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Abstract

Agent-based models can be used to explore the impact of micro-level theories of political inter-

action on aggregate patterns in public opinion.  We are interested in several theories about the 

conditions under which people interact with and respond to one another.  In this report, our cen-

tral question is this: under what conditions will diversity be preserved?   We begin by contrasting 

some existing models of social networks and then proceed to several extensions of Robert 

Axelrod’s "culture model."    Different ideas about the conditions under which individuals inter-

act with and respond to one another are explored.  Results indicate that modifications in the part 

of the model that deals with exposure to political interaction do not have as large of an impact as 

changes in the way individuals adjust their opinion in response to input from others.



1The computer code and documentation for these models is available.  For the latest versions, 
please check  http://lark.cc.ukans.edu/~pauljohn/Swarm/MySwarmCode. Look for the SIM un-
der SocialImpact and ACM under OpinionFormation. 

_________________________
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I. Introduction

Two of the leading simulation models that explore social networks and the survival of di-

versity are Axelrod’s (1997) Culture Model (ACM) and the social impact model (SIM), which is 

based on a theory developed by Bibb Latané (Nowak, Szamrej, and Latané, 1990; Latané, 

Nowak, and Liu, 1994; Nowak and Lewenstein, 1996).  In these models, the opinion-holders are 

thought of as cells arranged evenly on a square grid.   Axelrod’s model is based on dyadic inter-

actions of cells with their neighbors, while the SIM updates cells according to a sum of influ-

ences exerted by all cells (simultaneously). 

We have developed computer code for models which replicate and extend both of these 

classic models.1  We have extended each of these models by making them more agent-based and 

less like cellular automata (models in which cells, fixed-in-place, turn on and off according to 

mechanical rules).  In our agent-based models, individuals are self-contained agents that can 

move about, gather or offer information, learn from experience, and adapt in an individualistic 

way.  Agent-based models offer a useful platform for the formulation of ideas about how people 

interact and respond to one another.   The agent-based models also point out useful avenues for 

development of new theories that help us to address some of  anomalies that appear in the ACM 

and SIM.

One of the most interesting issues raised by Axelrod is the possibility that, over the long 

run, the natural processes of human interaction will homogenize the political culture.  The cells 

are most likely to copy the features of neighbors that are similar to them, and the end result is 

that most or all cells are surrounded by others that are exactly like them.  Over the long run, there 

is no interaction among cells that are even slightly different from each other.  Under many 
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settings of the parameters, all cells will be completely identical in the end.  Under other  condi-

tions, opinion is not completely homogenized, but the cells are divided into completely homoge-

neous and totally distinct subgroups, and none of the members of one group interact with the 

members of any other group.

The SIM addresses many of the same questions.  The model’s design is quite different 

because the individual cells do not directly interact with one another.  Each cell is "acted upon" 

(simultaneously) by every other cell according to a distance-based law of influence.  The cell 

changes when the aggregate persuasive impact of an opposing viewpoint exceeds the aggregate 

supportive impact of cells that hold the current viewpoint.  As such, the SIM invokes a sort of 

"social telepathy" (Erbring and Young,  1979) through which agents completely and accurately 

summarize the entire state of the society at each instant.  

While Nowak, Szamrej, and Latané (1990) note that the model outcomes are not com-

pletely homogeneous, but they are not entirely diverse either.  In many runs of the model, the 

outcome consists of two or three homogeneous clumps of cells.  Almost all individual cells are 

surrounded by a belt of others who agree with them.  It is not quite right to say that cells interact 

only with others with whom they share common opinions because the cells do not interact in this 

model.  But it is fair to say that the immediate environment of most cells--the influential 

neighbors--is much more likely to be homogeneous than not.

We are concerned about the fact that, in both of these models, the immediate environ-

ments of most agents are predicted to be homogeneous.   Our concerns are both empirically and 

normatively inspired.  On the empirical side,  studies have turned up evidence of sustained diver-

sity within interpersonal networks (see, for example, Huckfeldt, Johnson, and Sprague, 2002).  

On the normative side, one major implication of the Axelrod model is that interaction tends to 

erase all differences.  People who are concerned about the survival  of ways of life that are in the 
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minority might be led to radical policy prescriptions.  For example, one might argue in favor of 

segregation, or cultural apartheid, as the only way to preserve diversity on the aggregate social 

level.  We find this contention to be rather discouraging, and therefore we wish to re-examine the 

culture model.

In this paper, we invest most of our effort on an analysis of extensions of the ACM, offer-

ing some contrasts with the SIM where appropriate.  The presentation will proceed as follows. 

First, we describe the original Axelrod model and our software implementation of it.  Second, we 

consider variants of the model which alter the model’s assumptions about the way people select 

each other for interaction.  Finally, we consider variants of the model in which the assumptions 

about individual decision making and the way in which people adjust their opinions in light of 

divergent input. 

II. The Culture model 

Axelrod’s Culture Model (ACM) has a design which we illustrate in Figure 1.  There is a square 

grid on which agents are distributed, one per cell.  

[Figure 1 about here]

Axelrod calls these cells "villages".   Each village has a set of discrete-valued features,  the val-

ues of which are called traits.  A feature is to be thought of as an opinion, issue stance, political 

party allegiance, or any other construct.  Suppose there are 5 features, Fi, i={0,1,2,3,4}, and on 

each there are 3 possible positions, {0, 1, 2}.  Each village has a feature array  that is assigned 

randomly (uniformly) at the outset.

Our implementation of the ACM was done in Objective-C with the Swarm Simulation 

Toolkit (http://www.swarm.org).  Like Swarm itself, the source code is freely available.   Our 

software is highly modular,  allowing the exploration of many separate settings.  The most recent 

edition has been redesigned to facilitate the development of new kinds of agents.
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From a software design point of view, the model of individual agents has two especially 

important components.  First, there is a "selection process" that puts agents together for a pos-

sible interaction.  Second, there are "opinion adjustment rules" which determine what happens 

when an interaction occurs.  All of the rest of the model’s design is a fairly standard Swarm 

model, with the agents implemented as separately instantiated objects that are contained in a col-

lection and their behavior can be monitored in a number of ways.

In the original Axelrod approach, an agent is randomly selected, and a neighbor (from the 

von Neumann neighborhood, which consists of neighbors on the east, west, north, and south bor-

ders) is selected, and the agents interact with probability equal to the similarity of their features.   

If two villages share 2 of 5 features, then they interact with probability 0.40.  If they interact, the 

agent copies one feature on which they differ from the other. Cells that lie on the outside bound-

aries of the grid have fewer neighbors with which to interact.  We have implemented an option to 

have the grid "wrap around" to form a torus, and thus eliminate these edges, but have found noth-

ing interesting to report on that component.

Since our implementation explores some variations on the ordering of interactions among 

agents (a general topic known in Swarm as "scheduling"), we have designed the code with many 

features that can be changed when the program is created (compiled) and when it is run.  

Axelrod’s model repeatedly selects one agent at random and conducts the interaction.  Because 

of anomalies observed in the follow-up study (see Axtel, et. al, 1996), it is probably more pru-

dent to employ a Knight’s tour approach, in which the agents are randomly sorted at the begin-

ning of each cycle and each is given an opportunity to interact before starting through the list 

again.  We have implemented a run-time feature to select either the one-at-a-time (Axelrod’s 

original) scheduling or the tour through the list.  In this report, we present models in which the 

tour approach is used. 
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The number of cultural issue dimensions or topics, called "features" in the culture model,  

and the number of positions on each topic, called "traits" in his model, can be varied.  Axelrod 

observed that when the number of traits is small, then the system-wide homogenization tendency 

is the greatest, while raising the number of traits may allow the formation of homogeneous sub-

groups.  When there are many possible traits, the chance that two randomly chosen agents will 

find something in common is lower, and thus diversity is preserved by preventing interaction.  

Because we seek to develop a general agent-based perspective for social interaction mod-

els, we have developed  new tools with which to measure diversity.   Axelrod’s ideas of zone and 

region do not extend to the general settings that we explore in extensions of the model.  We have 

created "objective" (aggregate level) and "subjective" (agent level) indicators of diversity. 

On the objective side, it is possible to tally and summarize the features of the agents.   

This allows calculation of summary measures, such as the average and variance of each feature.  

We also calculate a system-wide diversity measure, entropy, which is also sometimes called 

Shannon’s information index.  That  is a normed measure that is equal to 0 if all objects in a set 

are identical and 1 if every possible type is equally represented in the set (Shannon, 1949; Balch, 

2000).  If there are F different features (issue dimensions) and there are T different traits (posi-

tions) for  each feature, then the number of possible issue stances is TF.  If the proportion agents 

holding  a given set of  positions is pj, then the normed total entropy is given by: 

NormedTotalEntropy =

∑
TF

p
j
* log

2
(p

j
)

j = 1

log2(1 /TF)

The normed entropy measure depends on both the number of traits and the number of features. 



2The simulation model can be run interactively (with graphical displays of the grid and various 
conditions in the model) or it can be run an a batch mode.  Interactive runs allow parameters to 
be adjusted "on the fly" and various on-screen displays can be used.  Runs in batch mode are 
calibrated to assure that only changes in model design and parameters can be responsible for dif-
ference in outcomes.  In particular, the possibility that random variations in seeds for random 
number generators is ruled out by the design of the experiments.  (The i’th run of the model un-
der one set of conditions is seeded with the same random numbers as the i’th run under any other 
set of conditions.)    As a result, any difference between two runs can be attributed to changes 
which occur according to the logic of the model itself.

_________________________
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Our subjective measures are built up from the experiences of the individual agents. Each 

agent keeps a "running tally" of its experiences.   We present three individual-level measures.  

First, for each other agent that is encountered, the agent checks to see if the two agree about a 

randomly chosen feature.  The proportion of encounters on which there is a shared feature is kept 

as a moving average that we call "acquaintance."   This represents the individual’s belief that it 

will have something in common with a randomly chosen other.  In other words, they could be-

come acquaintances.  When an interaction occurs, the agents "compare notes" and find out how 

much they have in common.  We use that information to construct the second and third mea-

sures.   The level of  "harmony" is the proportion of opinions that the two agents share.  Each 

agent also keeps track of the proportion of others with whom it is identical.  The "harmony" and 

"identical" indicators reflect information about agents only with whom an interaction occurs, 

while the "acquaintance" measure is collected for all agents contacted.  Please note that these are 

not accurate summaries of the actual state of the system, but rather the experience-based beliefs 

of the individual agents.  Generally, we calculate averages and standard deviations as summary 

measures of these measures.

After a good deal of experimentation with this model, there is considerable support for 

the original contention that, over the long run, there is not likely to be very much cultural 

diversity2.  While the tendency toward homogeneity is greater for some parameter settings than 
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others, it is powerful in all cases.  As Axelrod observed, the number of traits is a vital element.  If 

there is only a small number of traits, then interaction is likely to occur (and change of individual 

opinion is certain).  Interaction wipes out diversity.  On the other hand, if the number of traits is 

huge, then two agents are unlikely to interact because they have nothing in common.  Pockets of 

culture develop which are completely isolated from one another.   Diversity is preserved in the 

aggregate sense, but none of the individual agents interact with others who are different from 

them, and their perception tends to be that all agents are identical and like themselves.

The summary of 100 runs of a model in which there are 5 features and 3 traits per 

feature is presented in Table 1.  The numerical results are in-line with the original Axelrod re-

sults.  The simulation continues until 10 passes are made through the list of agents without any 

changes of opinion.  In every single run, the level of entropy was 0, meaning all citizens were 

identical in the end.

[Table 1 about here]

[Figure 2 about here]

Perhaps the summary statistics do not do justice to the results.  When run interactively, 

the model generates time-plots and color-coded "rasters" to display the state of the grid for each 

feature.  A view of the distribution of opinion in the grid can be seen in the top part of Figure 2.  

The value of a feature at each spot in the grid is represented by a colored square.  Values of the 

feature are color coded, with the dark representing the value of 0, and lighter shades used to indi-

cate a progression of values.  (In a model with more traits, we use all shades between the ex-

tremes.)  It is readily apparent that the features are homogenized one-at-a-time.  As soon as a 

single feature is homogenized, we know for certain that all features will be homogenized.  This is 

so because any 2 agents in the society will have at least one feature in common, so they can in-

teract, and the homogenization will continue.  The process of homogenization accelerates as each 
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piece of the puzzle falls into place.   In Figure 2a, we show the starting conditions of each of the 

five features in its own grid.  The typical outcome of the simulation is the second part of the fig-

ure, showing that each feature has been homogenized because the grid is filled with only one 

color. 

In the bottom panel of Figure 2, we present the time plots of some of the diagnostic vari-

ables.  Note that entropy begins at 0.8, near the maximum, and then it falls to a value of 0.  Indi-

vidual perceptions are roughly in line with that aggregate indicator.  The indicators of acquain-

tance, harmony, and identicality begin with values near zero and gradually climb near 1.0.  They 

don’t quite reach 1.0 because the agents use a 20 period moving average to keep their records, 

and when the simulation stops after 10 periods without any culture changes, some agents can still 

remember past periods when disagreement was experienced.  If we let the simulation continue 

ten more time steps, then the individual perception indicators would converge to 1.0.

In his article, Axelrod points out that it is possible to find parameter settings such that the 

grid is not homogenized, but rather subdivided into groups that do not interact with one another.  

That never happens when there are 5 features and 3 traits per feature, but it can happen if the 

number of traits is increased.  Outcomes of that sort are highly unstable, in the sense that any dis-

turbance which allows interaction across the boundaries is likely to displace it.  Studies by Shiba-

nai, et al. (2001) and Greig (2002) explore extensions of the ACM in which there are 10 possible 

values for each feature.  In contrast, we have chosen to focus most of our attention on the dif-

ficult case, one in which there is a small number of traits, and agents are less likely to be pro-

tected from interaction by the fact that they are completely different.

The problem we face, then, is exactly the same one discovered by Robert Abelson thirty-

five years ago.  His differential equations of social influence led to the prediction that "any com-

pact group of individuals engaged in mutual dyadic interactions at constant rates will 
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asymptotically tend toward complete homogeneity of attitude positions" (1964, p. 152).  Later he 

observed that there is a "virtually inexorable consensus" (1979, p. 244), one that he seeks to 

avoid (with only a qualified amount of success) by exploring various changes in the design of the 

model.  Like Abelson, we have explored a number of variants related to the contacts to which in-

dividuals are exposed as well as they way in which people adjust to one another.  We have one 

advantage in this pursuit, however, which is the recent development of agent-based modeling, 

which allows one to explore the implications of hypotheses about truly autonomous agents.

III. Selection Variations

One argument in favor of the agent-based modeling approach is that it allows experimen-

tation with novel ideas about the way individuals might interact.  We can investigate a number of 

"what if" questions by substituting in new assumptions about the agents and their environment.  

In this section, we explore changes in the structures that "put agents together." 

In the process of exploring various designs, our objective is to find out if it is possible to 

redesign the model so that interaction among differing types of people can occur without the ho-

mogenization effect taking place.  In addition to maintaining objective diversity, we also seek to 

maintain subjective diversity as well.  We hope that agents who are not identical with each other 

interact with greater-than-zero frequency  and, in addition, the agents’ indicators of harmony and 

identicality are below 1.0.  That is to say, it should not be the case that all agents think that ev-

erybody with whom they might interact is exactly like them.

As we mentioned above, the individual behavior model of the Axelrod model has two 

components, a selection component and an adjustment component.  We have explored the selec-

tion component from a number of angles, which we now describe.  The conclusion will be that,  

short of erecting behavioral "firewalls" that completely block interaction among people who 



3In order to implement this version of the model, we have developed a general purpose multi-
agent grid called MultiGrid2d, which allows us to create containers in the grid into which many 
agents can be inserted and removed.

_________________________
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differ, there is not much that can be done to preserve diversity by tinkering with the selection 

part of the model. 

III.A. Multi-agent villages

When we adopt an agent-based paradigm for extending this model, we can investigate 

one natural question: what if a village has many individual agents inside it?   If the agents are 

most likely to interact with others inside their village,  perhaps self-reinforcing "opinion clusters" 

will form.3

We assign features at random to each village, but then all agents within the village are 

identical.  The interaction component of the model requires us to introduce a new concept, paro-

chialism.  Parochialism is the likelihood that an agent will look within its own village when it 

seeks a partner for interaction.  The selection of others with whom to interact proceeds as fol-

lows.  First, a random draw dictates whether the agent seeks another within the village or from 

one of the neighboring villages.  Agents who seek interaction within their own village choose 

randomly among the others in their village.  The others will choose a neighboring village at ran-

dom, and then choose at random a candidate for interaction from that village.  As in the original 

ACM, the interaction occurs with probability equal to the similarity of the two agents.  If the 

level of parochialism is sufficiently high, meaning agents interact with their "own kind" fre-

quently enough, then perhaps the homogenizing impact of contact with outsiders can be amelio-

rated.

We have run batches of simulations with multi-agent villages, and we find that, while the 

homogenization of opinion takes longer, it generally still occurs. Contrary to our hopes, this 
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model does not lead to the development of self-reinforcing clusters.  Table 2 the summary statis-

tics can be found.  These results are for an extreme case in which parochialism is equal to 0.95,  

meaning that agents interact with people in their cell almost all of the time.  When the simulation 

stops because no agent has changed its culture features for 10 successive time steps, the agents 

believe that they are in a highly harmonious environment.  

The level of entropy drops to a very low, but nonzero value.  Why not all the way to 

zero? The agents mostly interact within their own cells, so the differences are preserved most of 

the time.  Still, in most runs of the model, the homogenization that occurs because of the (infre-

quent) interactions with neighboring villages is strong enough to overcome the parochialism ef-

fect. We have found a few runs in which one cell on the edge of the grid remains distinct on one 

or more features.  This outcome is the result of a "knife edge" balancing act.  On the edge, the 

agents from that cell can interact with only a restricted number of neighbors, so their exposure is 

limited.  Furthermore, by the "luck of the draw," when they consider interacting with outsiders, 

they find nothing in common with them.  This kind of "diversity" requires that all agents within a 

cell agree with each other exactly, and they avoid interaction with strangers assiduously.

[Table 2 about here]

There is, however, one very interesting property of these multi-agent grid simulations 

with high parochialism: the individual agents believe they are in a state of harmony throughout 

the simulation, but aggregate diversity goes from the maximum to zero during the run of the 

model.  Consider the extreme case in which parochialism is set at 0.95.  In each cell we create 5 

identical agents, and then we set them interacting with each other in random order, once per time 

step.  In Figure 3,  time paths for indicators from one of the runs of this model are drawn. Note 

that, when the simulation begins, the level of entropy is in fact high, because opinions are as-

signed randomly to the cells.  However, agent perceptions of homogeneity are quite high because 
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they frequently interact with other people within their cell, and at the start they are all identical.  

The measures of acquaintance, harmony, and identicality remain on the high side throughout the 

simulation.  But, as time goes by, entropy goes down.  Although the agents do not perceive it, the 

homogenization process is occurring.  If the parochialism coefficient is set at a lower level, the 

homogenization occurs more quickly, of course, but the agents are more aware of their diversity 

as well.

III.B. Less selective agents.

One is struck by the fact that these simulations tend to homogenize opinion because 

people who agree with each other are more likely to interact.  The "self-selection" process snow-

balls to create a situation in which the only people who interact are totally identical, and it ap-

pears to be just a matter of randomness whether or not there will be is one homogeneous society 

or a few homogeneous subgroups.  Suppose that people were open to a broader array of interper-

sonal contacts?  Wouldn’t it be possible to forestall the homogenization by raising the interaction 

rate among people who would not ordinarily interact? It turns out the answer is a decisive "no".

Building on some ideas in the early work of Coleman (1964: chap. 16), we explored a 

variant of the model that causes interaction to occur more often among people who disagree.  As 

in the original Axelrod model, at each time period, an individual encounters another individual, 

and an interaction occurs with probability proportional to similarity.  If the encounter does pro-

duce an interaction, the search for an interaction partner is complete in that period.  Alterna-

tively, if the encounter fails to produce an interaction, there is some probability that the interac-

tion will take place anyway.    We have called the probability of interaction under these circum-

stances the Coleman coefficient.  If the interaction does not take place, the individual continues 

to search up to 10 times until an interaction partner is located.
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[Table 3 about here]

To people who expect the increased interaction among people who differ to preserve di-

versity, the results of this "Coleman model" are surprising. And disappointing.  A summary of 

100 runs for three values of the Coleman coefficient is presented in Table 3.  Compared to the 

original Axelrod model with one agent per cell (which, implicitly, has the Coleman coefficient 

equal to 0), the number of iterations that occur before the culture is homogenized is reduced.  

Furthermore, as the Coleman coefficient is raised from 0.2 to 0.8, the number of iterations re-

quired to homogenize the society gets smaller and smaller.  The conclusion, of course, is that the 

impact of encouraging interactions among dissimilar agents is the accelerated destruction of di-

versity.  Or, viewed more positively, the ACM’s component of self-selection serves to sustain 

diversity!  People who avoid interaction with politically disagreeable encounters are acting to 

sustain their own beliefs (and,  by extension, the beliefs of their neighbors).  The attenuation of 

self-selection does not change the fact that, over the long haul, disagreement disappears.  But the 

preservation of these small clusters tends to delay the process of political homogenization.  

III.c. Neighborhoods and Workplaces

The extensions of the model presented thus far have stayed within the fundamental 

straints imposed by the original model.  The agents, or villages, do not move around, they are 

never exposed to new context or new information.  Perhaps redesigning the model so that agents 

can  move among diverse contexts will preserve diversity.  We strive to create conditions under 

which agents can experience political interaction with a more-or-less unpredictable set of others 

in a variety of contexts.   We pursue this strategy with the caveat that we don’t want the agents to 

wander pointlessly seeking political interaction, but rather they wander with a purpose.  Agents 

have "home" neighborhoods, where they might interact with family or neighbors, and they also 
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interact with people in social occasions, such as the workplace, church, a labor union meeting, 

and so forth.

[Figure 4 about here]

The description of this next step in our modeling exercise requires an explanation of a 

very significant departure in the design of the simulation model.   In Figure 4, we present a 

sketch of the geographical arrangement of the agents and their movement/interaction opportuni-

ties. There can be one or more "home grids," which are standard square arrays of agents.  There 

can also be workplaces where agents might go and seek out interactions.  In the home grid, there 

is some regularity to interaction, because the identity of the agent with whom one is interacting 

(if interaction occurs) is relatively more predictable.  On the other hand, interactions in the work 

grids are less predictable.  This is so because agents are unevenly "crowded" into the work grids.  

Agents from any home grid can be assigned to any of the cells in any of the work grids.  Some 

cells in a work grid can have several agents assigned to them, while others might have none.  In 

order to implement this in a meaningful way, it is necessary to redesign the scheduling substruc-

ture of the model to allow for movement among the milieux as well as the ability to search for 

available discussants and interact with them.

We have taken the following approach to scheduling agent actions.  This is a discrete 

event simulation, but up to this point we have thought of a time step as a single pass through the 

list of agents.  Now we take a more explicit approach of thinking of time as the passage of days, 

each of which is made up of a number of small time steps (say, hours).  In the simulations de-

scribed here, we (arbitrarily) set the number of steps per day to 10 and then we allow the agents 

to autonomously decide when to initiate interactions with neighbors who happen to be in their 

vicinity at a given instant.  Each agent begins the day at home, and stays there, on average, for 5 

time steps.  Some agents spend almost no time at home, while others spend all their time at 
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home.  When the time comes to move to the work grid, then the agent removes itself from the 

home neighborhood and inserts itself into its designated work grid.  During the time the agent is 

removed from one grid and "on the way to another," it cannot initiate any interactions and none 

of the other agents find it available for interaction.  At the start of each day, each agent randomly 

selects a time step during which to seek an interaction.  If the chosen time is before movement 

into the work grid, then the agent seeks interaction at home.  The agents are moving about, but 

they still search for discussants in the von Neumann neighborhood. 

The design which allows both movement and flexible interaction patterns diverges con-

ceptually from the standard Axelrod  model, of course.  The redesign causes a several changes in 

the selection of discussants.   First, there is the simple act of movement.  Agents who move take 

themselves out of the context of other agents and give themselves opportunities to find new con-

tacts.  The workplace offers a relatively unpredictable set of interactions because there can be 

many agents in each cell.   Second, the home neighborhoods are discrete from one another.  

Since the residents of different home grids never interact directly with each other, each home 

grid is, at least on the surface, insulated from the homogenizing pressures observed in the other 

models.   Perhaps we will generate neighborhoods in which there is local homogeneity (all 

people within grid i agree on an issue) but also global diversity (the agents in grid j disagree with 

the agents in grid i).

The results, which we now present, indicate that homogenization across neighborhoods is 

likely to occur.  Using the standard Axelrod rules for the selection of discussion partners (modi-

fied as above for multiple-occupancy grids) and adjustment of opinion, we find that, over the 

long run,  diversity is eradicated.  This is true for any geographical setup which follows the 

home/work grid dichotomy we have described.

[Table 4 about here]
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In Table 4, we give the summary statistics for a model in which there are five 10x10 

home grids and three 5x5 work grids.  One agent is assigned to each position in each home grid 

(meaning there are 500 agents in all), and agents are assigned positions in the work grids in a 

random way, meaning that some cells in the work grid are empty while others have several oc-

cupants.  The rules for multi-agent grids described above were used.  The parochialism coef-

ficient has been set to 0.5, meaning that an agent who is in a cell with other agents will pick 

among those agents with equal likelihood one half of the time, and the rest of the time a discus-

sant in one of the four neighbors will be chosen.

IIId.  Identity-based Selection.

In the models we have considered thus far, we have found several likely culprits in our 

search for the explanation of the model’s homogenizing tendency.  First, agents are likely to have 

a basis upon which to interact--one or more features in common.  Second, the agents interact if 

they have anything at all in common.  If agent A has one out of five features in common with 

agent B, there is a 20 percent chance they will interact, and A will copy a feature from B.  That 

can happen even if, on the other side of A, there is an agent that agrees with A about everything.  

Perhaps the shortcoming of this model is that it assumes agents initiate interactions with a ran-

domly drawn individual even though there are more agreeable agents in their immediate vicinity.

We now reconceptualize the selection process in the following way.  Rather than giving 

an agent the opportunity to interact with a randomly chosen neighbor, what if we allow agents to 

search their neighborhoods for discussants that they expect to be the most agreeable with them?  

Perhaps doing so will create enough selection bias to create and maintain diversity.

The model is implemented in the following way.  Each agent keeps a record about each 

other that it has contacted.  When the simulation proceeds, the agent searches its neighborhood 
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and draws one possible contact from each neighboring cell.  (If the agent’s own cell contains 

other agents, one of them is selected at random).   This creates a list of possible discussants.  

From this list, the agent then selects the one that is expected to have the most in common with it.  

If several in the list are equally "appealing," then one is selected at random with equal likelihood. 

The only substantive complication is that, at the outset, the agents have no accumulation 

of records upon which to make their decisions. At time 0, there are no acquaintances, and all 

agents are "strangers."   To deal with this, we allow the agents to learn from experience.  At the 

outset, the assumed harmony value for strangers is 0.5.  Every time the agent interacts with a 

stranger, that value is adjusted to reflect experience.  The upshot of all of this is that the agents 

are able to remember the others they have interacted with.

These selective agents can be placed into any of the interaction models, either the original 

Axelrod grid, the multi-agent grid, or the neighborhood/workplace models.  To our surprise, in 

none of these implementations did we find that heterogeneity was preserved.  In Table 5, we 

present two sets of summary statistics for the state of the model when the simulation ends.  In 5a, 

the results for the standard ACM are shown after the identity-based selection of discussants is in-

troduced.  It is not particularly surprising that the model reaches a steady state in a smaller num-

ber of time steps after identity based selection is introduced.  It is not a surprise that the agents 

believe that, when they interact, they are likely to find others who agree with them about most 

things.  And, furthermore, it is not particularly surprising that agents believe that the probability 

that they have something in common with a stranger is around 0.5.  It is, however, a surprise that 

the level of entropy is negligible and that the variance of opinion on each feature is 0.

[Table 5 about here]

The overall implication of these experiments is that the homogenization of public opinion 

is a pervasive (irresistible?) tendency when agents adjust their opinions according to the logic of 
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Axelrod’s original culture model.  Tinkering with the structure of the neighborhoods or attempt-

ing to condition interaction processes does not generate self-reinforcing social subgroups or di-

versity of opinion.  As a result, we have not yet been able to rebut the nasty implication of this 

model, which is that in order to preserve diversity on a social level, one must eliminate diversity 

on an individual level by blocking interactions among people who differ.

IV. Opinion Adjustment Variations

The second part of the agent-based model is focused on the way in which individuals respond to 

new opinions.  In the Axelrod model, the agents automatically copy a feature from their neighbor 

when they interact.  This assumption turns out to be the critical one, the one which deserves re-

examination.

Axelrod’s model shares certain features with models of population genetics (Gillespie, 

1998).  An agent’s culture array, e.g.,  (1,1,2,1,0), is scarcely different from a genetic string for 

an individual, and while interaction in the culture model is not exactly like genetic reproduction, 

there are certain similarities.  In population genetics one of the central questions focuses on the 

question of whether each generation is more or less diverse than its predecessor.  One theoreti-

cally compelling result is known as genetic drift.  Genetic drift--the complete takeover of a par-

ticular part of the genetic code by one particular trait--happens over the long run if there is ran-

dom interaction among individuals and reproduction follows the standard genetic laws.  The ho-

mogenization predicted by the population geneticist corresponds closely to the pattern of homog-

enization observed in the culture model, although the logic of individual interaction and adjust-

ment in the two models is not exactly the same.

If genetic drift (or cultural drift?) is to be expected when interactions occur among paired 

individuals, then perhaps a more significant conceptual departure is needed if diversity is to be 

preserved.  We now propose to reconsider the assumptions about the outcome of the interaction.  
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Perhaps the original culture model is too individualistic, in the sense that individual agents inter-

act in an isolated dyad.  What if, instead, social context plays a role?

 This avenue is promising.  We have found conditions under which diversity inside the 

local networks is preserved and, as a result, aggregate diversity is preserved as well.   The main 

idea is that people who interact in a one-on-one relationship bring a context with them which 

moderates their reactions to one another.  Agents do not copy features from each other in a "willy 

nilly" fashion.  Rather, they change only when there is "good reason" to do so.  Good reason,  is 

found when a majority of existing "friendly contacts" also support the proposed new opinion.  

Hence, it is a model of  "network-embedded resistance." 

Our motivation for this approach shares a good deal with the idea that lies behind the so-

cial impact model (Nowak, Szamrej, and Latane, 1990).  There are differences, however, on a 

number of levels.  Our current approach allows for the formation of endogenous personal net-

works of arbitrary size.  Dyadic interactions have impact which depends on these personalized 

networks.  In contrast, the SIM has neither dyadic interaction nor selective networks.  Further-

more, our approach is asynchronic and bottom-up.  In the SIM each cell is subjected to the si-

multaneous influence emitted by all cells and the value of the cell is adjusted in response to the 

net positive and negative influence (as in physics).  It is a synchronous model, one in which a 

"snapshot" of the grid is taken and all cells are updated against that snapshot.

The detail of our modeling strategy is as follows.  The agents come in contact with one 

another and they keep records on the identity and the opinions of the other agents.  They are able 

to "make notes" to indicate if the other agent is diametrically opposed to them (disagrees on all 

issues) or is in complete agreement, or somewhere in between.  An agent records the observation 

that another agent is agreeable, or is a "friend," if they agree on half or more of the features.  

When two agents interact, then a feature on which they differ is randomly selected and the agent 
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who initiated the contact considers adopting the other’s point of view.  When the agent is pre-

sented with a contradictory opinion, it can conduct a "small poll" of the other agents it has met in 

the past to find out if the new opinion is good one.  (We have two variants of this model.  The 

agent can base its decision on its recollections of their friend’s attitudes when they last met, or 

the agent can actively conduct a new survey of people who are listed as friends.)  If more than 

one-half of the contacts who are recorded as agreeable support the new point of view, then it will 

be adopted.    As far as we can tell, this new adjustment rule works to maintain diversity with any 

interaction model as long as the agent is exposed to a relatively large number of other agents . 

[Table 6 about here]

In Table 6, we present summary statistics for this "network-embedded resistance" model 

in a couple of contexts.  In 6a, the results for the impact of this change on the original Axelrod 

culture model.  Recall that the original model has a 10x10 grid, discussants are selected at ran-

dom from the four-sided neighborhood, and interaction occurs with probability equal to the simi-

larity of the agents.  The only difference in this model is that agents adopt new points of view 

when there is support for that view among a majority of their friends.  As in the previous cases, 

we stop the simulation when ten passes are made through the list of agents without a single agent 

changing a single feature.  In each of the 100 runs of the model, the level of entropy is in the 

middle ranges when the simulation stops. The variance of the features is also far from zero.  Fur-

thermore, the perceptions of the agents indicate that they correctly perceive that they are in a 

mixed environment.

In Table 6b, the summary results for the model with 5 home grids and 3 work grids are 

presented.  These summary results are not substantially different from the one neighborhood 

model represented by 6a.  We have selected (at random) one of the runs of this model for presen-

tation in Figure 5.  Note how entropy starts at a relatively high level but settles down into a 
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steady state in the middle range, while perceptions of homogeneity rise.  Agents think they agree 

about two-thirds of the time with the people with whom they interact and they expect less than 

1/3 of their discussants to be identical with them.

[Figure 5 about here]

We do not hold out this simulation exercise as a model of reality.  Rather, as Axelrod 

(1997b) argues, it is a "thought experiment" through which we investigate the implications of our 

ideas.  However, we hasten to add that we think we are in the right empirical "ball park."  First, 

our survey-based studies of discussion partners generally unearth diversity within the networks 

of discussants.  Furthermore, there is evidence that individuals who are presented with views that 

contradict their own are more likely to change their minds when there is a high level of support 

for the new view within their network of friends (see Huckfeldt, Johnson, and Sprague, 2002).  

V. Conclusion

The tendency of repeated social interaction to squeeze out cultural diversity appears to be 

pervasive when opinion adjustment occurs according to the model originally specified by Axel-

rod.  A number of efforts to adjust the logic through which agents are "put together" did not 

change that basic tendency.  If we dub this phenomenon "cultural drift," it indeed appears perva-

sive in models of dyadic interaction.

A change in the way that agents decide whether or not they should adopt new culture fea-

tures can change the model’s fundamental tendencies, however.  If agents view new information 

within the context of their political experience, taking into account information from other dis-

cussion partners, then the tendency toward homogenization is abated.  While the interaction pro-

cess does result in homogenization to a degree, it appears that, across a relatively wide range of 
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initial conditions, and within a number of interaction environments, the use of the network--

embedded adjustment will preserve  a measurable amount of diversity.

On the face of it, there does not seem to be any necessary reason why the network--

embedded model of decision should preserve diversity.  After all, if a society were completely 

homogeneous, then interaction would sustain that pattern, and sprinkling in minority points of 

view here and there would not change that.  Furthermore, we acknowledge that it is possible to 

design starting positions for the simulation that would cause diversity to be eradicated.  A care-

fully crafted chain of networks could be constructed, no doubt, that would fold under the pres-

sure of repeated interaction.  However, when preferences are assigned in a random way, we have 

found that network-embedded individuals act in such a way as to preserve diversity both within 

their immediate spheres as well as on an aggregate level. 

The ironic aspect of this outcome is, of course, that the agents themselves are not seeking 

diversity in any sense of the word. Quite the opposite, they are seeking to cooperate with the ma-

jority of the agents that are most like them.  As a consequence, we are inclined to call the result-

ing diversity an emergent property of the complex system.

Finally, in conclusion, we would like to mention that we have  considered many minor 

adjustments in this model that we have not reported here.  We considered a model in which 

agents were spread unevenly on the grid.  We considered a change in the interaction process so 

that either agent might copy a feature from the other, or that both might do so.  We have consid-

ered variations on the way agents decide how appealing strangers might be.  None of these 

changes yielded results which differ from those described here. 
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Table 1

Axelrod Culture Model
5 Features, 3 Traits
Summary of 100 Simulations

Mean Standard Deviation
Iterations 441.89 146.49
Variance of Opinion
feature 0 0 0
feature 1 0 0
feature 2 0 0
feature 3 0 0
feature 4 0 0
totalEntropy 0 0
Average of Perceptions
Acquaintance 0.99 0
Harmony 0.99 0
Identical 0.97 0.01

Table 2
Multi-Agent Grid

5 Agents per cell (10x10 grid)
5 Features, 3 Traits, Parochialism=0.95
Summary of 100 Simulations

Mean Standard Deviation
Iterations 8220.61 2511.32
Variance of Opinion
feature 0 0.00168 0.0011
feature 1 0.00038 0.0038
feature 2 0 0
feature 3 0.00008 0.0008
feature 4 0 0
totalEntropy 0.000408 0.002008
Average of Perceptions
Acquaintance 0.999 0.00042
Harmony 0.999 0.00029
Identical 0.997 0.00144



Table 3
Restricted Self-Selection: The "Coleman" Model

Coleman Model
5 Features, 3 Traits
Summary of 100 Simulations
Coleman Parameter 0.2 0.5 0.8

Mean St. Dev. Mean Std.Dev Mean Std.Dev.
Iterations 240.85 79.1 262.92 77.74 272.26 94.58
Variance of Opinion
feature 0 0 0 0 0 0 0
feature 1 0 0 0 0 0 0
feature 2 0 0 0 0 0 0
feature 3 0 0 0 0 0 0
feature 4 0 0 0 0 0 0
totalEntropy 0 0 0 0 0 0
Average of Perceptions
Acquaintance 0.99 0 0.99 0 0.99 0
Harmony 0.99 0 0.99 0 0.99 0
Identical 0.96 0.02 0.96 0.01 0.96 0.02

Table 4
Five Neighborhoods (10x10) and Three Workplaces (5x5)

5 Features, 3 Traits, Parochialism=0.5
Summary of 100 Simulations

Mean Standard Deviation
Iterations 20286 29.01
Variance of Opinion
feature 0 0 0
feature 1 0 0
feature 2 0 0
feature 3 0 0
feature 4 0 0
totalEntropy 0 0
Average of Perceptions
Acquaintance 0.999 0.002
Harmony 0.998 0.00155
Identical 0.988 0.0077



Table 5
Identity-based Selection of Discussants

a)  Identity-based selection in the standard Axelrod model (10x10 grid)

5 Features, 3 Traits
Summary of 100 Simulations

Mean Standard Deviation
Iterations 282.03 90.88
Variance of Opinion
feature 0 0 0
feature 1 0 0
feature 2 0 0
feature 3 0 0
feature 4 0 0
totalEntropy 0 0
Average of Perceptions
Acquaintance 0.599. 0.010
Harmony 0.99 0.0034
Identical 0.958 0.0166

b) Identity-based selection in the 5 neighborhood, 3 workplace model

5 Features, 3 Traits
Summary of 100 Simulations

Mean Standard Deviation
Iterations 10220.6 3588.51
Variance of Opinion
feature 0 0 0
feature 1 0 0
feature 2 0 0
feature 3 0 0
feature 4 0 0
totalEntropy 0 0
Average of Perceptions
Acquaintance 0.599. 0.005
Harmony 0.999 0.00181
Identical 0.983 0.009



Table 6
Network-embedded Resistance

a) Resistance incorporated in the standard Axelrod culture model (10x10 grid)

5 Features, 3 Traits
Summary of 100 Simulations

Mean Standard Deviation
Iterations 71.5 13.82
Variance of Opinion
feature 0 0.64 0.11
feature 1 0.64 0.056
feature 2 0.64 0.061
feature 3 0.64 0.062
feature 4 0.63 0.062
totalEntropy 0.71 0.016
Average of Perceptions
Acquaintance 0.44 0.031
Harmony 0.60 0.030
Identical 0.36 0.046

b) Resistance incorporated in the 5 neighborhood, 3 workplace model

5 Features, 3 Traits
Summary of 100 Simulations

Mean Standard Deviation
Iterations 7871.3 29.01
Variance of Opinion
feature 0 0.61 0.12
feature 1 0.64 0.13
feature 2 0.64 0.12
feature 3 0.61 0.11
feature 4 0.61 0.12
totalEntropy 0.65 0.054
Average of Perceptions
Acquaintance 0.49 0.025
Harmony 0.68 0.023
Identical 0.37 0.043




