Salm: extra - Poisson variation
in dose - response study
Breslow (1984) analyses some mutagenicity assay data (shown below) on salmonella in which three plates have been processed at each dose
i
of quinoline and the number of revertant colonies of TA98 Salmonella measured. A certain dose-response curve is suggested by theory.
This is assumed to be a random effects Poisson model allowing for over-dispersion. Let x
i
be the dose on the plates
i
1,
i
2 and
i
3. Then we assume
y
ij
~ Poisson(
m
ij
)
log(
m
ij
) =
a
+
b
log(x
i
+ 10) +
g
x
i
+
l
ij
l
ij
~ Normal(0,
t
)
a , b , g , t
are given independent ``noninformative'' priors. The appropriate graph is shown
BUGS
language for salm example
model
{
for( i in 1 : doses ) {
for( j in 1 : plates ) {
y[i , j] ~ dpois(mu[i , j])
log(mu[i , j]) <- alpha + beta * log(x[i] + 10) +
gamma * x[i] + lambda[i , j]
lambda[i , j] ~ dnorm(0.0, tau)
cumulative.y[i , j] <- cumulative(y[i , j], y[i , j])
}
}
alpha ~ dnorm(0.0,1.0E-6)
beta ~ dnorm(0.0,1.0E-6)
gamma ~ dnorm(0.0,1.0E-6)
tau ~ dgamma(0.001, 0.001)
sigma <- 1 / sqrt(tau)
}
Data
( click to open )
Inits for chain 1
Inits for chain 2
( click to open )
Results
A 1000 update burn in followed by a further 10000 updates gave the parameter estimates