then

ssh-add ~/.ssh/YourName_GitLab_YYYYMMDD
fi

unset env

Start a fresh Git BASH terminal and the user passphrase for the custom key will be requested:

Enter passphrase for
/c/Users/pauljohn32/.ssh/Paul_Johnson-windowsvm-20180318:

Identity added:
/c/Users/pauljohn32/.ssh/Paul_Johnson-windowsvm-20180318
(/c/Users/pauljohn32/.ssh/Paul_Johnson-windowsvm-20180318)

That setup will ask for the passphrase every time you log in and try to use Git BASH terminal.
When new terminals are launched, the passphrase will not be requested again (until the user logs
in to start a new session). As a security feature, perhaps it is best to leave it that way. However,

Page 7 of 8

https://help.github.com/articles/working-with-ssh-key-passphrases/#platform-windows
https://help.github.com/articles/working-with-ssh-key-passphrases/#platform-windows

there may be a way to cause it to remember the passphrase between sessions. One might try SSH
Agent Helper, but we have not tried that.

For Macintosh systems, there are threads about the problem for Macintosh users, one of which we
started:

1. Macintosh Git SSH key setup

2. Mac OS X 1012: ssh-agent todes not automatically load

We’ll pin down the Mac details, but we are certain the problem can be corrected by adjusting the
user account’s environment.

Summary of this sub-section

If the server asks for a password for a user named “git”, it means that there is a configuration error
in your computer. Was the public key file uploaded without alteration? Perhaps the ssh-agent
program is not running. Did you ssh-add the custom key? If you have too many other keys in
~/.ssh folder, you need to create an SSH config file to designate which key is used with the server.
In our experience, over 5 years, this is an exhaustive list of the problems and we believe they can
all be overcome.

Page 8 of 8

https://github.com/elsteelbrain/ssh-agent-helper
https://github.com/elsteelbrain/ssh-agent-helper
https://stackoverflow.com/questions/40091879/macintosh-git-ssh-key-setup
https://github.com/lionheart/openradar-mirror/issues/15361

	Access your GitLab Account on the CRMDA Server
	Configure an SSH Key
	Upload the SSH key
	Access GitLab projects
	One Last Gotcha: The ssh-agent

