Swarm Sugar Scape as a
Starting Point

Paul E. Johnson
Dept of Political Science
University of Kansas

Prepared for Swarmfest 2005
Torino, Italy

Plan for SSS Tutorial

Modified Suzuki method:

Run/Study examples
Tinker with examples
Hope theory/framework will percolate up

Goal is to develop appreciation for model
building from the “bottom up”.

Presentation linked to Handouts

file-line numbered handouts are cited in this
presentation

sss-2.2-20050604-Handouts.tar.gz

Original Sugarscape model presented in
famous book by Epstein & Axtell, Growing
Artificial Societies (MIT Press, 19906)

Begin with Swarm Sugarscape

Step by step [0-sss-shell1.txt]

Download a “tarball” [0-001]
Unpack it with tar and gzip [0-013]
Compile with: [0-046]
make
Run with:
/SSS [0-127]

see “screenshots” sss-1.png, sss-2.png

1 |(x (O

Mode

ModelSwarm nt wealth distribution X
numaAgents I4DD Agent wealth distribution
alpha |1
400 —
T replacement |0 5: 0 {0)
maxMetaholism |4 £ 300
- (1]
max\Vision |6 =
minInitial Sugar |5 5 200
(i}
maxInitial Sugar |25 £
100 —
deathAgeMin (93535 2
deathAgeMax | 100000 o
dataﬁle|sugarspace.pgm T T T T T 17 T 17 17 T 17 T T T T 77
0 333 BE7 100 133 167 200 233 267 300
I addMevw Random#Aygent |7 wealth
——— e
N - T
N =11 » EE-FDpulatiuH over time b4
/| Population over time
drawPopulationGraph |1 440 — Im
drawWealthHistogram |1 .
display Frequency |1 _
5 i
I setParameterFile: || B |
=
o
I saveParameters: || 7 =2 7
L '
x
l L L |
[-0.05 0 0.05 0.1
fime
at .l'r'-'itll_l.tEE: over time
Agent attributes over time
— wisian
metakalizm
i)
5
=
B
25 -
| T T T T T 1
-1 0.05 0 0.05 0.1 |
fime b

:_. o [EREgh 4 E’m;l“&uarm »

E Agent wealth distribution

numaAgents I'“”'— Agent wealth distribution
alpha |1—
replacement IH—
maxMetabolism I-l—
maxVision Ih—
minlnitial Sugar I"-—

max Initial Sugar

deathAgeMin

deathfgeMax I noooo

datafile

-~
E Dbser:_f_elrSwarm

Ohserverswann

draw Population Graph I
drawWealthHistogram I
displayFrequency I

I setParameterFile ||

saveParameters:

1-|_ Sugar_Sc.ape - x
! I —
i r i a . 300 400

o

400

Study File Layout

Paired “*h” and ““m” files

“h” Is a “header file” containing:
A class declaration
A list of variables
(aka: instance variables, IVARS)
A list of methods

‘m” is the “implementation file”, where the
methods are fully written out.

Study File Layout #2

Makefile [11]

used by “make” program to manage compiling
(compile=convert text into an executable
program)

README 1]

comments from authors

Study File Layout #3

main.m 4
only file actually required in order to have a
program because it has the "main” function in
it.
The function “main” [2-011] is the one that the

system runs when you start the program. It
orchestrates everything else.

/l means “comment”
same as /* comment */

If this were written in C, it would be “main.c’

What does main do?

iInitSwarm() [2-0135]

a big, multi-purpose function called from the
Swarm library. Does much work behind the
scenes.

create observerSwarm [2-017]

which is then told to: [2-019]
buildObjects (create “things” for the simulation)
buildActions (scheduling framework)

activateln (places observer's schedule into
context)

Deciphering sss: What is your
mission?
When studying a model, remember that
every model must have
agents who can:
do “stuff’

remember information

“find” each other and/or environment and place
self in the “environment”

a way to observe/measure events in the
model

sss easy to decipher

SugarAgent class: individual agents are
instances of this class

Examine SugarAgent.h to see what kinds of
messages the SugarAgent can respond to:
move about
live & die: take sugar, metabolize sugar
“get” info on status (for observational purposes)
drawSelf on the indicated “raster”

Little Wrinkles in Sugar Agent

X,y declared as public [3-025]

allows other objects who are in contact with a
sugar agent to “directly read” the agent's
location with this syntax:

X_coord = agent->x;
y _coord = agent->y;

relatively rarely used in Swarm models
because it ignores “encapsulation”

could instead add getX and getY methods
for SugarAgents

Little Wrinkles in Sugar Agent #2

Note SugarAgents don't directly Kill
themselves [4-034]

They ask the modelSwarm to kill them

That's

not intuitive
method to avoid runtime crashes

allowing “recycling” of objects

SugarSpace

SugarSpace is a “family” of grids
agentGrid: lattice of “hangers” where agents
place themselves [5-033,6-082]
sugar: a lattice of integer values [5-026,6-032]
sugarMax: a lattice of maximum allowed sugar
values[5-030,6-040]
Agents repeatedly ask SugarSpace to tell
them if (x,y) Is
occupied [5-060]
full of sugar [5-051]

Sugar Agents don't directly

Interact
-step{ }; [4-0135]
find best open spot
go there, take the sugar

calculate metabolism
consider dying (or not!)

Interaction is indirect, via
search for open spaces and
values in the sugar grid.

Little Wrinkles #1

The world is a flat square

Agents should have to worry about
stepping off edge [0, xsize-1] x [0, ysize-1]

Agents don't worry, however.

The SugarSpace worries for them. It
translates all requests for information about
(X,y) to be “in bounds”.

Work done by “xnorm:” and “ynorm:”[5-070]

Little Wrinkles #2

How to initialize sugar values?
text file: sugarspace.pgm [6-038]
hdf5 file: sss.hdf [6-050]

As README explains, user can choose
which format by a C compiler flag [1-084]

Little Wrinkles #3

See how agents move in the SugarSpace?
Agent tells the space it wants to move to

(1,1)

[sugarSpace move: self toX: 1 Y: 1];
Watch what the "moveAgent:toX:Y:”
method in SugarSpace does: [6-177]
figures out where agent is now
puts “nil” on agent's current position
adds agent at desired position

Hierarchy

Swarm conceptualized as a “bottom up”
modeling system

Agents are lowest level, most
“autonomous” elements

ModelSwarm is “intermediate level”
causes agents to be created
causes environment to be created
makes agents aware of environment
schedules agent & environment actions

Frequently used method names

Optional but recommended:
- buildObjects;
- buildActions;

Mandatory!
- activateln:

Special ltems Worth Noting

Agents are created and stored into a
“linked list” object:

agentList = [List create: self];

Could create & add agents:
agent = [self addNewRandomAgent];
[agentList addLast: agent],

-addNewRandomAgent creates agents and
puts them into the agentGrid in
SugarSpace

Wrinkle: Overwrite Warnings

Swarm's Grid2d can hold one object per
cell.

If one tries to add a second object to a cell,
the cell “loses” the first and issues a
warning to the programmer

addNewRandomAgent turns off warnings to
place agents

harmless?

buildActions

ActionGroup: things that should happen in
a particular order

Schedule: object that can link future times
with collections and messages (abstract
enough?)

sss has "modelActions”, an ActionGroup
Put modelActions into the modelSchedule

activateln: method ties modelSchedule into
“global time sequence”, meshing with
observer.

About Selectors

Difficult concept!

Its a “symbolic handle” for a method that an
agent can carry out

Needed in Swarm because of Activity
framework.

Associate objects with selectors to
schedule future events.

Integral part of “run-time” (dynamic) binding

Observer Swarm

Controls the graphical interface
Creates & advances displays

Raster: grid of dots

agentDisplay uses Object2dDisplay tools to
collect info from agents

setDisplayWidget: tells agentDisplay that, when
it “displays”, it should do so on the Raster

Raster does not show on screen until
“drawSelf” is called.

Graphs: 3 step sequence

EZGraph class can create graph window

User must add sequences to be graphed
createSequence:withFeedFrom:andSelector:
createAverageSequence....
createMovingAverageSequence....

Schedule must include a “step” command
to update the graph

Integrate a Predator

SugarAgents may be “killed” by agents
from a Predator class

Handout: Transition-2.2-to-2.3.txt
Output from diff program

+ new lines
l edited lines

IE|_ R | X ’E MI:IIjE']:-E:I_.-._IEJT"FI'I x 555-2.3-1

Start I E Fredatar 1 lls

o numéAgents 400 Predator Kills
p numPredators |2

1.1 5
— Predator 1
alpha |1 |
Hext I Precator 2
replacement |0

Save max Metabolism |4

kills
|

maxVision |6
Quit

minlnitial Sugar |5

maxInitial Sugar |25
deathAgeMin 33335 g

deathAgeMax | 100000 T 7T T T
-0.1 -0.05 a 0.0s 0.1
time

datafile |sugarspace.pgm

I addNew RandomAgent |

E F'l:l;:n_l.l.at.il;ﬁ. owver time X

Ty ETSWarm

Population over time
draw PopulationGraph |1]

!
X
drawWealthHistogram |1 20
display Frequency |1 :
!
x

s

[

[==)
]

population

I setParameterFile: ||
I saveParameters: ||

380 H

T T T T T T |
-0 -0.05 1] 0.05 01
fime

Agent attributes over time

3.5 - — igion |
metabalizm

attribute
()
|

2.5 -

-01 -0.05 o 0.0s 0.1
time

_. EEEER] | X ’E MI:II:i_E_]:-E:l.-'-JEJ'l"I'I'I
Predator Kills

numagents |400 Predator Kills
numPredators |2

alpha I.I —— Precatar 1
Predatar 2
replacement |0

max Metabolism |4

maxVision |B

minlnitial Sugar |5

maxInitial Sugar |25
deathAgeMin |33555
deathAgeMax |100000
datafile |sugarspace.pgm

I addHewRandomAgent | —

Population over time

I — population §

=
=
=
o
=
=
=
=

Agent aftributes over time

metabalizm

aftribute

Easy (?) steps :)

Add Predator.o to Makefile

cp SugarAgent.[nm] Predator.[hm]
Edit Predator.h

Edit Predator.m

Edit ModelSwarm to create Predators and
schedule their actions.

Edit SugarSpace to create predator grid
Edit ObserverSwarm to draw predators

Predator Step method [12-132]

rename move ToBestOpenSpot to “move”
returns a “targetAgent” [12-160]
Take that agent's sugar [12-139]

Tell ModelSwarm and SugarSpace to slate
that targetAgent for death [12-149]

Hunting SugarAgents

Predator is able to search in the agentGrid
by asking SugarSpace for agents

-move method scans “up” and “down”,
never diagonal [12-184]

agent with highest sugar value is taken.

Caution: Predators move carelessly,
possibly stepping on each other in
predatorGrid.

Model Swarm

new IVARS:
(int)numPredators; [12-4406]
Id <List> predatorList [12-464

buildObjects adds new for loop creating
predators [12-538]

new method called to create Predators
-addPredator; [12-573]

ObserverSwarm

predatorDisplay: tracks positions of
predators [12-6606]

Note RASTER showing predator positions
with “pixmaps”

Right/Left button selects agent-types
New killGraph of predators [12-702]

Laments

No BatchSwarm class
No command-line option processing

No data output that would support Batch
Swarm runs

Separate Parameters class would make
work much easier

