
Serialization and Stability Analysis in
Swarm

Paul E. Johnson
Dept. of Political Science

University of Kansas
pauljohn@ku.edu

1/76



Overview

Definitions

Desirability

How To

2/76



Serialization

Definition:

Save state of simulation

Restore state of simulation

Familiar problem for computer game authors

3/76



Stability

Stability:
Study Impact of:

changes in parameters/inputs

changes in agent behavior rules/information

4/76



desirability 1

Save Time

Take a slow model

Save its progress up to a point

Reload and explore

5/76



desirability 2

Test stability of “emergent” property

GUI can explore alternative “what if” scenarios

Do rigorous re-analysis in batch mode

6/76



Example I: ASM

Example: Artificial Stock Market

http://ArtStkMkt.sourceforge.net

ASM-2.4 will introduce serialization

Each run takes several hours: 300,000+ iterations

7/76



After 3 hours...

8/76



ASM2

ASM (Continued)

It takes so long because agents are learning how to
understand the market.

“Rational Expectations” equilibrium emerges.

Is equilibrium “upset” by changes in agent behavior?

9/76



ASM Restored from file

10/76



Example II: Opinion

Public Opinion Networks

Huckfeldt, Johnson, & Sprague (J. of Politics, 2003;
Autoregressive Impact in Social Networks)

People interact, exchange opinions, adjust their views.

11/76



Opinion Model

12/76



Opinion 2

GUI stability analysis:
A,B,C represent “interactive tweaks”

Serialization can allow more rigorous tweaking

13/76



How To

How To?

Swarm supports serialization in hdf5 and lisp data
formats

lisp yields a *.scm file familiar to Swarm users.

Swarm-2.2 upgrade necessary to

save Swarm Arrays (and objects in them)

save dynamically allocated arrays of integers and
doubles

14/76



Recall “getWithZone:key”

Tutorial introduces “getWithZone:key:” as a way to
create instances of objects according to values
designated in a *.scm file.

End result: object created, the “createBegin:” and
“createEnd” methods of your class are never called.

15/76



Shallow Save

Put Shallow

save ints, doubles, characters, static arrays of same

does not save “objects”, like Grid2d, List, Schedules,
pointers & dynamic memory

16/76



Deep Save

Put Deep:

save int, double, characters, etc

Attempts to save objects and Swarm things like
Collections (Lists, SwarmArrays, Maps) and Spaces
(Grid2d).

Recursive: Any object that has a “lispOutDeep:”
method will be saved.

17/76



Deep Save

Does not seamlessly understand (ignores):

dynamically allocated memory

pointers to objects that don’t answer to
“lispOutDeep:”

18/76



Challenges 1

Naive Approach: Put Deep a whole model

Try this in the “Model Swarm” level of Heatbugs (or just
about any Swarm Model):

id dataArchiver = [LispArchiver create: [self getZone] setPath:

“myFile.scm”];

[dataArchiver putDeep: "model" object: self];

[dataArchiver sync];

[dataArcviver drop];

19/76



Challenges 2

Very unsatisfactory result:

It tries to Save Everything in Model:

agent list

Grid2d (and agents in there)

Redundant Copies of agents are saved in both the
agent list and Grid2d.

agents have a reference to the Grid2d world inside
them, and it will attempt to save that.

20/76



Challenges 3

But Put Shallow does not save enough information.

21/76



Proposed Solution

We need a way to fully save the:

state of the agents one-time-only

any parameters needed to fully recreate the model
{Grid, Lists, Data Structures, etc}.

22/76



Recommended Strategy

1. Save parameter objects shallow

2. Save agent list deep.

23/76



Example from Model Swarm

In ModelSwarm.m:
id dataArchiver = [LispArchiver create: [self getZone] setPath:

dataArchiveName];

[dataArchiver putShallow: "model" object: self];

[dataArchiver putShallow: "parameters" object: parameters];

[dataArchiver putDeep: "agentList" object: agentList];

[dataArchiver sync];

[dataArchiver drop];

24/76



It works its way down

putDeep is RECURSIVE.

“lispOutDeep:” on agentList will trigger

save of agentList object

triggers “lispOutDeep” for each object in agentList

and recursively for variables each agent,

and for each object in each object, etc.

25/76



putDeep: Method in subclasses

’Barefoot’ approach for a class called “Friend”
- (void)lispOutDeep: stream
{

[stream catStartMakeInstance: "Friend"];

...insert commands to save variables here
[stream catEndMakeInstance];

}

26/76



Example:

Suppose a class has a dynamically allocated array
“culture”, no other complications

- (void)lispOutDeep: stream {

[stream catStartMakeInstance: "Attribute"];

[super lispOutVars: stream deep: NO]; //save IVARs!!

[super lispStoreIntegerArray: culture Keyword: "culture" Rank: 1

Dims: &numCultureFeatures Stream: stream];

[stream catEndMakeInstance];

}

27/76



Complications

Some classes get more complicated because of
inheritance and different kinds of variables.

28/76



Complications 1

Complications: Data Structures inside Agents.

Map of “Attributes” using other agents as keys.

Redundancy: Standard “lispOutDeep” for Map will
deep-save keys and data.

Necessary to redesign simulation so that keys are not
duplicate objects.

Can’t have anything “interesting” in createEnd!

29/76



Complications 2

Complications: Inheritance chain of Agents.
I create 2 kinds of methods

1. lispOutDeep: to start/end the instance by name

2. bareLispOutDeep: just does work of storing data,
does not start/end instance

30/76



Example

- (void)lispOutDeep: stream
{
[stream catStartMakeInstance: "HJCitizen"];
[super bareLispOutDeep: stream];
[self bareLispOutDeep: stream];
[stream catEndMakeInstance];

}

31/76



Reset 1

Resetting the model to its last state.
In buildObjects:

1. Recreate space and other structures from stored
parameters.
main.m: if input file given, recreate Parameters object from
the saved file.
ModelSwarm.m uses those Parameters to create new
Grids and other structures that match needs.

2. Recreate agents from saved file.
ModelSwarm.m: if input file is given, restore agent list from
saved file.

32/76



Reset 2

In the ModelSwarm’s “lispLoadAgents:”

read in the collection of agents

iterate over agents to restore references

setWorld:

tell each agent to do whatever is needed to restore
its information structures about the world. (Survey
neighborhood, etc)

Don’t run any “init” methods that are only needed on
the first-run of the model.

33/76



Stability in the opinion model

A model is run to its equilibrium state.

Equilibrium means that no single agent has changed
any opinion for 10 full cycles through the society.

Each agent who is exposed to a contrary point of view
does not change because a majority of that agent’s
“friends” do not support the newly suggested opinion.

Save the state of the simulation

34/76



Shock the same outcome 20 times

Then it is restarted repeatedly and the networks are
subjected to random shocks.

At times 10, 60, 110, 160, 210, and 260, 5 percent of
the agent opinions are changed.

If the opinion is 0 or 2, it is changed to one.

Note how the networks absorb the shock in a very
similar way across replications

35/76



1

36/76



2

37/76



3

38/76



4

39/76



5

40/76



6

41/76



7

42/76



8

43/76



9

44/76



10

45/76



@

46/76



12

47/76



13

48/76



14

49/76



15

50/76



16

51/76



17

52/76



18

53/76



19

54/76



Compare!

Now we shock a different opinion in a different way.

we find 5% of the agents, and we change their opinion
to 2 from either 0 or 1.

observe that there is more variation across runs that
begin with the same conditions and apply a
stochastically equivalent shock.

55/76



1

56/76



2

57/76



3

58/76



4

59/76



5

60/76



6

61/76



7

62/76



8

63/76



9

64/76



10

65/76



1 1

66/76



12

67/76



13

68/76



14

69/76



15

70/76



16

71/76



17

72/76



18

73/76



19

74/76



20

75/76



Conclusion

Serialization is Workable

Serialization is potentially useful

76/76


	Overview
	Serialization
	Stability
	desirability 1
	desirability 2
	Example I: ASM
	After 3 hours...
	ASM2
	ASM Restored from file
	Example II: Opinion 
	Opinion Model
	Opinion 2
	How To
	Recall {}``getWithZone:key''
	Shallow Save
	Deep Save
	Deep Save
	Challenges 1
	Challenges 2
	Challenges 3
	
oindent Proposed Solution
	Recommended Strategy
	Example from Model Swarm
	It works its way down
	putDeep: Method in subclasses
	Example:
	Complications
	Complications 1 
	Complications 2
	Example
	Reset 1
	Reset 2
	Stability in the opinion model
	Shock the same outcome 20 times
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	12
	13
	14
	15
	16
	17
	18
	19
	Compare!
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	~1~1
	12
	13
	14
	15
	16
	17
	18
	19
	20
	Conclusion

