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I Where do you stand?

* Expert programmer? No problem, dig in
I  Complete Novice: Swarm's not a bad way to

learn (IMHQO)

- Get a good book on C:
* Kochan, Programming in ANSI C
* Kernighan & Richie: The C Programming Language

- Work hard on 1% part of Swarm Tutorial

* Intermediate: Swarm's a good place to learn
ideas of Object-Oriented Programming

* Java users: still need to master Obj-C Swarm



Gathering Tools

Install Swarm

— pre-built “binary packages”: various platforms
- get archive and compile: swarm-2.2.tar.gz

- binary packages preferred for neophytes
Make sure you have a good editor:

- Emacs

gdb : The GNU debugger

Miscellaneous GNU tools
- wget
- ftp



Web sites to remember

Swarm Development Group:
http://www.swarm.org (old)
http://wiki.swarm.org (new)

My Swarm HQ:

http://lark.cc.ku.edu/~pauljohn/Swarm
Swarm packages for Linux users
Links to many resources (discussed next)

Ecoswarm (Steve Railsback):
http://www.humboldt.edu/~ecomodel/software.
htm



I Gather Manuals

Put copies in ~/swarm/docs
I * The “Objective-C" book in pdf form

* The reference guide for Swarm
- Don't take the source code for the guide
- Look for a bland name like “set-html-2.2.tar.gz

* Swarm User Guide
- A [immodesty alert] pretty good discussion of
Swarm in Objective-C
— Look for it in html or postscript or pdf format

e SwarmOnlineFaq
* Keep a copy of the Swarm Source code,
even if you don't compile Swarm
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I Should also get...

- The wonderful free/open statistical powerhouse.
* Drone: Ted Belding (U. Mich) tool for batch
processing simulations

e Some programs may require addon libraries:
- GSL: The GNU Scientific Library
- BLAS (linear algebra)
- Swarm GraphLib
- UM-EXPtools

I * R http://www.r-project.org




* join swarm-support and swarm-modelling
(via www.swarm.org)

I Emalil Lists
I



I Swarmapps

Swarm Tutorial as well as other
demonstration programs.

* Most recent official release:
- swarmapps-2.1.1.tar.gz

* Newer snapshots are available from Paul
Johnson <pauljohn@ku.edu> or directly from
Swarm's online code (CVS) repository

I e Swarmapps is a tar.gz file containing the



I Read through the Swarm
| Tutorial

e Steps from elementary C to the design of
I Swarm models.

* Recently added elements
- “batch” processing of simulations
— parameter classes & command line arguments
— data collection

* Get the newest version of swarmapps,

because it has new components
- simpleObserverBug3
- simpleBatchBug1-3



Shop for working programs

Swarm changes, programs change, not all
work all of the time
Get programs from authors or on the web

Swarm ftp site has
— apps/objc/sdg apps/objc/contrib
- apps/java/sdg apps/java/contrib

Make sure a program compiles & runs
before you exert any effort on it.

If you find a program is out of date, contact
the author directly. Don't be bashful.



I Small Working Examples

programs that illustrate usage of specific
Swarm elements.

* Best way to learn "how to” use a particular
thing.

* Best way to get help and report bugs

* These and others are collected in the
WorkingExampleCode directory referred to in
SwarmFAQ

I * Marcus Daniels (SDG) wrote many small



Questions to ask about a model

* What do these agents “do”?

* How do they interact?
- meet each other?
- detect changes in environment?

* How are their actions “interleaved” in time?
- synchronous: all step at same time, don't
Impact environment until all have acted.

— asynchronous: each one steps and registers its
Impact on the environment

- event-driven (dynamic) scheduling



I Scheduling

I * Regular (process a collection of agents)
or
* Dynamic (Event-driven)



I Heatbugs: Prototype Swarm
I Application

model you run

* Agents are bugs seeking “just the right”
temperature

* Each bug deposits heat onto a "HeatSpace”

 Each bug moves in a 2d grid that is “overlaid”
on the HeatSpace

I * After tutorial, Heatbugs should be the first
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I Heatbugs, cont.

- No direct interaction
- Prevented from “overlapping” on grid
- Bugs create and adjust to heat in HeatSpace
* Schedule: repeated 'trips through the list’
- Possibly randomized
* Batch mode: run with -b, note the Graphs
write out their number streams to files
- limited usefulness (IMHO), except it

demonstrates “fork” in main.m between GUI
ObserverSwarm and BatchSwarm

I * Bug Interactions:



I Dynamic Scheduling:
I Mousetrap

* There's a "master schedule” in ModelSwarm

* Mouse traps “go off” and then notify
ModelSwarm that other traps are supposed
to go off at a future time

* Not completely “decentralized” in the bottom-
up sense

* A true bottom-up scheduling arrangement is
possible (pjrepeater® examples), but
technically equivalent

I * Most notable event-driven Swarm simulation
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Mousetrap: midpoint
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Mousetrap: finished
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I Dynamic Scheduling: Ballet

Pirouette: Dance Choreographing by
Computers,” YELM Journal (2003).

* Dancers have a list of dance steps and a
“transition matrix”

* Dance Step take a variable number of time
steps

* Swarm model has dancers “schedule
themselves” for new steps X timesteps into
future (asynchronous, dynamic scheduling).

I * Tina Yu & Paul Johnson, “Tour Jeti,
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Brief Interlude for Whining
about nonDynamic Scheduling

* Scheduling: “createActionForEach™ often
causes more trouble than its worth

* Easier to
— create a for loop that processes agents
- myLoop {
...[do something for each element in a collection];

}
* |In buildActions:

[schedule at: O createActionTo: self
Message: M(myLoop)];



I Scheduling Opinion, cont.

- keeps agent actions “together in time”

- faster because it does not invoke the “deep
down” scheduling apparatus so much

— avoids major hassles, especially when writing
models in Java

* Counter argument:

- Sometimes you want to throw actions onto the
pile at a given time and want them all "mixed up”

I * Reasons to take “loop” approach



I Asynchronous And
I Synchronous

* Commonly mistaken as a Swarm library
I ISsue.
* Actually, its an issue of conceptualization
and user model design
* Sudden Impact: Does programmer intend
agents to have impacts on environment/other
agents that are immediately?



I Cellular Automata

* Conway Game of Life (conway-1.1-Swarm-

* CA can be written in Swarm
I 2.2.tar.gz available online
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Scheduling in Game of Life

* Game of life has no “agents”
* The cells are updated at each step

* Double-buffered “grid”

- each cell is updated against a snapshot of the
grid from the previous period

— after all cells are updated, then their status is
drawn onto the grid

* This is SYNCHRONOUS updating



I Schelling2

Segregation”, J. Math. Soc, 1971

* Agents move in response to hi/low levels of
diversity in local environment

* schelling2 Code available MySwarmCode

I * Thomas Schelling, “Dynamic Models of



I Schelling2 Runtime Options

* ASYNCHRONOUS or SYNCHRONOUS
I * Load & save parameter files

* Set Neighborhood type- Moore or
VonNeumann

* Radius of neighborhood

* Edge effects & Wrap Around

* Randomized ordering of agent actions at
each step



Standard Schelling Start
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Standard Schelling End
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Explore: flight1.setup
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I Protest Activist Model

Commitment in Collective Action”, JASS
(2002).

* “Activists” code available PJ's
‘MySwarmCode/Protest”

* Agents on a grid

* Can (optionally) move

e Can protest if they are unhappy or want
change

* Agents “view” limited number of cells in their
vicinity

I * Brichoux and Johnson, “Power of



I Protest #2

e SYNCHRONOUS compiler flag

I — each agent chooses next behavior on the basis
of a “snapshot” of community at previous instant
- SYNC can produce “modeling artifacts”
(Huberman and Glance, ,)

e ASNCHRONOUS model:

— each agent's action registers in eyes of others
‘right away”
— more realistic?
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I Social Impact Model

* A classic cellular automaton

* Agents change YES or NO depending on
social pressure (distance weighted)

e Swarm “SIM” available PJ's MySwarmCode

e Swarm SIM model implements
ASYNCHRONOUS option

e Swarm SIM implements “variable
neighborhood size”

I * Nowak & Latane, Social Impact Model



Social Impact Model
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I Collector Grids™

problem?

* Activists, SIM, Schelling2 use “collector
grids” to register the actions of agents.

* Too slow to have each agent search each
neighboring cell for each step

* Faster to have agents “take action” and
register that action on all cells within
“eyesight”.

* Other agents can obtain “visible activity” with
a single check or a Grid position.

I * Speed: Swarm Library problem or User



“Full Service” Swarm models

* GUI output for diagnostics and interaction
I * Clear Summary Measures & Indicators

* Batch output
- run model repeatedly
- allows “command line” arguments for “parameter
sweeps” (look for Parameter classes)
* Serialization & stability analysis
— detalls, see details in presentation
Sfest03_serialization.pdf
* Scheduling variations

e Documentation



Artificial Stock Market

* Pioneering ABM study (LeBaron, et al).

* Swarm project on Sourceforge
http://ArtStkMkt.sf.net
Code revisions discussed Johnson, “Agent-based
Modeling...”, Soc. Sci. Computer Review, 2001.



I What's in the ASM?

* Agents receive info on the world and on
stock price patterns

* Each agent has an intricate "mental model”
of the world (Genetic Algorithm)

* Agents invest in isolation: never meet

* Runs for hours in order for agents to “learn”

I * Agents buy or sell a single stock



Classges used in Artificial Stock Market| Versicon 2. 2)
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I ASM: Serialization

* ASM-2.4 implements Serialization:
I — able to save entire state of simulation and restart
- valuable because of long “burn in” time for ASM

* Serialization allows one to change agent
behavioral assumptions within a “stabilized”
context.

* Developing “Social ASM” in which agents
can copy from each other



I Public Opinion (home & work)

Disagreement: The Survival of Diverse
Opinions within Communication Networks
(Cambridge, 2004)

* Code available PJ's MySwarmCode

* Agents interact only when they
- find another available agent and
— choose to initiate interaction

* Various behavioral premises
* (Comparatively) complete documentation

I * Huckfeldt, Johnson, Sprague, Political



Many agents per cell allowed




Opinion Model #2

* Full implementation of Swarm serialization in
LispArchiver format

* Run model to equilibrium

* Restart repeatedly after small random
shocks.
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I Opinion Model #3

* Makes picture (png format) snapshots of
grids at designated intervals.

* Text output: use C commands to write text
into files

* Unix tools for post-processing data files (tail,
etc) & R scripts for graphs

* Some (smarter) users prefer HDF5 output
which can be obtained from EZGraph

I * Thorough example of batch processing.



I Multi-Agent Grids

Grid2d with one agent per cell
* Sometimes we want multi-agent cells

* Sven Thommesen developed 1° prototype of
multi-agent grid (MoGrid2d)
* PJ's MultiGrid2d is MoGrid2d on steroids.
- answers all ordinary Swarm instructions suitable
for grids
— allows full customization of “cell sites™ to allow
diagnostic information collection

I * Original Swarm designers always considered



