
California Individual-based Fish Simulation System

Stream Trout Model
User Guide and Software Documentation

VERSION 2
LITTLE JONES CREEK CUTTHROAT MODEL

Last updated: March, 2001

Prepared by:

Steve Railsback
Lang, Railsback & Associates

Arcata CA

Steve Jackson
McKinleyville CA

Prepared for:

US Forest Service, Redwood Sciences Laboratory

CIFSS The Swarm Project
http://math.humboldt.edu/~simsys www.swarm.org

ii

iii

Table of Contents
I. INTRODUCTION ... 1

I.A. DOCUMENT OBJECTIVES ... 1

I.B. SOFTWARE LICENSE AND CONDITIONS .. 1

I.C. DOCUMENT REVISION HISTORY... 2

II. CIFSS PHILOSOPHY .. 3

II.A. CIFSS CONVENTIONS... 3

II.A.1. Dates ... 3

III. TROUT MODEL SOFTWARE OVERVIEW.. 4

III.A. OVERVIEW.. 4

IV. USER GUIDANCE: OVERVIEW ... 5

IV.A. SOFTWARE INSTALLATION AND EXECUTION ... 5

V. FORMULATION AND INPUT TESTING AND REVISION... 5

VI. SOURCE CODE REVISION ... 6

VI.A. CUSTOMIZING THE MAKEFILE ... 6

VI.B. CHANGING GRAPHICS AND USER INTERFACES.. 6

VI.B.1. Graphs... 6

VI.C. AUTOMATED EXPERIMENTS.. 6

VII. SETUP, PARAMETER, AND DATA FILES... 7

VII.A. SETUP FILES.. 7

VII.A.1. Experiment Swarm setup file .. 7

VII.A.2. Model Swarm setup file .. 9

VII.B. DATA FILES ... 13

VII.B.1. Hydraulic data (depth and velocity lookup table) .. 13

VII.B.2. Time series habitat data ... 13

VII.B.3. Barrier data.. 14

VIII. SOFTWARE INSTALLATION AND EXECUTION.. 15

iv

IX. OUTPUT FILES AND OUTPUT PROCESSING .. 16

IX.A. FISH OUTPUT FILE... 16

IX.B. FISH MORTALITY FILE .. 16

IX.C. REDD OUTPUT FILE... 16

IX.D. REDD MORTALITY FILE .. 16

IX.E. DEPTH AND VELOCITY AVAILABILITY FILES ... 17

IX.F. DEPTH AND VELOCITY USE FILES... 17

IX.G. CELL-BASED FISH INFORMATION .. 17

X. SOFTWARE TESTING.. 19

XI. CONDUCTING MODELING EXPERIMENTS.. 20

XII. SOURCE CODE DESCRIPTION AND DIRECTORY.. 21

XII.A. CODE DIRECTORY... 21

XII.A.1. ExperSwarm ... 21

XII.A.2. ScenarioIterator ... 22

XII.A.3. TroutObserverSwarm ... 22

XII.A.4. TroutModelSwarm.. 23

XII.A.5. HabitatSpace .. 26

XII.A.6. Cell ... 29

XII.A.7. Trout ... 32

XII.A.8. Species1.. 36

XII.A.9. SurvivalProb... 36

XII.A.10. Redd.. 37

XII.A.11. Barrier.. 38

XII.A.12. FileInput ... 38

XII.A.13. StationObject .. 38

XII.A.14. TimeWrapper.. 39

XII.A.15. Logistic ... 40

v

XIII. RESEARCH AND DEVELOPMENT PRIORITIES .. 42

XIV. QUALITY CONTROL DOCUMENTATION ... 43

XV. REFERENCES.. 45

1

I. Introduction

I.A. Document Objectives
This report provides user guidance and program documentation for the second stream trout
model developed with the California Individual-based Fish Simulation System (CIFSS), a
cutthroat trout model developed for Little Jones Creek, California. The formulation of this model
is documented by Railsback and Harvey (in prep.).

Software for the first CIFSS trout model was fully documented in a report prepared for the
Electric Power Research Institute (EPRI 1999). To avoid redundancy, this report documents only
the significant changes in software implemented for the Little Jones Creek model. Therefore, full
documentation of this Version 2 of the stream trout model software is provided by both this
report and the EPRI (1999) report. This report retains the same major section headings, but
contains text only to describe changes since Version 1.

This document accurately reflects versions of the model archived in March, 2001.

I.B. Software License and Conditions
Swarm is distributed under the Library GNU General Public License as published by the Free
Software Foundation. The CIFSS software is developed and distributed under the GNU General
Public License as published by the Free Software Foundation. A full copy of the license is
included with the software. Various versions of the software are copyrighted by their sponsors.

Under the terms of the GNU license, distribution of the software is controlled by its copyrighter;
proprietary versions of the software can be produced and sold or otherwise distributed. However,
anyone who receives a copy of the executable code has the right to obtain and modify the source
code.

The CIFSS codes are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

2

I.C. Document Revision History
Date Author Changes Made Basis

5/1998 GR Original draft. G. Ropella’s documentation for
prototype.

8/16/1999 SFR, SJ Version 1 completed. Version 1 of model software and
formulation.

3/17/2000
4/14/2000

SFR, SJ Version 2 changes. Version 2 of software; cutthroat
model formulation.

6/7/2000 SFR Updates for new outputs: habitat
availability and use, summarized
mortality file.

Allow observation of habitat
preferences.

1/18/2001 SFR New outputs: fish density by cell,
summarized redd mortality,
additional age class.

Facilitate a variety of model
experiments.

3/1/2001 SFR Minor updates and cleanup. Preparation for archiving with V. 2
of code.

3

II. CIFSS Philosophy

II.A. CIFSS Conventions
One change in conventions was made in Version 2, how date values are input and handled.

II.A.1. Dates
Dates are no longer specified with the year and Julian day. Instead, dates are input in a standard
“MM/DD/YYYY” format, and converted by the software to an internal C date format (the
number of seconds since the start of 1970). Examples of this format are provided for input files
(Sect. VII.A.2).

Input specifying a day of the year (e.g., the day on which spawning season starts) are now in the
“MM/DD” format, e.g., 5/15 for May 15th.

It no longer makes any difference if input data are in calendar or water years; the true calendar
date must be used for all input.

4

III. Trout Model Software Overview

III.A. Overview
In Version 2, the experiment swarm and batch swarm are fully implemented, so the following
model organization is now completely functional.

ObserverSwarm BatchSwarm

Predation Starvation (variable #
of risk types)

MortalityRisks

Cell

HabitatSpace

BrownTrout

RainbowTrout

(variable #
of species)

Fish

BrownTroutRedds

RainbowTroutRedds

(variable #
of species)

Redds

BrownTroutParams

RainbowTroutParams

etc.

ParameterZone

TroutModelSwarm

ExperimentSwarm

Main

(Note that while Version 2 of the trout model is parameterized as a single-species cutthroat trout
model, the software can still be used for multi-species models.)

5

IV. User Guidance: Overview

IV.A. Software Installation and Execution
The code is now fully compatible with Version 2.0.1 and Version 2.1.1 of Swarm. Swarm no
longer requires the Makefile to be checked and possibly modified when a code is installed on a
computer; the Makefile automatically finds the Swarm file necessary to compile the code.

V. Formulation and Input Testing and Revision
(No changes since Version 1.)

6

VI. Source Code Revision

VI.A. Customizing the Makefile
Swarm no longer requires the user to edit the Makefile to provide the Swarm home directory.
Therefore, users should normally be able to install and compile the trout model software with no
changes to the Makefile or other source code files.

VI.B. Changing Graphics and User Interfaces

VI.B.1. Graphs
The code file TroutObserverSwarm.m now contains a method –drop that closes graphic
objects at the end of each simulation. This method is necessary for using the Experiment Swarm
(which generates multiple model runs) in graphics mode. If new graphs are added to the model,
new code to drop the models must be added to the -drop method.

VI.C. Automated Experiments
The Experiment Swarm for automating model experiments is now implemented. The Experiment
Swarm can (a) produce scenario simulations in which the values of parameters or variables are
varied, and (b) replicates of each scenario, which vary only by the random number sequences.
Currently, experiments are completely controlled by information in a setup file (Sect. VII.A.1).
More sophisticated experiments that, for example, calculate new parameter values from the
results of previous simulations, could be programmed in the Experiment Swarm.

7

VII. Setup, Parameter, and Data Files

VII.A. Setup Files
The Experiment Swarm setup file is new.

VII.A.1. Experiment Swarm setup file
This file must be named Experiment.Setup. It contains information used by the Experiment
Swarm, which executes multiple model runs (Sect. VI.C). The Experiment Swarm setup file
controls both (a) one or more scenarios, in which parameter or variable values are changed, and
(b) one or more replicates of each scenario, replicates being separate simulations differing only
in the random number sequence used. Setting up scenarios involves specifying which parameter
to vary among scenarios, and providing parameter values for each scenario. The same number of
replicate model runs are generated for each scenario.

Replicate model runs are generated by multiplying the random number seed (provided in the
Model Swarm setup file; Sect. VII.A.2) by the replicate number. For example, if the random
number seed is 2001, the first replicate run initializes the random number generator with the seed
2001, the second replicate initializes the generator with seed 4002, and the third replicate uses
seed 6003.

This setup file starts with the following blocks of text. Comments can be included as lines
starting with the character #.

• Three header lines, not used by the computer. These can be up to 200 characters long.

• A blank line

• Two lines on which (a) the number of scenarios and (b) the number of replicates for each
scenario are specified. If the number of scenarios is specified as zero, then the Experiment
Swarm makes no changes to parameter values and only conducts the specified number of
replicates.

• A blank line

• Two line that provide the variable name and class to which the code sends the current
scenario count, during model execution. This should normally not be changed.

• A blank line

• Two line that provide the variable name and class to which the code sends the current
replicate count. This should normally not be changed.

• A blank line

8

Following these initial blocks of text, the file contains one or more additional blocks, which each
specify a model parameter to be varied among scenarios and the value it has each scenario. These
blocks contain the following lines, and are separated by blank lines.

• The word “ClassName” followed by the name of the class in which the parameter value is
defined. “Class” refers to the object-oriented software structure in which each object in the
model is an instance of a particular class. The major classes are shown in the figure in Sect.
III.A. If necessary, the class for a particular parameter, and the parameter’s value type, can be
found by searching the code’s header (.h) files.

• The word “ParamName” followed by the name of the parameter to be varied.

• The word “ValueType” followed by the kind of value that the parameter contains. The value
type must be one of the types defined below.

• The word “Value” followed by the parameter’s value for the first scenario. This line is
repeated for the second and following scenarios.

The “ValueType” field must contain one of the following words.

• filename: the parameter is the name of an input file; the parameter values are names of
different input files to be used in different scenarios).

• date: the parameter is a date in MM/DD/YYYY format.

• int: the parameter is an integer.

• bool: the parameter is a boolean variable, with a value of either YES or NO (these values
must be all upper-case, following computer science convention for boolean variables).

• float: the parameter is in floating point format.

• double: the parameter is in double-precision floating point format.

The following is an example Experiment Swarm setup file.

Experiment setup file
created Jan 25 2000
3rd of 3 header lines

numberOfScenarios 2
numberOfReplicates 5

sendScenarioCountToParam: scenario
inClass: TroutModelSwarm

sendReplicateCountToParam: replicate
inClass: TroutModelSwarm

ClassName TroutModelSwarm

9

ParamName appendFiles
ValueType BOOL
Value YES
Value YES

ClassName TroutBatchSwarm
ParamName modelSetupFile
ValueType filename
Value Model1.Setup
Value Model2.Setup

ClassName TroutModelSwarm
ParamName flowFile
ValueType filename
Value LJCFlowScen1.Data
Value LJCFlowScen2.Data

#ClassName TroutModelSwarm
#ParamName runStartDate
#ValueType date
#Value 1/1/2000
#Value 1/1/2000

ClassName FishParams
ParamName fishSpawnProb
ValueType float
Value 0.9
Value 0.5

VII.A.2. Model Swarm setup file
The Model Swarm setup file Model.Setup has been modified to accommodate the new ability
of Version 2 to read multiple hydraulic data files (Sect. VII.B.1) and to provide the name of the
new barrier data file (Sect. VII.B.3).

Instead of providing the parameter hydraulicsFile with one hydraulic data file name:

hydraulicsFile LJCLowHyd.Data

the user now specifies up to five separate hydraulic files. These have parameter names
hydraulicsFile1, hydraulicsFile2, etc. The file Model.Setup now typically has
lines such as these.

hydraulicsFile1 LJCLowHyd1.Data
hydraulicsFile2 LJCLowHyd2.Data
hydraulicsFile3 LJCLowHyd3.Data
hydraulicsFile4 LJCLowHyd4.Data

The Model Swarm setup file now must also include the parameter barrierFile and its value,
which is the name of a barrier data file (Sect. VII.B.3). This file must exist even if there are no
barriers in the reach being modeled.

Dates in Model.Setup are now specified in MM/DD/YYYY format. For example, instead of
separate variables for the model start year and Julian date, there is one variable for model start
date.

10

An example Model.Setup file is provided, with explanations below.

#
Currently the file names should be 35 characters or less
#

@begin

randGenSeed 32461
numberOfSpecies 1
habParamFile LJCHab.Params
cellDataFile LJCLowCell.Data
flowFile SeasFlow100.Data
temperatureFile SeasTemp100.Data
turbidityFile SeasTurbid.Data
barrierFile LJCLowBarrier.Data

hydraulicsFile1 LJCLowHyd1.Data
hydraulicsFile2 LJCLowHyd2.Data
hydraulicsFile3 LJCLowHyd3.Data
hydraulicsFile4 LJCLowHyd4.Data

runStartDate 7/1/2000
runEndDate 12/31/2000
popInitDate 7/19/1998
fishOutputFile LJCFishCal.Out
fishMortalityFile LJCDeadFishCal.Out
reddMortalityFile LJCReddMort.Out
reddOutputFile LJCRedds.Out

tagFishColor orange

fileOutputFrequency 5
appendFiles 0

depthBinWidth 10
velocityBinWidth 10
depthMaxBin 150
velocityMaxBin 100

depthAvailabilityFileName depthAvailability.Out
velocityAvailabilityFileName velocityAvailability.Out

fishDepthUseFileName DepthUse.Out
fishVelocityUseFileName VelocityUse.Out

@end

Model swarm setup file variables and meeting.

Variable Name Meaning

randGenSeed Sets the random number generator seed (integer).
Changing the seed creates a new sequence of random
numbers. Not changing the random seed produces the
same sequence of random numbers so the exact same

11

model run can be repeated.

numberOfSpecies Specifies the number of fish species in the model.

habParamFile Provides the habitat parameter file name. The file name
convention is *Hab.Param where “*”defines the site
(e.g., TuleHab.Param).

cellDataFile Specifies the cell geometry and data file name. The
convention for this file name is *Cell.Data where “*”
defines the site.

flowFile Specifies the name of the file with daily flow data. The
convention for this file name is *Flow.Data where “*”
defines the site.

temperatureFile Specifies the name of the file with daily temperature data.
The convention for this file name is *Temp.Data
where “*” defines the site.

turbidityFile Specifies the name of the file with daily turbidity data.
The convention for this file name is *Turbid.Data
where “*” defines the site.

barrierFile Specifies the name of the file with locations of barriers to
upstream movement. The filename convention is
*Barrier.Data.

hydraulicsFile1
hydraulicsFile2 …

Specifies the names of the files with the depth and
velocity lookup data. (These files are created by
RHABSIM.) The convention for this file name is
Hyd#.Data where “” defines the site and “#” is the
hydraulics file number (1-5).

runStartDate Date that the simulation starts.

runEndDate Date that the simulation ends.

popInitDate The date for the population data used to initialize the
model. This date must exist in the population
initialization files, but need not be the same as the model
start date.

fishOutputFile

fishMortalityFile

Provides names for file output. See Sect. IX for file
descriptions.

12

reddOutputFile

reddMortalityFile

fileOutputFrequency Sets the number of time steps that execute before file
output is written. For example, if the value is 7, then
output is written once per week. (Note that the code does
not average output over the time period between outputs.)

This variable is in the Model Swarm instead of the
Observer Swarm so it can be used in batch mode.

appendFiles A boolean variable determining whether output files are
appended vs. overwritten when each new replicate
simulation starts. The value must be 0 or 1 (not YES or
NO, even though YES and NO are used for this parameter
in the Experiment.Setup file). A value of 1 means files
are appended instead of overwritten. Normally this
parameter should be set to 0 so that a new version of the
files is created each time the model is started. The
Experiment Swarm setup file should be set so
appendFiles is YES for multiple model runs (Sect.
VII.A.1). (This variable can be left out of Model.Setup,
which is generally best.)

tagFishColor The color that fish turn when “tagged” via probes in the
animation window. The value can be the name of any
common color.

depthBinWidth The width (cm) of depth histogram bins used in habitat
and fish habitat use file output (see Sect. IX concerning
this output.)

velocityBinWidth The width (cm/s) of velocity histogram bins used in file
output.

depthMaxBin The maximum depth in the histogram bins used in habitat
and fish habitat use file output (see Sect. IX concerning
this output.)

velocityMaxBin The maximum velocity in the histogram bins for file
output.

depthAvailabilityFile-
Name

The name of the file for depth habitat availability output
(see Sect. IX concerning this output.)

13

velocityAvailabilityFile
Name

The name of the file for velocity habitat availability
output (see Sect. IX concerning this output.)

fishDepthUseFileName The name of the file for depth fish habitat use output (see
Sect. IX concerning this output.)

fishVelocityUseFileName The name of the file for velocity fish habitat use output
(see Sect. IX concerning this output.)

VII.B. Data files
Changes to data file input include eliminating the need to edit RHABSIM hydraulic data files and
use of a new date format.

VII.B.1. Hydraulic data (depth and velocity lookup table)
The hydraulic data input file is generated in the RHABSIM river habitat simulation software.
Multiple RHABSIM output files are typically required to defined the depth and velocity lookup
data, because RHABSIM typically is calibrated differently for different ranges of flow. Version 1
of the CIFSS trout model required the user to import the RHABSIM files into a spreadsheet to
combine them, then save the spreadsheet in a specific format. In this version, multiple
RHABSIM files are read by the trout model software.

The software assumes that each RHABSIM file covers a non-overlapping range of stream flows.
The first file (hydraulicsFile1) covers the lowest flows, and each succeeding file has the
next higher range of flows.

The RHABSIM files are used without change. They are generated in RHABSIM using the
“Velocity Output File” facility.

VII.B.2. Time series habitat data
Time series data are now input using the MM/DD/YYYY format for dates. Instead of two
columns for year and Julian date, there is now one column for the date, followed by another
column with the input value (flow, temperature, etc.). The header lines can be up to 200
characters long.

The following is part of a new daily flow input file.

Flow (CMS) at Little Jones Lower Site
Estimated from JED Gage Provided by JW

Year Flow
1/1/1998 0.90
1/2/1998 1.78
1/3/1998 2.24
1/4/1998 4.19

14

1/5/1998 2.62
1/6/1998 2.06
1/7/1998 2.23
1/8/1998 2.15
1/9/1998 1.81

1/10/1998 1.69
1/11/1998 3.28
1/12/1998 5.29

There is also now a daily input file for turbidity as well as flow and temperature.

VII.B.3. Barrier data
Version 2 of the CIFSS trout model includes simulation of barriers to upstream movement. The
model formulation assumes fish can move downstream over barriers but cannot move upstream
over them. The locations of barriers are depicted only by their distance upstream of the
downstream end of the modeled reach, in meters. Multiplying this location by 100 converts it
into an X coordinate (cm) in the model’s internal coordinate system.

Barriers are input to the model by simply including their location in the barrier input data file.
The name of this file is provided in the Model.Setup file (Sect. VII.A.2), and typically is
Barrier.Data, where “” is the site name. This file must exist even if there are no barriers in the
reach being modeled.

The barrier data file includes:

• Three header lines that are ignored by the computer.

• One additional line for each barrier. The line contains only one value, the barrier’s location
measured as the distance (m) between the barrier and the downstream end of the reach. If
there are no barriers, there are none of these lines.

The following example barrier data file includes three barriers to upstream movement.

Barrier data for Little Jones Creek, tributary site
File made up by SKJ, 3/7/00
Barrier X, in meters
60.9
84.9
147.5

15

VIII. Software Installation and Execution
Version 2 includes only a few minor changes in how the code is executed.

First, if the Experiment Swarm is used to generate multiple model runs in graphics mode, the
first model runs starts as previously: the Start button on the main control panel is hit twice,
then a subswarm control panel opens to control the actual model run. After each model run
finishes, control reverts to the main control panel. The user must hit Start again to initiate the
next model run.

Second, the software now operates in batch mode if selected. Batch mode conducts the model
simulations without the graphical user interfaces, making execution faster and eliminating the
need to manually start each simulation from the control panel. This mode is especially useful
when conducting multiple long simulations.

Batch mode is selected by starting the model with the argument “-b” (or “--batch”):

./Cutthroat.exe -b

or:

./ Cutthroat.exe --batch

The code prints a message notifying the user when the simulation has been completed and output
files written.

16

IX. Output Files and Output Processing
File output has been enhanced in Version 2 to allow analysis of multiple scenarios and replicates
and to facilitate analysis of habitat selection by fish. The section describes the seven output files
created by all model runs, and an additional file that can be switched on when needed.

Each of these files is updated with a frequency determined by the model setup parameter
fileOutputFrequency (Sect. VII.A.2). The model setup parameter appendFiles
determines whether they are overwritten each model run or appended.

All output files provide information on the model status (current scenario number, replicate
number, date, and sometimes flow and temperature) at the time each output line is written.

IX.A. Fish Output File
This file provides a summary of the fish population status. It provides the abundance (number of
live fish) and mean length of fish. Results are broken out by species and age class.

IX.B. Fish Mortality File
The mortality file provides the cumulative number of fish that have died, by species and age
class. On each output date, the file reports the total number of fish that have died, since the start
of the model run, of each mortality source.

IX.C. Redd Output File
This new output file provides summary data on redds. It was designed to allow basic redd
characteristics to be easily imported into statistical software and analyzed.

The file name is specified via the model setup parameter reddOutputFile. The file includes
one line of output for each redd created. The line includes the redd’s location (transect and cell
number), the date the redd was created, the initial number of eggs in the redd, the date the redd
became empty, the number of eggs that died due to each mortality source, and the number of fry
emerging from the redd.

IX.D. Redd Mortality File
This file provides a separate mortality report for each redd. The report starts with header
information reporting the redd location, creation date, and initial number of eggs. For each date
of the redd’s existence, the file reports the number of eggs dying of each redd mortality source.

This file is created at the end of a model run, and will not be written if the model is stopped
before reaching its end date.

Output of this file can be prevented, if desired, by commenting out the statement

#define REDD_REPORT

17

that is near the top of the file TroutModelSwarm.h, then re-compiling the code.

IX.E. Depth and Velocity Availability Files
These files describe the availability of habitat as defined by cell depth and velocity, in a
histogram-like format. The depth and velocity availability and use files (below) are provided so
that habitat selection measures can be evaluated. For example, these outputs can be used to
develop the equivalent of the Habitat Suitability Criteria used in PHABSIM.

The model setup variables depthBinWidth, velocityBinWidth, depthMaxBin, and
velocityMaxBin (Sect. VII.A.2) define the histogram bins. The output files provide the river
surface area in each depth and velocity bin. Any area with depth (velocity) greater than the value
of depthMaxBin (velocityMaxBin) is provided in a last bin. Output is labeled by bin.

Bins refer to depths up to and including the depth used to label the bin. For example, if the value
of velocityBinWidth is 10 cm/s and the value of velocityMaxBin is 100 cm/s, then the
software creates 11 bins. The first is labeled 10 and provides the stream area with velocity
between zero and 10 cm/s. The second bin is labeled 20 and provides the stream area with
velocity greater than 10 and less than or equal to 20 cm/s. The last bin (labeled “>100”) provides
the stream area with velocity greater than 100 cm/s.

IX.F. Depth and Velocity Use Files
These files describe the depth and velocity of habitat actually used by fish. They use the same
histogram format and bins as the habitat availability output files. Instead of providing the stream
area in each bin, these files provide the number of fish using habitat of each depth or velocity
range. Separate values are provided for each species and age class of fish.

IX.G. Cell-based Fish Information
A new optional output file provides information on how many fish of each age class use each
habitat cell, along with habitat data for the cell. This file was designed for experiments that
examine habitat selection.

This file is turned on by including this line in the code file HabitatSpace.h:

#define CELL_FISH_INFO

(Normally, this line is present in HabitatSpace.h but de-activated by turning it into a
comment:

// #define CELL_FISH_INFO

.) The code must be re-compiled after making this change.

The cell-based fish output file is always named CellFishInfo.Out. It includes one line for
each cell, for each output date. Each line includes the date; transect and cell numbers; the cell’s

18

area, depth, velocity, distance to hiding cover, and fraction with velocity shelters (all with
distance units of cm; cell area is in cm2); and the number of fish in the cell, for each age class.

19

X. Software Testing
One new software testing facility has been added: a set of debugging and testing outputs that can
easily be turned on and off. These were designed to demonstrate that variables controlled by the
Experiment Swarm (Sect. VI.C) have the correct value during simulations. These debugging
outputs are controlled via a code file named DEBUGFLAGS.h.

First, the user edits DEBUGFLAGS.h to select which debug outputs are desired. This file
contains a number of #define statements that each turn on a set of debugging print statements.
Comments in the file describe what objects and actions each debug output addresses. These
#define statements are normally commented out (preceded by “//”, which tells the compiler to
ignore the rest of the line). By removing the “//” comment flag, a #define statement is
activated.

After editing DEBUGFLAGS.h the code must be re-compiled (by typing “Make” in the Swarm
terminal window). The model can then be executed and the debug print statements will write to
the terminal window. The debug output can be captured to a file by redirecting the model’s
standard output: instead of starting the model by typing

./trout.exe

start it by typing

./trout.exe > debug.out

to capture the debug output in a file called (for example) debug.out.

The debug output can be voluminous if more than a few fish are simulated. We recommend
starting the model with very few fish if debug output is activated.

Following is the DEBUGFLAGS.h file.

//
// The following define flags used
// in various places
// This creates a lot of output
// if there are many fish

//
//#define DEBUG_TROUT_FISHPARAMS
//
// The following define flags are used
// in Trout.m
//
//#define DEBUG_SPAWN
//#define DEBUG_MOVE
//#define DEBUG_GROW
//#define DEBUG_FEEDING

//
// The following define flags used
// in Redd.m

20

//
//#define DEBUG_REDD
//#define DEBUG_REDD_SCOUR
//#define DEBUG_REDD_DEWATER
//#define DEBUG_REDD_LOTEMP
//#define DEBUG_REDD_HITEMP

//
// The following define the debug flags used
// each of the Survival Probability objects
//
// These flags must be defined when checking
// the values used when the survival probabilities
// create their logistic functions
//

//#define DEBUG_HT_FISHPARAMS
//#define DEBUG_AQUATICPRED_FISHPARAMS
//#define DEBUG_POORCOND_FISHPARAMS
//
// The next one prints each time a fish accesses
// spawning surv prob see SpawningSP.m
//
//#define DEBUG_SPAWNING_FISHPARAMS
//#define DEBUG_STRANDING_FISHPARAMS
//#define DEBUG_TERRPRED_FISHPARAMS
//#define DEBUG_VELOCITY_FISHPARAMS

[Software testing issues and methods discussed in this section are also discussed by Ropella et al.
(in prep.).]

XI. Conducting Modeling Experiments
(No changes.)

21

XII. Source Code Description and Directory
This section provides an updated directory of the trout model’s code files and methods.

XII.A. Code Directory

XII.A.1. ExperSwarm
This file contains code for two objects: ParameterManager and ExperSwarm. These objects
provide the Experiment Swarm that creates and starts individual model runs with different
parameter values. For each model run, a new copy of the Trout Observer and Model swarms
(referred to in the code as a subswarm) is created, given values for the parameters being varied,
and executed.

Method Function

initializeParameters
(ParameterManager)

Reads the Experiment.Setup file and creates a list of parameters to
be varied and determines their parameter type. Identifies the number
of replicates for each scenario. Creates a ScenarioIterator object and
gives it the list of parameters and number of replicates.

initializeModelFor
(ParameterManager)

Tells a new subswarm what iteration it is, calls the ScenarioIterator’s
nextControlSetOnObject method.

buildObjects
(ExperSwarm)

Creates and initializes the ParameterManager. Creates the subswarm
control panel.

buildActions Contains the Experiment Swarm schedule: set up model, build
model, run model, check to stop, drop model.

setupModel Creates a new subswarm (TroutObserverSwarm) and tells the
parameter manager to initialize it. Indexes through all the
subswarm’s objects and finds objects belonging to the class for
which variables are to be altered (defined in
Experiment.Setup); for each such object, calls
initializeModelFor to give the object its new parameter
value.

buildModel Tells the initialized subswarm to execute its buildObjects method.

runModel Executes the subswarm and returns control to the Experiment Swarm
when the model run is finished.

dropModel Closes the subswarm and drops it (removes it from memory).

22

checkToStop Closes the Experiment Swarm when all model runs are done.

XII.A.2. ScenarioIterator
This class provides an object used by the Experiment Swarm to control model runs.

Method Function

appendToIterSet
-Param

Creates lists of the parameters to be varied for each class of model object,
along with the type of the parameters (floating, integer, boolean, file name,
etc.) and the parameter values for each scenario. These lists are contained
in a Swarm map collection.

canWeGoAgain Keeps track of how many replicates have been completed for each scenario,
and how many scenarios have been completed. Determines whether more
model runs are needed.

nextControlSet-
OnObject

Changes the parameter values of an object for each model run. Reads the
map of parameters and values, opens a probe to the object, and gives it the
correct parameter value.

sendScenario-
CountToParam

sendReplicate-
CountToParam

Uses a probe to send the current scenario and replicate counts to the
parameter and class specified by the user in the Experiment Swarm setup
file. These are used to tell the current model swarm which scenario and
replicate it is so these values can be included in output files.

XII.A.3. TroutObserverSwarm
The TroutObserverSwarm objects have two main functions. First, they set up all the
observeration tools: animation, graphs, and probes. Second, they start and stop the simulations.
Methods in the Observer Swarm generally run once when a model run is started, or execute at the
end of each time step to display graphical interfaces.

Method Function

update Deletes and re-draws the animation raster and graphs each time step. This
method needs to be edited when graphs and rasters are added or dropped.

buildActions Contains the display schedule. Implements the display frequency
parameter. Includes code that determines whether to write raster pictures to
file.

23

buildFishProbes Sets up the probe map for trout (fish) objects. Edit this to change the
variables and methods in fish probe displays.

buildObjects Builds the color map for habitat cells. Creates the animation raster window
and sets its parameters. Sets up the mouse buttons to probe cells and fish.

Builds the graphs and histograms that are displayed during execution. Edit
this method to add new graphs or modify existing ones.

buildProbesIn Sets up the probe maps that open when a model run starts for such classes
as: TroutModelSwarm, HabitatSpace, Cell, and TroutRedd. Edit these to
change the variables and methods contained in probe displays.

checkToStop Calls the Model Swarm to find out if the model end date has been attained;
if so, it stops the Observer activity schedule.

createEnd Loads Observer Swarm parameter values from “Observer.Setup”.

drop Drops execution of all graphical interfaces and terminates Observer
activity. Needs to be edited when new graphs etc. are added.

objectSetup Creates the TroutModelSwarm, passes it needed Observer-related
parameters (raster resolution, etc.), and loads Model Swarm parameters
from the file Model.Setup. Executes the Model Swarm’s
instantiateObjects method so its objects exist for the Experiment
Swarm to manipulate before the model run starts.

writeFrame Writes raster window to file, to capture a movie of raster animation. Edit
this to change the file names or change which window (or the entire screen)
to capture.

XII.A.4. TroutModelSwarm
The TroutModelSwarm objects execute the actual simulation events. They create the habitat
cells, fish, and redds, and execute their actions each time step.

The major change with Version 2 is adding the method instantiateObjects, which is
necessary to make the Experiment Swarm work.

Method Function

buildDataZone Builds the data structures used to store parameters for each fish
species. Loads fish parameters from the files named in

24

Species.Setup.

buildFishClass At run time, creates an Objective-C class for each species in the
model.

buildInitialFish Using data from the population initialization files, builds the
starting population lists. Creates the “fish population map” data
structure for fish.

buildReddDataStructure Builds the “reddMap” data structures that hold redds. (The
ability to simulate redds that exist at the start of simulations has
not been implemented.)

readPopFiles Reads the fish population initialization input files.

addAFish Puts a fish into the “fish population map” data structure.

buildActions Creates the model’s action schedules. Determines the order in
which update, fish, redd, and overhead actions execute.

buildObjects Calls the methods that create all the model objects, including
observer graphics, parameter storage structures, habitat cells,
fish classes, and initial fish. Creates the symbols used in the
model. Selects the Swarm random number generator to be used.
Initializes variables that count the number of fish mortalities by
cause.

buildTotalFishPopList Creates a list of live fish from the species-specific lists, sorted
by dominance. The model executes trout actions on this list.

createAgeMaps Creates the maps on which fish are listed by age class.

createANewFishFrom Called by redds to create new fish.

Gives the new fish its length, species, and sex.

createNewFishWithSpecies
Index: Species: Age:
Length

Creates a new trout with the specified species, age, and length.
The fish’s weight is calculated so that its condition factor equals
1.0.

getDeadTroutList Creates list of total dead fish from species lists.

initialDayAction Can be used to call any methods that should execute only on the
first day of a run. Currently used only to remove the
“oneAction” method from the action schedule.

25

instantiateObjects Calls the methods readSpeciesSetup,
buildDataZone; creates the habitat space and loads its
parameters. This method creates the model objects that can then
be manipulated by the Experiment Swarm before the model
objects (habitat cells and fish) are created. This allows the
Experiment Swarm to control the parameters used to create cells
and initial fish.

printFishMortalityFile Prints out the number of fish dead, by their mortality source, to
fishMortalityFile. This method is called from the
“printSchedule” in the main model schedule, as defined in the
buildActions method.

printFishPopSummaryFile Prints out the number of fish alive in each age class, to
fishOutputFile. This method is called from the “printSchedule”
in the main model schedule, as defined in the buildActions
method.

printFPMReport If activated in the TroutModelSwarm.h file, prints out a list
of all the fish that were initialized, to test the model
initialization methods.

printReddReport If activated in the TroutModelSwarm.h file, prints out
mortality report (reddMortalityFile) for each redd created in a
model run.

printReddSurvReport If activated in the TroutModelSwarm.h file, prints out
survival report (reddSurvFile) for each redd created in a model
run. This report is for testing survival functions.

processAgeClassLists Re-builds the age class-specific lists of fish each day. All fish
on the total population list are added to their proper age class
list (fish remain on both lists).

processEmptyReddList Moves the redds that are emptied each day (each species’
“empty redd list”) to the permanent list of empty redds.

processKillLists Moves the fish that died each day (which are temporarily placed
on each species’ “killed list”) to the permanent list of dead fish.

readSpeciesSetup Reads the file Species.Setup, which tells the model the name of
each species and which files contain its parameters and
initialization data. This file also sets the raster color for each
species.

26

setFishColorMap Links colors provided as input to fish species. Defines the color
of tagged fish.

updateCauseofDeath Uses the killed list each day to increment the counters for how
many fish died of each mortality source.

updateFish Called by the update action schedule; increments the fishs’ age
on January 1.

whenToStop Called by the Observer Swarm to determine whether it is time to
stop a simulation. Compares current date to the model end date
provided as input. Calls any methods that need to execute at the
end of a model run; these include some of the report-writing
methods.

XII.A.5. HabitatSpace
The HabitatSpace object for a simulation contains and manages all the habitat cells. In general,
the HabitatSpace manages variables that depict habitat conditions that are independent of fish
populations. These variables typically include the depth, velocity, spawning gravel, velocity
shelter, and food availability in each cell. Habitat variables that do not vary among cells (e.g.,
temperature, flow rate) are generally contained in HabitatSpace, not in the individual cells.

Method Function

_getCellContainingX: Y: For any point, finds the cell containing it.

buildBarriersFrom: Reads the barrier input file and creates barrier objects as
specified by the file.

buildCells Executes the methods for building cells and reading in
habitat data. Serves as the schedule for setting up space.

buildFlow_DepthTables Builds the flow vs. depth lookup table for each cell.
Arrays of data are passed to it from the method
readVelocityAndDepth. Builds tables for all the cells on a
transect at a time. Converts input depth in m to cm,
converts table values to logarithms.

buildFlow_VelocityTables Builds the flow vs. velocity lookup table for each cell.
Arrays of data are passed to it from the method
readVelocityAndDepth. Builds tables for all the cells on a
transect at a time. Converts input velocity in m/s to cm/s,

27

converts table values to logarithms.

calcDayLength Calculates the day length (h) from the Julian date.

calcNumAge2PlusFishPerCM Calculates the density of predatory trout, evaluated as the
number of live trout of age 2 or older divided by model
reach length in cm.

calcSpaceParameters Calculates the boundaries and midpoints of cells.

createMortalitySymbols Builds a symbol for each fish mortality source.

getAdjacentCells: Finds the four cells that are on each side of the specified
cell. This list does NOT include the starting cell itself.

getLogFlow:

getTomorrowsLogFlow

Gets the proper value from the flow record for the date
passed to the method. Tomorrow’s log flow is used in the
scouring mortality method for redds.

getNeighborsWithin: of: Finds cells that are within a specified distance of a cell.
(Distances are measured between the midpoint of cells.)
This list does NOT include the starting cell itself.

isThereABarrierTo: Given two cells, determines whether there is a barrier to
upstream movement between them. Returns values of 0 if
the second cell is upstream of the first and there is a
barrier between them. Returns 1 if the second cell is
downstream of the first and there is a barrier between
them. Returns -1 if there is no barrier between the cells.

nextTemperature Reads the daily temperature from the temperature record.

printCellDepthReport If activated in the HabitatSpace.h file, creates a
report of the daily flow and depth in each cell. This report
is for testing the habitat methods.

printCellVelocityReport If activated in the HabitatSpace.h file, creates a
report of the daily flow and velocity in each cell. This
report is for testing the habitat methods.

printHabitatReport If activated in the HabitatSpace.h file, creates a
testing report of the daily flow and temperature.

probeCellAtX: Y: Determines which cell was clicked on and opens probe
display to it. (Does not control contents of probe display.)

28

probeFishAtX: Y: Determines which cell was clicked on and opens probe
display to all the fish and redds in it. (Does not control
contents of probe display.)

readFlowRecord

readTempRecord

readTurbidityRecord

Opens and reads the files of daily flow, temperature, and
turbidity values. The flow records are converted to
logarithms and stored in an array. Temperature and
turbidity are stored without conversion.

readGeometry Reads the cell data input file. Creates the cells from the
coordinates in the input file. Assigns cell habitat variables
from the file- these are habitat characteristics that vary
among cells but do not vary over time.

readHydraulicInputFile Calls the object “FileInput” (below) that reads the depth
and velocity lookup table input file.

setCellHydraulics For each cell, creates a “stationObject” (see
StationObject, below) that is a lookup table of depth and
velocity vs. flow.

setSpaceDimensions Opens cell data file, calculates the number of transects
and maximum number of cells per transect.

updateCellHydraulics Tells each cell to update its depth and velocity for the
new daily flow rate. Determines the interpolation
parameters the cells use to get the depth and velocity in
their lookup tables, and passes these parameters to the
cell method calcDepthAndVelocityAtStationOffset.

updateFlowChange Each day, calculates the absolute value of the difference
between today’s and yesterday’s flow rate (variable
flowChange).

updateHabitat Is passed a date. Calls the methods that get the flow and
temperature and day length. Sends messages updating
each of the cells’ survival probabilities and food
availability variables, and resets the cells’ food and
shelter consumption variables.

29

XII.A.6. Cell
Cell objects represent the individual rectangular pieces of habitat. In addition to knowing its
habitat variables (temperature, depth, velocity, food concentrations, etc.), cells also keep lists of
the fish that are in them.

In some models, only part of each cell has some specific habitat quality (e.g., spawning gravel or
velocity shelter). Cell objects keep track of the total area of such habitat and how much of it has
been occupied by fish or redds within the cell.

Cells contain a number of methods that merely pass requests for information up to the
HabitatSpace object. For example, a fish may ask its cell for a list of neighboring cells; the cell
merely calls the HabitatSpace method getNeighborsWithin: and passes the result back to
the fish. These “pass-through” methods are not listed here.

Method Function

addFish Adds a fish to the list of fish in the cell, and removes the
fish from its previous cell.

addRedd Adds a new redd to list of those in the cell.

calcCellShelterArea Calculates the cell’s area with velocity shelter, once the
cell’s area has been established and variable
cellFracShelter has been set. (Does NOT return the
shelter area.)

calcDepthAndVelocityAtStation-
Offset

To update the cell’s depth and velocity, this method is
passed two values by HabitatSpace. These values are
used with the cell’s lookup table to determine the daily
depth and velocity.

calcDriftHourlyTotal Calculates the total amount (g) of drift food available
each hour, from habDriftConc,
habDriftRegenDist, and cell size and velocity.

calcSearchHourlyTotal Calculates the total amount (g) of search (benthic) food
available each hour, from habSearchProd and cell
size.

containsX

containsY

Returns “yes” or “no” if the cell’s extent in the X (or Y)
dimension includes the specified X (Y) value.

createBegin Starts creation of a new cell by creating a list of pointers
to cell variables and initializing the variables.

30

createEnd Completes creation by setting the random number
generator, creating the lists of fish and redds in the cell,
and executing initializeSurvProbs.

drawSelfOn Draws cell on raster, color coded by selected variable,
and draws the cell’s fish and redds. Includes code that
determines how cell colors vary with the colorVariable.

eatHere: Used to move a fish into the cell during the fish’s
“Move” method. Decreases the cell’s available food and
velocity shelter by the amount used by the fish, and calls
addFish.

foodAvailAndConInCell If activated in the Cell.h file, writes a report to file
“FoodAvailability.rpt”, for testing food production and
availability calculations.

getArea

getBenthicProd

getCellNumber

getCellVelocity

getCellFracSpawn

getCellDepth

getDriftConc

getDriftRegenDist

getTransectNumber

getMidPoint

getXExtent

getYExtent

Returns the value of cell-specific habitat variables.

(XExtent is a cell’s length in the X dimension; Yextent
is a cell’s width.)

getFishYouContain Returns a list of fish in the cell.

getNeighborsWithin: aRange Returns a list of all the cells within the specified range.
“Range” refers to linear distance between cell midpoints.
This method simply passes the range and the cell to the
HabitatSpace method “getNeighborsWithin”.

getNumberOfFish Returns the number of fish in the cell, obtained from the
cell’s list of fish contained.

31

getNumberOfRedds Returns the number of redds in the cell, obtained from
the cell’s list of fish contained..

getReddsYouContain Returns a list of redds in the cell.

getSpawnQualityForSpecies Calculates the spawning quality index for the cell and
the species passed to it. Gets the suitability factors for
depth and velocity from HabitatSpace and uses cell’s
area and spawning gravel fraction.

initializeSurvProb Builds and initializes the various survival probability
objects (representing the kinds of mortality risks).

Edit this method and “getSurvivalProbFor” to add or
delete survival probability functions.

removeFish Deletes the specified fish from list of those in cell.

removeRedd Removes a redd from list of those in the cell. (Does
NOT remove redd from the redd population map.)

resetAvailHourlyTotal Sets the available food variables to the cell totals (so
food consumption by fish is zero) before the start of
daily fish movement and feeding calculations.

setBoundary Initializes the vector holding the cell’s boundaries (the
two X coordinates and two Y coordinates that define the
cell’s edges). Called when the cell is created. Sets the
cell’s area.

setCellFlowVelocity Stores the flow-velocity lookup table in an array called
cellFlowAndVelocity.

setCellFlowAndDepth Stores the flow-depth lookup table in an array called
cellFlowAndDepth.

updateDSCellHourlyTotal Calls the methods calcDriftHourlyTotal and
calcSearchHourlyTotal to update the cell’s food
supply variables each day.

updateSurvivalProb Updates all the survival probabilities, by executing their
method “update”. Does not need editing if the number or
type of survival probability functions changes.

32

XII.A.7. Trout
The Trout objects contain much of the individual-based model code. The trout methods include
spawning, movement, feeding and growth, and mortality of each fish.

The Trout class is the superclass of all fish species in the model (see the “Species1” class below).
When the Model Swarm executes fish methods, it looks for the methods in the species class.
Following the object-oriented programming inheritance principal, if a method does not occur in
the species class, the method is taken from the superclass, Trout. Therefore, the Trout class
provides “default” methods for all fish. These methods are overwritten by any method with the
same name in the species class code.

Note that the software uses species-specific parameter values for all fish methods, whether the
method is coded in the Trout class or a species subclass.

Our design objective for the detailed fish methods was to put each of the formulation’s important
equations in its own method. This allows the major fish actions to appear in simple code that is
easy to follow (see, for example, the methods move and grow) and that closely follow the
formulation document. This also allows the important equations to be modified without editing
more than one method, minimizing the potential for a change in one equation to affect another.

The following are important trout methods.

Method Function

createAReddInCell Creates a new redd when spawning occurs. Determines
number of eggs and records species, spawner length.

calcActivityRespirationAt:
withSwimSpeed:

Determines the daily activity (swimming) respiration energy,
for the specified cell and fish swimming speed.

calcCaptureArea Calculates the cross-sectional area in which the fish can
capture drifting prey, from the reactive distance and cell
depth.

calcCmax Calculates Cmax, the maximum daily food consumption.

calcCmaxTempFunction Calculates the temperature-dependence function for Cmax.
This method does linear interpolation over the piecewise-
linear function provided via input parameters.

calcDailyDriftFoodIntake Determines the daily food intake for drift feeding at a cell.
Makes sure daily food intake is not greater than Cmax or the
drift food available in the cell.

calcDailyDriftNetEnergy Determines the daily net energy intake for drift feeding at a
cell, from the daily food intake. Conducts the energy balance

33

between food intake and respiration.

calcDailySearchFoodIntake Determines the daily food intake for active search (benthic)
feeding at a cell. Makes sure daily food intake is not greater
than Cmax or the benthic food available in the cell.

calcDailySearchNetEnergy Determines the daily net energy intake for active search
(benthic) feeding at a cell, from the food intake. Conducts the
energy balance between food intake and respiration.

calcDriftIntake Determines potential food intake using the stationary drift
foraging strategy, from the capture area and cell velocity.

calcFeedTime Calculates the feeding time (hours of feeding per day), from
the cell’s day length and temperature.

calcMaxSwimSpeed Calculates the fish’s maximimum swimming speed.

calcNetEnergyForCell Provides the net energy intake for the best feeding strategy
for the fish at the cell. Compares drift and active search
intakes. Records the fish’s chosen feeding strategy.

calcReactDistance Calculates the drift-feeding reactive distance from the cell’s
temperature and velocity.

calcReactDistance: Returns the reactive distance over which a drift-feeding trout
can capture prey in the specified cell.

calcSearchIntake Calculates potential food intake using the active searching
(benthic) strategy.

calcStandardRespiration: Determines the daily standard respiration energy
consumption at the specified cell.

calcTotalRespirationAt:
withSwimSpeed

Calculates the total daily respiration energy use for a fish,
obtaining input from calcStandardRespiration and
calcActivityRespirationAt.

compare Compares current fish to another by dominance. This method
is used by the QSORT procedure that sorts the fish list by
dominance at the end of each time step. This method MUST
BE PRESENT for the model to work even though it is not
called by the CIFSS code.

createEnd Assigns the random number distributions for spawning and
mortality, and initializes food consumption variables.

34

die Determines whether a fish dies each day, calling the survival
probability objects for the fish’s cell.

drawSelfOn Includes code for how fish is drawn on the animation raster.

expectedMaturityAt: Returns the “Expected Maturity” variable for a cell, used to
rate the desirability of movement destinations. Calls other
methods to obtain the fish’s net energy intake and mortality
risks at the cell.

findCellForNewRedd Creates a list of neighboring cells and finds the best one for
spawning. Calls getSpawnQuality to evaluate cells.

getConditionForWeight:
andLength:

Returns the condition factor for a fish with the specified
length and weight.

getDailyDriftCellTotalAt:

getDailySearchCellTotalAt:

These methods return the total daily food available from the
cell; they multiply the available hourly food production in the
cell by the fish’s feeding time.

getFishDominanceForLength: Returns the dominance a fish would have at the specified
length.

getFishShelterArea Calculates and returns the area of velocity shelter a fish uses
up.

getFracMatureForLength: Returns the fraction of sexually mature length a fish is.

getIsShelterAvailable: Calls the specified cell to determine whether there is velocity
shelter available for the fish.

getLengthForNewWeight: Returns the new length of a fish after its weight has
increased.

getNonStarvSP: Calls the survival probability objects at the specified cell to
get the total survival probability of all risks except starvation;
used by expectedMaturityAt:.

getSpawnDepthSuitFor:

getSpawnVelSuitFor:

Returns the depth (velocity) suitability factor for spawning;
includes interpolation code to get factor from the suitability
parameters.

getSpawnQuality Determines the quality of a cell for spawning, by calling the
spawning suitability methods.

getSwimSpeedAt: Returns the swim speed a fish has at the specified cell and

35

forStrategy: feeding strategy (drift vs. search feeding). Calls
getIsShelterAvailable to determine whether drift-
feeding fish have velocity shelter available.

getWeightWithIntake: Determines the fish’s new weight from the specified intake in
joules of energy.

grow Determines the fish’s new weight, length, and condition,
using the food intake determined by the move method.

killFish Used via the trout probe to manually remove a fish from the
model.

move Executes movement methods and moves fish. Calls the
selected “moveToMaximize…” methods to select the
destination cell. Calls methods to determine list of
destinations, pick best destination, and move.

moveToMaximizeExpected-
Maturity

moveToMaximizeNetEnergy-
Intake

moveToMaximizeSurvival

The movement rules that determine where a fish moves are
coded here in these alternative methods. (moveTo-
MaximizeExpectedMaturity is currently hardwired as
the movement method, but code is in place to let the method
be selected at run time via the Model.Setup file.) Other
internal methods are used to provide information on potential
growth and risks at movement destinations. Moving also
includes determining the feeding strategy and net energy
intake at the destination cell.

moveToBestDest Moves the fish to the cell selected by the moveTo… method.
This method also updates a number of instance variables that
depend on a fish’s new cell and food intake there.

moveReport If activated in Trout.h, reports the habitat, food
availability, and intake conditions at the destination cell for
each fish’s daily movement. For use in testing movement
code. Writes file MoveTest.rpt.

printFishParams Prints out a list of all the fish’s parameter names and values.

printSpawnReport If activated in Trout.h, reports the habitat conditions and
spawning quality variables at cells evaluated as spawning
destinations. For use in testing spawning code. Writes file
SpawnTest.rpt.

printSurvivalReport If activated in Trout.h, reports the habitat and fish
conditions and survival probabilities at the current cell for

36

each fish, each day. For use in testing survival code. Writes
file SurvivalTest.rpt.

readyToSpawn Includes all code to determine whether a fish should spawn
on a given day, according to the criteria for day of spawning.

setFishDominance Updates the dominance instance variable with the fish’s
current length.

setFishWeightFromLength:
andCondition:

Sets the weight instance variable from the specified length
and condition factor, using the fish weight parameters.

setInitialSwimSpeed Initializes the fish’s maximum swim speed instance variable,
for use in movement calculations on first day.

spawn Calls internal methods to determine if a fish is ready to
spawn, find cell for new redd, moves fish to cell, and create a
redd. Records the date of spawning. Serves as schedule of
spawning methods.

tagFish Changes the fish’s color to the tagged fish color; for use from
the probe display.

XII.A.8. Species1
A CIFSS model includes a class for each fish species being modeled; these species classes are
subclasses of the Trout class. At a minimum, this can be an empty class with no methods, in
which case all fish methods are taken from the Trout class. Any methods that are in the species
classes overwrite those in the Trout class. (Methods could also occur in the species class instead
of in the Trout class.)

The Species classes should be used when one species uses different methods (equations) than
other species. (Remember that species-specific parameters are used for all methods, whether they
occur in the Trout or Species classes.)

The name of the species classes MUST exactly match the species name provided in the file
Species.Setup, or else the code will crash when started (Sect. Error! Reference source not
found.).

XII.A.9. SurvivalProb
The SurvivalProb class is the superclass for all the fish and redd survival functions (referred to as
“survival probability functions” for trout and “survival functions” for redds, because redd
functions return the fraction of eggs that survive). One such function is created for each habitat

37

cell, for each of the survival functions included in the code. (Each such function must have its
own .h and .m files, which are not all described here.) These survival functions have three
important methods.

• createEnd executes when the survival function is created. It creates the logistic functions
used to calculate survival and initializes their parameters.

• update is executed once per day and updates any of the logistic functions that depend only
on cell conditions and not on fish variables. This update reduces the number of computations
required each time a fish asks the cell to provide survival probabilities. Redd survival
functions do not include an update method because these functions are called far fewer times
than are fish survival probability functions.

• getSPFor: returns the survival probability for the specified fish. (For redd survival
functions, this method is called getSFFor: and returns the fraction of eggs that survive.)

XII.A.10. Redd
Fish redds are defined by the class Redd, which provides methods used by all redds. (We have
not implemented species-specific redd methods.)

The following redd methods are included in our trout instream flow model.

Method Function

createEnd Initializes redd variables (age, formation date). Initializes counters for
the number of eggs lost to each mortality source.

drawSelfOn Provides the code used to draw redds on the animation raster window.

survive Implements redd risks. Calculates the number of eggs lost each day to
the various risks (low temperature, high temperature, scouring,
dewatering, superimposition) and the number remaining in the redd.

develop Updates the fractional development of the redd’s eggs; includes code
for how development is controlled by temperature.

emerge Determines the number of new fish created from the redd each day.
For each such new fish, the number of remaining eggs is decremented
and a call is made to turnMySelfIntoAFish.

removeWhenEmpty Drops the redd when all eggs are dead or emerged.

turnMySelfIntoAFish Calculates the new fish’s length from the spawner length (which is
remembered by the redd object). Calls the Model Swarm method

38

createNewFishWithSpeciesIndex: to create the new fish.

printReport Prints the reddMortalityFile output.

printReddSurvReport If activated in Redd.h, prints a report with survival function results
and habitat conditions. For testing redd survival code.

XII.A.11. Barrier
Barrier objects are new in Version 2. The barriers themselves do nothing in the model; they
affect simulations by affecting trout movement. The barrier objects therefore have only a few
methods to record their location (an X-dimension value) and to draw themselves on the
animation window.

XII.A.12. FileInput
FileInput is an object to read the hydraulic (depth and velocity lookup table) input files. These
input files are created by the RHABSIM software package.

Method Function

create Builds arrays that temporarily store lookup table data.

readFile Contains the code the reads the RHABSIM files. Creates Station
objects (see StationObject, below) for each station in the
RHABSIM file, which correspond to cells in the trout model. Each
station object has a depth and velocity vs. flow lookup table (array),
which is filled in by this method. This method is called once for each
RHABSIM input file; there can be up to five such files (VII.B.1.

XII.A.13. StationObject
This class provides lookup table arrays of depth and velocity vs. flow for each cell. In addition to
the following methods, there are a number of “set” and “get” methods that keep track of the
station’s transect, cell number, bottom elevation, etc.

Method Function

createBegin Builds the arrays that store lookup table data.

getVelocityAtOffset Returns the velocity (depth) table value at the specified offset. (Offset

39

getDepthAtOffset is the position in the array; offset = 0 is the first value in the table.)

addAFlow When building the lookup table, adds a flow value at the next empty
position in the array. Converts the flow to base-10 logarithm upon
storing it. Sets logFlow to -4 if it is zero.

addADepth When building the lookup table, adds a depth value at the next empty
position in the depth column of the array. Converts depth from meters
to cm. Converts the depth to base-10 logarithm upon storing it. Sets
logDepth to -1 if it is zero.

addAVelocity When building the lookup table, adds a velocity value at the next
empty position in the velocity column of the array. Converts velocity
from m/s to cm/s and converts it to base-10 logarithm upon storing it.
Sets logVelocity to -1 if it is zero.

checkMaxOffsets Makes sure there are the same number of flow, depth, and velocity
values in the lookup table array.

XII.A.14. TimeWrapper
The TimeWrapper class provides a generic date-handling object. It uses the C time_t time and
date format (number of seconds since 1/1/1970). The methods provide useful date manipulations
used throughout the trout model.

Method Function

getTimeTForDate Converts a MM/DD/YYYY character string to a time_t formatted
date.

getYearForTimeT Returns the year (four-digit integer) for a time_t formatted date.

getJulianDayForTime
T

Returns the Julian date (day of the year, 1-366) for a time_t formatted
date.

getJulianDayForDay Returns the Julian date for a date in MM/DD character format.

getYearForTimeT Returns the year (four-digit integer) for a time_t formatted date.

getDateForTimeT Returns a MM/DD/YYYY string for a time_t formatted date.

getDateForTimeT:
modifyingMyString:

Replaces the string passed to the method with a MM/DD/YYYY string
for a time_t formatted date. Modifying an existing character string

40

avoids having to create a new one.

adjustTimeT Corrects a time_t formatted date so it is for 12:00 noon. Useful for
overcoming small errors in the date value due to daylight savings time,
roundoff, etc.

getNumberOfDays-
Between: aTime and:
aLaterTime

Returns the number of days (integer) between the two specified dates.
Value is negative if the second date is before the first.

isThisTime:
onThisDay:

Accepts a time_t date and a MM/DD formatted day (character string)
and returns YES if the date falls on the specified month and date.

isTimeT:
betweenMMDD:
andMMDD:

Accepts a time_t date and two MM/DD formatted days. Returns YES
if the date is on a day falling between the two day values.

XII.A.15. Logistic
Logistic functions (sigmoid increases from 0 to 1, or decreases from 1 to 0) are typically used in
a number of CIFSS methods. They are especially useful in modeling mortality risks. The Logistic
object initializes logistic functions by converting the input used to define a logistic curve into the
two parameters used to calculate the logistic function.

As an example, we model the effects of high temperature on daily survival probability as a
logistic function of daily water temperature. We define this survival function with four numbers:
for a rainbow trout, the survival probability due to high temperature (ST) is 90% at a temperature
of 22° and the survival probability is 10% at a temperature of 26°. The logistic equation is:

()
()S e

e
T

aT b

aT b=
+

+

+1
.

The Logistic object calculates the two parameters a and b from the four input numbers, so this
function can be evaluated efficiently as the model executes.

Evaluating the logistic equation causes a computer error when the exponent (aT+b in the above
example) is large, because the value of e(aT+b) is larger than the largest value a floating point
number can be. (This happens when the exponent is above around 700.) However, the value of
the logistic function approaches one to many decimal places as the exponent increases. To avoid
the potential computer error we set the value of the logistic function to 1.0 if the exponent is
greater than 80.

41

Method Function

create: withName:
usingIndep: dep:
indep: dep:

This method is called to create a logistic object. It calls other internal
methods to give the object a name and set its parameters a and b
input values. Two pairs of independent (X) and dependent (Y)
coordinates are provided to the method; the dependent variables
must be between zero and one. In the trout model, the fish
parameters LOWER_LOGISTIC_DEPENDENT and
UPPER_LOGISTIC_DEPENDENT are used as the first and second
dependent variables; these parameters have values of 0.1 and 0.9.

evaluateFor: Returns the value of the logistic function for the provided
independent variable.

initializeWithIndep: Internal method that calculates the logistic parameters.

42

XIII. Research and Development Priorities
Version 2 of the CIFSS trout model software implements several of the development priorities
identified in the previous version: batch mode and the Experiment Swarm. The other priorities
identified in the previous User Guide remain to be addressed.

43

XIV. Quality Control Documentation
This section logs the tests we conducted to verify the computational accuracy of the trout model
code. These tests used methods described in Sect. IX.G of the original User Guide. Extensive
tests of the software against an independent implementation of key model components were
conducted for the Version 2 software. Full documentation of systematic code tests is provided in
the spreadsheet CODETESTV2.XLS. (This section does not include testing or calibration of the
model’s formulation, which is documented in the formulation report.)

Date Tester Test

6/6/99 SFR Test hydraulic habitat simulations. Use cell probes to spot-check depth and
velocity interpolation from flow. Units conversion error found and corrected.

7/29/99 SFR,
SJ

Final review of source code for Redd.m, Cell.m, HabitatSpace.m,
ObserverSwarm.m, Logistic.m

7/30/99 SFR,
SJ

Final review of source code for Trout.m, Rainbow.m, Brown.m

8/2/99 SFR,
SJ

Final review of source code for all fish and redd survival functions.

8/7/99 SFR,
SJ

Final review of source code for TroutModelSwarm.m.

8/5/99 SJ Run model with 6 species, one species. Successful test of Species.Setup and
changeable number of species.

8/8/99 SFR Test population intialization: see CodeTest.xls, page “PopInit”. Verify that initial
fish populations have correct number, mean and variance of length.

8/8/99 SFR Test cell hydraulics: depth and velocity calculations: see CodeTest.xls, pages
“Flow-Vel” and “Flow-Depth”. Compare cell-specific graphs of velocity (depth)
vs. flow are same in model output (“Cell_Flow_Velocity.rpt”,
“Cell_Depth_Velocity.rpt”) as in hydraulic input file.

8/8/99 SFR Test feeding and energetics methods: see CodeTest.xls, page “FeedTest”.
Compare intermediate and final results to those from code independently
implemented in spreadsheet.

8/15/99 SFR Test food availability accounting in cells: see CodeTest.xls, page “FoodAvail”.
Compare food availability, as it changes as more fish enter a cell, vs. independent
spreadsheet implementation.

8/13/99 SFR Test fish survival probability functions: CodeTest.xls, page “Survival”. Compare
survival probabilities vs. independent spreadsheet implementation.

44

8/15/99 SFR Test redd survival functions: see CodeTest.xls, page “ReddSurvival”. Compare
fraction of eggs surviving vs. independent spreadsheet implementation, over wide
range of temperatures and hydraulics.

8/16/99 SFR Test fish spawning criteria: see CodeTest.xls, page “SpawnCrit”. Compare
intermediate results used to evaluate spawning criteria vs. independent
spreadsheet implementation.

3/17/00 SFR,
SJ

Complete review of new code. Revisions implemented 3/17. User guide updated.

4/3/00 SJ Test of Experiment Swarm to ensure that parameter values provided in the
Experiment setup file are correctly used within the model. Tests documented and
documentation archived.

4/10 -
4/14/00

SFR,
SJ

Extensive code tests vs. spreadsheet implementation; see file CodeTestV2.xls.
Several bugs in code and parameter values found and corrected.

6/6 -
6/9/00

SFR,
SJ

New output files tested to verify habitat area, number of fish vs. area.

45

XV. References
EPRI (1999). Tools for individual-based stream fish models. Electric Power Research Institute

report TR-114006, Palo Alto, CA.

Railsback, S. F. and B. C. Harvey (in prep.). Individual-based Model Formulation for Cutthroat
Trout, Little Jones Creek, California. U.S. Forest Service, Redwood Sciences Laboratory,
Arcata CA.

Ropella, G. E. P., S. F. Railsback and S. K. Jackson (in prep.). Software engineering
considerations for individual-based models. Manuscript submitted to Natural Resource
Modeling.

	Introduction
	Document Objectives
	Software License and Conditions
	Document Revision History

	CIFSS Philosophy
	
	Dates

	Trout Model Software Overview
	Overview

	User Guidance: Overview
	Software Installation and Execution

	Formulation and Input Testing and Revision
	Source Code Revision
	Customizing the Makefile
	Changing Graphics and User Interfaces
	Graphs

	Automated Experiments

	Setup, Parameter, and Data Files
	Setup Files
	Experiment Swarm setup file
	Model Swarm setup file

	Data files
	Hydraulic data (depth and velocity lookup table)
	Time series habitat data
	Barrier data

	Software Installation and Execution
	Output Files and Output Processing
	Fish Output File
	Fish Mortality File
	Redd Output File
	Redd Mortality File
	Depth and Velocity Availability Files
	Depth and Velocity Use Files
	Cell-based Fish Information

	Software Testing
	Conducting Modeling Experiments
	Source Code Description and Directory
	Code Directory
	ExperSwarm
	ScenarioIterator
	TroutObserverSwarm
	TroutModelSwarm
	HabitatSpace
	Cell
	Trout
	Species1
	SurvivalProb
	Redd
	Barrier
	FileInput
	StationObject
	TimeWrapper
	Logistic

	Research and Development Priorities
	Quality Control Documentation
	References

