
Moving On in Swarm

Paul Johnson
Ecological Society of America

Portland, OR
2004/08/02

Where do you stand?

● Expert programmer? No problem, dig in
● Complete Novice: Swarm's not a bad way to

learn (IMHO)
– Get a good book on C:

● Kochan, Programming in ANSI C
● Kernighan & Richie: The C Programming Language

– Work hard on 1st part of Swarm Tutorial
● Intermediate: Swarm's a good place to learn

ideas of Object-Oriented Programming
● Java users: still need to master Obj-C Swarm

Gathering Tools

● Install Swarm
– pre-built “binary packages”: various platforms
– get archive and compile: swarm-2.2.tar.gz
– binary packages preferred for neophytes

● Make sure you have a good editor:
– Emacs

● gdb : The GNU debugger
● Miscellaneous GNU tools

– wget
– ftp

Web sites to remember

Swarm Development Group:
http://www.swarm.org (old)
http://wiki.swarm.org (new)

My Swarm HQ:
http://lark.cc.ku.edu/~pauljohn/Swarm
Swarm packages for Linux users
Links to many resources (discussed next)

Ecoswarm (Steve Railsback):
http://www.humboldt.edu/~ecomodel/software.

htm

Gather Manuals

Put copies in ~/swarm/docs
● The “Objective-C” book in pdf form
● The reference guide for Swarm

– Don't take the source code for the guide
– Look for a bland name like “set-html-2.2.tar.gz”

● Swarm User Guide
– A [immodesty alert] pretty good discussion of

Swarm in Objective-C
– Look for it in html or postscript or pdf format

● SwarmOnlineFaq
● Keep a copy of the Swarm Source code,

even if you don't compile Swarm

Should also get...

● R http://www.r-project.org
– The wonderful free/open statistical powerhouse.

● Drone: Ted Belding (U. Mich) tool for batch
processing simulations

● Some programs may require addon libraries:
– GSL: The GNU Scientific Library
– BLAS (linear algebra)
– Swarm GraphLib
– UM-EXPtools

Email Lists

● join swarm-support and swarm-modelling
(via www.swarm.org)

Swarmapps

● Swarmapps is a tar.gz file containing the
Swarm Tutorial as well as other
demonstration programs.

● Most recent official release:
– swarmapps-2.1.1.tar.gz

● Newer snapshots are available from Paul
Johnson <pauljohn@ku.edu> or directly from
Swarm's online code (CVS) repository

Read through the Swarm
Tutorial

● Steps from elementary C to the design of
Swarm models.

● Recently added elements
– “batch” processing of simulations
– parameter classes & command line arguments
– data collection

● Get the newest version of swarmapps,
because it has new components
– simpleObserverBug3
– simpleBatchBug1-3

Shop for working programs

● Swarm changes, programs change, not all
work all of the time

● Get programs from authors or on the web
● Swarm ftp site has

– apps/objc/sdg apps/objc/contrib
– apps/java/sdg apps/java/contrib

● Make sure a program compiles & runs
before you exert any effort on it.

● If you find a program is out of date, contact
the author directly. Don't be bashful.

Small Working Examples

● Marcus Daniels (SDG) wrote many small
programs that illustrate usage of specific
Swarm elements.

● Best way to learn “how to” use a particular
thing.

● Best way to get help and report bugs
● These and others are collected in the

WorkingExampleCode directory referred to in
SwarmFAQ

Questions to ask about a model

● What do these agents “do”?
● How do they interact?

– meet each other?
– detect changes in environment?

● How are their actions “interleaved” in time?
– synchronous: all step at same time, don't

impact environment until all have acted.
– asynchronous: each one steps and registers its

impact on the environment
– event-driven (dynamic) scheduling

Scheduling

● Regular (process a collection of agents)
or
● Dynamic (Event-driven)

Heatbugs: Prototype Swarm
Application

● After tutorial, Heatbugs should be the first
model you run

● Agents are bugs seeking “just the right”
temperature

● Each bug deposits heat onto a “HeatSpace”
● Each bug moves in a 2d grid that is “overlaid”

on the HeatSpace

Heatbugs, cont.

● Bug Interactions:
– No direct interaction
– Prevented from “overlapping” on grid
– Bugs create and adjust to heat in HeatSpace

● Schedule: repeated 'trips through the list'
– Possibly randomized

● Batch mode: run with -b, note the Graphs
write out their number streams to files
– limited usefulness (IMHO), except it

demonstrates “fork” in main.m between GUI
ObserverSwarm and BatchSwarm

Dynamic Scheduling:
Mousetrap

● Most notable event-driven Swarm simulation
● There's a “master schedule” in ModelSwarm
● Mouse traps “go off” and then notify

ModelSwarm that other traps are supposed
to go off at a future time

● Not completely “decentralized” in the bottom-
up sense

● A true bottom-up scheduling arrangement is
possible (pjrepeater* examples), but
technically equivalent

Mousetrap start

Mousetrap: midpoint

Mousetrap: finished

Dynamic Scheduling: Ballet

● Tina Yu & Paul Johnson, “Tour Jeti,
Pirouette: Dance Choreographing by
Computers,” YELM Journal (2003).

● Dancers have a list of dance steps and a
“transition matrix”

● Dance Step take a variable number of time
steps

● Swarm model has dancers “schedule
themselves” for new steps X timesteps into
future (asynchronous, dynamic scheduling).

Dancer

Brief Interlude for Whining
about nonDynamic Scheduling

● Scheduling: “createActionForEach” often
causes more trouble than its worth

● Easier to
– create a for loop that processes agents
- myLoop {

...[do something for each element in a collection];
}

● In buildActions:
[schedule at: 0 createActionTo: self
 Message: M(myLoop)];

Scheduling Opinion, cont.

● Reasons to take “loop” approach
– keeps agent actions “together in time”
– faster because it does not invoke the “deep

down” scheduling apparatus so much
– avoids major hassles, especially when writing

models in Java
● Counter argument:

– Sometimes you want to throw actions onto the
pile at a given time and want them all “mixed up”

Asynchronous And
Synchronous

● Commonly mistaken as a Swarm library
issue.

● Actually, its an issue of conceptualization
and user model design

● Sudden Impact: Does programmer intend
agents to have impacts on environment/other
agents that are immediately?

Cellular Automata

● CA can be written in Swarm
● Conway Game of Life (conway-1.1-Swarm-

2.2.tar.gz available online

Conway

Scheduling in Game of Life

● Game of life has no “agents”
● The cells are updated at each step
● Double-buffered “grid”

– each cell is updated against a snapshot of the
grid from the previous period

– after all cells are updated, then their status is
drawn onto the grid

● This is SYNCHRONOUS updating

Schelling2

● Thomas Schelling, “Dynamic Models of
Segregation”, J. Math. Soc, 1971

● Agents move in response to hi/low levels of
diversity in local environment

● schelling2 Code available MySwarmCode

Schelling2 Runtime Options

● ASYNCHRONOUS or SYNCHRONOUS
● Load & save parameter files
● Set Neighborhood type- Moore or

VonNeumann
● Radius of neighborhood
● Edge effects & Wrap Around
● Randomized ordering of agent actions at

each step

Standard Schelling Start

Standard Schelling End

Explore: flight1.setup

Protest Activist Model

● Brichoux and Johnson, “Power of
Commitment in Collective Action”, JASS
(2002).

● “Activists” code available PJ's
“MySwarmCode/Protest”

● Agents on a grid
● Can (optionally) move
● Can protest if they are unhappy or want

change
● Agents “view” limited number of cells in their

vicinity

Protest #2

● SYNCHRONOUS compiler flag
– each agent chooses next behavior on the basis

of a “snapshot” of community at previous instant
– SYNC can produce “modeling artifacts”

(Huberman and Glance, ,)
● ASNCHRONOUS model:

– each agent's action registers in eyes of others
“right away”

– more realistic?

Protest snapshot

Social Impact Model

● Nowak & Latane, Social Impact Model
● A classic cellular automaton
● Agents change YES or NO depending on

social pressure (distance weighted)
● Swarm “SIM” available PJ's MySwarmCode
● Swarm SIM model implements

ASYNCHRONOUS option
● Swarm SIM implements “variable

neighborhood size”

Social Impact Model

Collector GridsTM

● Speed: Swarm Library problem or User
problem?

● Activists, SIM, Schelling2 use “collector
grids” to register the actions of agents.

● Too slow to have each agent search each
neighboring cell for each step

● Faster to have agents “take action” and
register that action on all cells within
“eyesight”.

● Other agents can obtain “visible activity” with
a single check or a Grid position.

“Full Service” Swarm models

● GUI output for diagnostics and interaction
● Clear Summary Measures & Indicators
● Batch output

– run model repeatedly
– allows “command line” arguments for “parameter

sweeps” (look for Parameter classes)
● Serialization & stability analysis

– details, see details in presentation
Sfest03_serialization.pdf

● Scheduling variations
● Documentation

Artificial Stock Market

● Pioneering ABM study (LeBaron, et al).
● Swarm project on Sourceforge

 http://ArtStkMkt.sf.net
Code revisions discussed Johnson, “Agent-based

Modeling...”, Soc. Sci. Computer Review, 2001.

What's in the ASM?

● Agents buy or sell a single stock
● Agents receive info on the world and on

stock price patterns
● Each agent has an intricate “mental model”

of the world (Genetic Algorithm)
● Agents invest in isolation: never meet
● Runs for hours in order for agents to “learn”

ASM
In
Action

ASM: Serialization

● ASM-2.4 implements Serialization:
– able to save entire state of simulation and restart
– valuable because of long “burn in” time for ASM

● Serialization allows one to change agent
behavioral assumptions within a “stabilized”
context.

● Developing “Social ASM” in which agents
can copy from each other

Public Opinion (home & work)

● Huckfeldt, Johnson, Sprague, Political
Disagreement: The Survival of Diverse
Opinions within Communication Networks
(Cambridge, 2004)

● Code available PJ's MySwarmCode
● Agents interact only when they

– find another available agent and
– choose to initiate interaction

● Various behavioral premises
● (Comparatively) complete documentation

Many agents per cell allowed

Opinion Model #2

● Full implementation of Swarm serialization in
LispArchiver format

● Run model to equilibrium
● Restart repeatedly after small random

shocks.

20 restarts

Opinion Model #3

● Thorough example of batch processing.
● Makes picture (png format) snapshots of

grids at designated intervals.
● Text output: use C commands to write text

into files
● Unix tools for post-processing data files (tail,

etc) & R scripts for graphs
● Some (smarter) users prefer HDF5 output

which can be obtained from EZGraph

Multi-Agent Grids

● Original Swarm designers always considered
 Grid2d with one agent per cell

● Sometimes we want multi-agent cells
● Sven Thommesen developed 1st prototype of

multi-agent grid (MoGrid2d)
● PJ's MultiGrid2d is MoGrid2d on steroids.

– answers all ordinary Swarm instructions suitable
for grids

– allows full customization of “cell sites” to allow
diagnostic information collection

