
Swarm Idioms

Paul E. Johnson

Little Things Worth Knowing

● Understand the way Swarm users talk/write
● Looking for trouble
● Don't be afraid to ask

Item #1: Memory and Zones

● C requires explicit memory allocation
● Swarm uses a Zone concept

– Zone is an object that can allocate memory when you
need it.

– Objects can be grouped by Zones (debugging).
● If a SwarmObject wants memory, it has to find its

own Zone to ask for some:
 id <Zone> myZone = [self getZone]
● Usually accessed implicitly like so:
id <List> myList = [List create: [self getZone]];

But there's a counterexample in
Model Swarm!

● In ModelSwarm.m, one often finds:
id <List> myList = [List create: self];
● Why doesn't it get its Zone for memory?
● Answer: Swarm objects are subclassed from Zone,

so they are Zones and don't need to ask for a Zone.
● GUISwarm (like ObserverSwarm) is also a Zone
● Read old Swarm programs, see this was not

always true.

Item #2: Creating Objects

● Swarm designers conceptualized the creation/use
of objects as 3 phases
– Creating: permanently fixing attributes that are “once

and final”
– Setting: methods that can be called during the creating

phase or later
– Using:

● This paradigm causes a particular Swarm style of
writing programs.

Createbegin, CreateEnd
anObject = [SomeClass createBegin: self];
[anObject setThisVariable: 5];
[anObject setThatVariable: 22];
anObject = [anObject createEnd];

● +createBegin: is a “Class method”. We ask the
class to carry out the first phase of creation

● -createEnd is an “instance method”. An object
carries “closes off” its CREATING phase.

● After createEnd is called, only SETTING and
USING methods can be used

createEnd: good chance to
initialize

● C programs react badly when “uninitialized”
variables are used.

● Example: suppose and IVAR x is not initialized

int y = 3 + x;

will produce gibberish.
● the createEnd method is a good place to set

variables like x.

createEnd

Common usage:

- createEnd
{

x = 0;
return [super createEnd];

}

What's that [super createEnd] ?? super's createEnd
Why return [super createEnd] ?? just “self”?

createEnd: maybe better to:

● - createEnd
{
 [super createEnd];
 x=0; //put after to undo super's behavior
 return self;
}

Create: is a shorthand

● If you use the “create:” method, the Swarm library
will (behind the scenes) run
createBegin:
createEnd

● In other words, these are the same:
id myObject = [SwarmClass create: self];
● and
id myObject = [SwarmClass createBegin: self];
 myObject = [myObject createEnd];

Forget createEnd: big problem!

● Perhaps the most frequent cause of program
crashes and unexpected behavior:

●

● User forgets createEnd:

If Create is so great, Why do PJ's
models have init:?

● The Archiver takes objects out of storage,
bypassing createBegin: and createEnd.

● This creates an initialization problem.
– “nil” objects may exist.

● init: method is inserted in some models to make
sure that variables & objects are initialized

● Same actions could be in createEnd, except for
Archiver issues.

Item #3: Iterating over Collections

● Suppose myList is full of things.
id <List> myList= [List create: self];
● Here's a bad way to iterate
int i;
for (i=0; i < [myList getCount]; i++)
 {

 id anObject = [myList atOffset: i];
{do something to anObject}

}
● Its slow! atOffset: in a List repeatedly counts up

from 0.

discouraged while loop
● Here's another approach
 id anObject;
 id <Index> index = [myList begin: self];

 while ((anObject=[index next]) != nil)
 {

 [harrass anObject all you want :)];
 }
 [index drop]
● That's widely used, often OK
● Danger: what if a “nil” is in your collection?
● Do you really mean to stop processing?

Recommended way to iterate

id anObject;
id <Index> index=[myList begin: [self getZone]];

for (anObject=[index next];
 [index getLoc]==Member;
 anObject=[index next])
 {
 [goes through whole collection, even nils];
 }
[index drop];
● Member is symbol for a valid collection element

Item #4: Swarm Arrays and Lists

● Array: allocate N “slots” for objects.
● Fast access

– retrieve:
 [anArray atOffset: 5];
– insert:
 [anArray atOffset: 5 put: anObject];

● Does not allow “addLast:” (as does List)
● index usage same as with Lists

– but atOffset: not so slow as with Lists...

Item #5: Command Line Arguments

● Run a model with –help to see command line
options

● Short form (one dash, no equal sign)
 # ./heatbugs -b -S442432
● Long form (two dashes, one equal sign)
 # ./heatbugs –batch –seed=442432
● Several built in command line options
● New command line options can be added by

adding a user “Arguments” class

Item #6: Random Numbers

● pseudo random numbers (MT19937 is default)
● Swarm Distributions

– Uniform Double
– Normal
– Equally likely integers
– Binomial

● Same Seed = Same numbers every time
● Random Re-Seed with Swarm models:

./heatbugs -s
● or specify seed yourself:

./heatbugs -S2344322

Item #7: Runtime Crashes

Many possible causes of crashes
● Forget “createEnd”
● Schedule an agent to do something impossible.

– Obj-C is “run time” binding
– Run will crash if you send a Message that agent can't

carry out
– Sometimes terminal output will reveal problem

● Object does not respond to “xxx”

Here's a bad thing to do in sss

● [modelActions createActionTo: agentList
 message: M(step)];
Changed to
● [modelActions createActionTo: agentList
 message: M(jumpOffBridge)];
● That does compile and tries to run
● Runtime crash says “Segmentation fault”
● Very difficult to track down cause
● Lesson: Be very careful in writing messages!

The Debugger: GDB

● gdb: GNU debugger
 # gdb ./sss
 > run
● when it crashes, type “bt” to get backtrace
● Or set a “breakpoint”
 > break ModelSwarm.m:120

– installs a “break point” at line 120 in ModelSwarm.m
– run model, then “step” or “next” through code

GDB helps, sometimes

● If you have a crash, and you ask for help, the first
thing we ask for is a “backtrace”

● Sometimes frustrating because
– none of “your model code” seems to cause the crash
– debugging symbols are missing from pre-compiled

libraries
– doesn't help in finding “bogus selector” crash

● Very helpful with some kinds of crashes:
– accessing “out of bounds” points in grids
– looping “out of bounds” in an array

Item #8: GUI is not just eye-candy

● Graphs may reveal coding mistakes
● Clicks on Rasters may let you interact with agents

and see their instance variables
● sss-2.3: both right and left click
● click & probe functionality is only “real reason” to

link a ObjectGrid2d lattice of objects with the
display grid on the screen.
– could just let agents draw on screen
– but then could not find them by clicking

Item #9: printf/fprintf

● printf
– printf(“PJ says %d”, aVariable)
– Ordinary C way of writing to the “screen”
– Common way of finding out “what's going on”

● fprintf(stderr, “PJ says %d”, aVariable);
– Does same thing
– Better in case program crashes because output is forced

through in sequence

Item #10: Langton's advice

● Chris Langton writes in the original Swarm
tutorial
– get a program that works.
– make small, incremental changes.
– make sure it does not break.

Item #11: Read Your Compiler
Output

● Some models will run despite the presence of
Warnings

● Nevertheless, “good practice” is to fix code to
eliminate all warnings.

● Nobody in swarm-support will be interested in
helping you if you send them a package of code
that does not “at least” compile cleanly.

