[lsat0]     LSAT: item response


Section 6 of the Law School Aptitude Test (LSAT) is a 5-item multiple choice test; students score 1 on each item for the correct answer and 0 otherwise, giving R = 32 possible response patterns.Boch and Lieberman (1970) present data on LSAT for N = 1000 students, part of which is shown below.


[lsat1]

The above data may be analysed using the one-parameter Rasch model (see Andersen (1980), pp.253-254; Boch and Aitkin (1981)). The probability p jk that student j responds correctly to item k is assumed to follow a logistic function parameterized by an `item difficulty' or threshold parameter a k and a latent variable q j representing the student's underlying ability. The ability parameters are assumed to have a Normal distribution in the population of students. That is:

   logit(p
jk ) = q j - a k , j = 1,...,1000; k = 1,...,5
   
   
q j ~ Normal(0, t )

The above model is equivalent to the following random effects logistic regression:
   
   logit(p
jk ) = bq j - a k , j = 1,...,1000; k = 1,...,5
   
   
q j ~ Normal(0, 1)
   
where
b corresponds to the scale parameter ( b 2 = t) of the latent ability distribution. We assume a half-normal distribution with small precision for b ; this represents vague prior information but constrains b to be positive. Standard vague normal priors are assumed for the a k 's. Note that the location of the a k 's depend upon the mean of the prior distribution for q j which we have arbitrarily fixed to be zero. Alternatively, Boch and Aitkin ensure identifiability by imposing a sum-to-zero constraint on the a k 's. Hence we calculate a k = a k - a bar to enable comparision of the BUGS posterior parameter estimates with the Boch and Aitkin marginal maximum likelihood estimates.

BUGS language for LSAT model


   model
   {
   # Calculate individual (binary) responses to each test from multinomial data
      for (j in 1 : culm[1]) {
         for (k in 1 : T) {
            r[j, k] <- response[1, k]
         }
      }
      for (i in 2 : R) {
         for (j in culm[i - 1] + 1 : culm[i]) {
            for (k in 1 : T) {
               r[j, k] <- response[i, k]
            }
         }
      }
   # Rasch model
      for (j in 1 : N) {
         for (k in 1 : T) {
            logit(p[j, k]) <- beta * theta[j] - alpha[k]
            r[j, k] ~ dbern(p[j, k])
         }
         theta[j] ~ dnorm(0, 1)
      }
   # Priors
      for (k in 1 : T) {
         alpha[k] ~ dnorm(0, 0.0001)
         a[k] <- alpha[k] - mean(alpha[])
      }
      beta ~ dflat()T(0, )
   }

Note that the data are read into
BUGS in the original multinomial format to economize on space and effort. The 5 times 1000 individual binary responses for each item and student are then created within BUGS using the index variable culm (read in from the data file), where culm[i] = cumulative number of students recording response patterns 1, 2, ..., i; i <= R.


Data     ( click to open )

Inits for chain 1       Inits for chain 2    ( click to open )
   
Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

[lsat2]