Moving On in Swarm

Paul Johnson

Ecological Society of America
Portland, OR
2004/08/02

I Where do you stand?

* Expert programmer? No problem, dig in
I Complete Novice: Swarm's not a bad way to

learn (IMHQO)

- Get a good book on C:
* Kochan, Programming in ANSI C
* Kernighan & Richie: The C Programming Language

- Work hard on 1% part of Swarm Tutorial

* Intermediate: Swarm's a good place to learn
ideas of Object-Oriented Programming

* Java users: still need to master Obj-C Swarm

Gathering Tools

Install Swarm

— pre-built “binary packages”: various platforms
- get archive and compile: swarm-2.2.tar.gz

- binary packages preferred for neophytes
Make sure you have a good editor:

- Emacs

gdb : The GNU debugger

Miscellaneous GNU tools
- wget
- ftp

Web sites to remember

Swarm Development Group:
http://www.swarm.org (old)
http://wiki.swarm.org (new)

My Swarm HQ:

http://lark.cc.ku.edu/~pauljohn/Swarm
Swarm packages for Linux users
Links to many resources (discussed next)

Ecoswarm (Steve Railsback):
http://www.humboldt.edu/~ecomodel/software.
htm

I Gather Manuals

Put copies in ~/swarm/docs
I * The “Objective-C" book in pdf form

* The reference guide for Swarm
- Don't take the source code for the guide
- Look for a bland name like “set-html-2.2.tar.gz

* Swarm User Guide
- A [immodesty alert] pretty good discussion of
Swarm in Objective-C
— Look for it in html or postscript or pdf format

e SwarmOnlineFaq
* Keep a copy of the Swarm Source code,
even if you don't compile Swarm

7

I Should also get...

- The wonderful free/open statistical powerhouse.
* Drone: Ted Belding (U. Mich) tool for batch
processing simulations

e Some programs may require addon libraries:
- GSL: The GNU Scientific Library
- BLAS (linear algebra)
- Swarm GraphLib
- UM-EXPtools

I * R http://www.r-project.org

* join swarm-support and swarm-modelling
(via www.swarm.org)

I Emalil Lists
I

I Swarmapps

Swarm Tutorial as well as other
demonstration programs.

* Most recent official release:
- swarmapps-2.1.1.tar.gz

* Newer snapshots are available from Paul
Johnson <pauljohn@ku.edu> or directly from
Swarm's online code (CVS) repository

I e Swarmapps is a tar.gz file containing the

I Read through the Swarm
| Tutorial

e Steps from elementary C to the design of
I Swarm models.

* Recently added elements
- “batch” processing of simulations
— parameter classes & command line arguments
— data collection

* Get the newest version of swarmapps,

because it has new components
- simpleObserverBug3
- simpleBatchBug1-3

Shop for working programs

Swarm changes, programs change, not all
work all of the time
Get programs from authors or on the web

Swarm ftp site has
— apps/objc/sdg apps/objc/contrib
- apps/java/sdg apps/java/contrib

Make sure a program compiles & runs
before you exert any effort on it.

If you find a program is out of date, contact
the author directly. Don't be bashful.

I Small Working Examples

programs that illustrate usage of specific
Swarm elements.

* Best way to learn "how to” use a particular
thing.

* Best way to get help and report bugs

* These and others are collected in the
WorkingExampleCode directory referred to in
SwarmFAQ

I * Marcus Daniels (SDG) wrote many small

Questions to ask about a model

* What do these agents “do”?

* How do they interact?
- meet each other?
- detect changes in environment?

* How are their actions “interleaved” in time?
- synchronous: all step at same time, don't
Impact environment until all have acted.

— asynchronous: each one steps and registers its
Impact on the environment

- event-driven (dynamic) scheduling

I Scheduling

I * Regular (process a collection of agents)
or
* Dynamic (Event-driven)

I Heatbugs: Prototype Swarm
I Application

model you run

* Agents are bugs seeking “just the right”
temperature

* Each bug deposits heat onto a "HeatSpace”

 Each bug moves in a 2d grid that is “overlaid”
on the HeatSpace

I * After tutorial, Heatbugs should be the first

| HeathugModel Swarm |
| numBugs oo
diffuseConstant [1
wrorldXSize 50
wordYSize |30
minldealTemp |17000
maxldeal Temp [31000
minOutputHeat 3|ZIIII 0
maxOutputHeat |10000
evaporationRate |0.39
randomMove Probability |0
| | toggleRandomized Order

addHeatbug:

Heathug ObserverSwarm
displayFrequency .. 1
: graphBug:

X

ﬁi}UﬂhappiﬂEEE of

Linhappiness of hugs vs. time

unhappiness

bugs vs

time

— UnhEppiness

I Heatbugs, cont.

- No direct interaction
- Prevented from “overlapping” on grid
- Bugs create and adjust to heat in HeatSpace
* Schedule: repeated 'trips through the list’
- Possibly randomized
* Batch mode: run with -b, note the Graphs
write out their number streams to files
- limited usefulness (IMHO), except it

demonstrates “fork” in main.m between GUI
ObserverSwarm and BatchSwarm

I * Bug Interactions:

I Dynamic Scheduling:
I Mousetrap

* There's a "master schedule” in ModelSwarm

* Mouse traps “go off” and then notify
ModelSwarm that other traps are supposed
to go off at a future time

* Not completely “decentralized” in the bottom-
up sense

* A true bottom-up scheduling arrangement is
possible (pjrepeater® examples), but
technically equivalent

I * Most notable event-driven Swarm simulation

Mousetrap start

Start

Ei_. et] [E|_F'.1IIIZII:E:-Et.'r"a;:;l'-'h:lciEl"_

| MousetrapModel Swarm !

Stop

gridSize [50
triggerLikelihood |1

MHext

numberOQutputTriggers i2

Save

max THggerDistance !4 |
maxTriggerTime i1 G

Quit

Trigger data vs. time

trapDensity f1

World

it
= 1.8 —
(2 4
@
_%1.5—
i
= ol
S
= 1.2 -
i

— Total triggered
FPeniding trigoers

time

SlbserverSuarm | X
| MousetrapObserverswarm | 3]

¥i

display Frequency |1

rm Conmtroller b4
m:'del Swarm Controller | | 1-_.‘:
currentTime | —
status |

isTopLevelActivity |

I rinActivity l
I stopaActivity |
I nextAction |

stepAction

Controller

!Ohsewer Swanm Controller i

currentTime |
status |
isTopLevelActivity |

Ii runActivity I
l— stopActivity |
I— nextAction I
’7 stepAction i

I stepUntil: !I
l terminate I
1/

Mousetrap: midpoint

Trigger data vs. time

World

)
=}
|

o
=
|

number triggerad
1

=
|

[E i_ .. .Ctrl X E[EZEE-E“ET" apMode l=Zwarm >
Start | | Mousetrap MudelSwa@_i Ej 51‘.
gridSize [S0]
Sto - o F E
P triggerlikelihood |1
i E“"‘“—
Hext numberOutputTriggers |2)
= = (s]
maxTrHggerDistance |4
Save max TriggerTime ?1 G
] trapDensity |1 ;
Quit

IE[TR DbserverSwarm | X

i Mousetrap Observerswanm '_Ei rj
display Frequency I 1'?

[

IE| Mode 1 _'5 warm Controller >
=[S

|

lMDdEI Swarm Controller !

currentTime | |
status |
isTopLevelActivity |

rninActivity

I stopActivity
| nextAction
I stepAction
I steplintil: "

;'Ohserver Swarm Controller :

currentTime | |
status |
is TopLevelActivity |

1 | runActivity
I stopActivity

time

— Total triggered
Fending triggers

[
|
Ii nextAction [
ﬁ stepAction I
’7 stepUntil: Il—
,7 terminate [i ‘_;‘

Mousetrap: finished

number trignered

8. .

Start

Ctrl | = Elrﬁcn_l.-z'et'r'-=|;:|I'-'1|—u:in=-1'-'-:1..-..|.E4'r'-rr|

x

i MuusetrapMudelSwm EI £

|_|-_._—4[_ﬁ_ll___ vETIWarm | X

| Mousetrap Observerswanmn ! ;ﬁi;
_| ol

Stop

Hext

Save

—

triggerLikelihood |1
numhberOutputTriggers EHZ
max TriggerDistance ;4

maxTriggerTime |16

trapDensity E1

gHdSize i5 EI

War1d

Trigger data vs. time

1000 —

n

o

s}
|

display Frequency ;1 /

IE| Model Swarm Controller

iMudel Swann Controller |

currentTime |
status |
isTopLevelActivity |

runActivity

I nextAction
I stepAction
I stepUntil: “

terminate l[7

|
stopActivity |
|
|

]Ohsewer Swarm Controller |

currentTime |
status | |
isTopLevelActivity | !

o | rnActivity
I stopActivity |]
i nextaction “

— Total triggered
Fending triggers

fum e

Ii stepAction I]
|7 stepUntil: !r [
Ii terminate |]-};

I Dynamic Scheduling: Ballet

Pirouette: Dance Choreographing by
Computers,” YELM Journal (2003).

* Dancers have a list of dance steps and a
“transition matrix”

* Dance Step take a variable number of time
steps

* Swarm model has dancers “schedule
themselves” for new steps X timesteps into
future (asynchronous, dynamic scheduling).

I * Tina Yu & Paul Johnson, “Tour Jeti,

[Ba]...ctr1 |x [B[Medels

[l Modeiswarm | {2 || observerswam | ||

B |

| population ‘5 B

= ring Distribute
{|eventRate |40

Stop
hoingDistribute
Hext
hideDiGraph
Save

showDiGraph | ";5

Quit

Graph

idNunmerﬁ
plannedx II:I”

plannedy [0

|

Brief Interlude for Whining
about nonDynamic Scheduling

* Scheduling: “createActionForEach™ often
causes more trouble than its worth

* Easier to
— create a for loop that processes agents
- myLoop {
...[do something for each element in a collection];

}
* |In buildActions:

[schedule at: O createActionTo: self
Message: M(myLoop)];

I Scheduling Opinion, cont.

- keeps agent actions “together in time”

- faster because it does not invoke the “deep
down” scheduling apparatus so much

— avoids major hassles, especially when writing
models in Java

* Counter argument:

- Sometimes you want to throw actions onto the
pile at a given time and want them all "mixed up”

I * Reasons to take “loop” approach

I Asynchronous And
I Synchronous

* Commonly mistaken as a Swarm library
I ISsue.
* Actually, its an issue of conceptualization
and user model design
* Sudden Impact: Does programmer intend
agents to have impacts on environment/other
agents that are immediately?

I Cellular Automata

* Conway Game of Life (conway-1.1-Swarm-

* CA can be written in Swarm
I 2.2.tar.gz available online

OhserverSwanm 1
displayFrequency |1
Hext wordSizeX (100

word SizeY 100

SHivE update GUI

Quit erase Conwray

Scheduling in Game of Life

* Game of life has no “agents”
* The cells are updated at each step

* Double-buffered “grid”

- each cell is updated against a snapshot of the
grid from the previous period

— after all cells are updated, then their status is
drawn onto the grid

* This is SYNCHRONOUS updating

I Schelling2

Segregation”, J. Math. Soc, 1971

* Agents move in response to hi/low levels of
diversity in local environment

* schelling2 Code available MySwarmCode

I * Thomas Schelling, “Dynamic Models of

I Schelling2 Runtime Options

* ASYNCHRONOUS or SYNCHRONOUS
I * Load & save parameter files

* Set Neighborhood type- Moore or
VonNeumann

* Radius of neighborhood

* Edge effects & Wrap Around

* Randomized ordering of agent actions at
each step

Standard Schelling Start

of = peo [:l. i e unbappy

Start Fraction of people unhappy
r 0.1 — =
Stop | l Clala]
0.05 —
Mext - i
o
1 E 0 —
Save = _
-0.05 —|
Quit A
| Modelswrarm | - | M
X —l

wondsize [70
numRBaces 2
neighborhood_type ?vcf nneuman
radius F1 1l
edgeWrap [1 "=07'
synchronous IZI
fractionVacant ;EIE
fractionBlue IZIE
fractionRed [0.5
blueTolerance Upper =IZIE
blueToleranceLowrer vIZI'éE
redTolerance Upper IZIS
redTolerancelower 025
otherTolerance Upper >E|5
otherTolerancelovrer UIZILEE
random Seed lIZI
saveParameters: Il

loadParameters:

randomizelist | W,

Standard Schelling End

IE Fraction n:n-l:'_;:n:z-nzn;:;ie Lrbappy

Fraction of people unhappy

—unh
Stop l PRy

MNext - 0.4
| (=i}
= -
Save S
i e
Quit -
I 2 0=
O | ModelSwarm | T T T T T
|] a S0 100
.MudeISU.rarm ﬁ? _ titne

worldSize [70
numRaces 2
neighborhood_type vonr;ebmernﬁ
radius ;1 Il
edgeWrap [1 w01’
synchronous IZI
fractionVacant :DE

fractionBlue IZ|5

fractionRed | i

blue Tolerance Upper |

redToleranceUpper IZ|5

redTolerance Lower E-Ifl.25

randomSeed IZI
saveParameters: | .

loadParameters:

randomizeList

Explore: flight1.setup

B [Fraction of peo ;:l-i e unhappy
Start ' Fraction of people unhappy
| 7 l — unhEppy
Stop 0.8 —
Mext . 0B —H
| o
i = T
Save = 04+
0.2 —
: o
x [T T T T T
I 3 i s00 1000
ModelSwarm :ﬁg =)

worldSize [100
numRaces E
neighborhood_type ;Fn'
radius f4
edgeWrap [1 "w01'

fractionBlue 05

fractionRed FI:IS
blueToleranceUpper 0.5
redTolerance Upper E'I_:I.?E

redTolerancelLowrer ﬁ o

otherToleranceUpper =|:|
otherTolerancelower :05
random Seed :D

saveParameters: |

loadParameters: ;_ﬂight1 .setup

i randomizeList [:

I Protest Activist Model

Commitment in Collective Action”, JASS
(2002).

* “Activists” code available PJ's
‘MySwarmCode/Protest”

* Agents on a grid

* Can (optionally) move

e Can protest if they are unhappy or want
change

* Agents “view” limited number of cells in their
vicinity

I * Brichoux and Johnson, “Power of

I Protest #2

e SYNCHRONOUS compiler flag

I — each agent chooses next behavior on the basis
of a “snapshot” of community at previous instant
- SYNC can produce “modeling artifacts”
(Huberman and Glance, ,)

e ASNCHRONOUS model:

— each agent's action registers in eyes of others
‘right away”
— more realistic?

Percent of Population Protesting

i
o

] (2]
] o

o

Protes

[l Modelswarm

rebellion [0
Stop citizens Move [1
Niat | seekLeastProtest [0
aRebConstPOM |0
Save aRehConstAv _‘-8
] bRebCoeffPOM [0
Sy bRebCoeffav [16
numPOne (200
numPZero _‘-BD
visionRadius [7
wordxSize [40
woHdY Size (40
randomSeed (676
Fercent of Fopulation Protesting
] . T T T T | T T
0 10 20 a0 40
time

t shapshot

I Social Impact Model

* A classic cellular automaton

* Agents change YES or NO depending on
social pressure (distance weighted)

e Swarm “SIM” available PJ's MySwarmCode

e Swarm SIM model implements
ASYNCHRONOUS option

e Swarm SIM implements “variable
neighborhood size”

I * Nowak & Latane, Social Impact Model

Social Impact Model

:Myﬂrguments [il

citizensMove |:|
visionRadius ,’-?.T;‘
worldXSize [40
wordYSize [40
numPPL {1600
probYES [05

randomSeed E-S-éfévﬁfdl-?é'él -

wrapfround |0 '
SYMCHRONOUS [1 "=01"'
RAMNDOMIZED [1 “x=01"

GUishots [0

O | ODpinion

| - ENET:

Start
Stop
Mext

Save

Quit

ModelSwarm

Ohser\rersﬁ:ann

displayFrequency T

inion Trends

Cipinion Trends

Mo Instance Vadables or Messages. |

| Model Swarm 1

04 —|
=
(=]
= i
o
=
=
=i
o -
T i i o e]
0 05 1 15 2
time

= Opinion = ¥ES
— Opinion Changed
= EBolstered Minority

I Collector Grids™

problem?

* Activists, SIM, Schelling2 use “collector
grids” to register the actions of agents.

* Too slow to have each agent search each
neighboring cell for each step

* Faster to have agents “take action” and
register that action on all cells within
“eyesight”.

* Other agents can obtain “visible activity” with
a single check or a Grid position.

I * Speed: Swarm Library problem or User

“Full Service” Swarm models

* GUI output for diagnostics and interaction
I * Clear Summary Measures & Indicators

* Batch output
- run model repeatedly
- allows “command line” arguments for “parameter
sweeps” (look for Parameter classes)
* Serialization & stability analysis
— detalls, see details in presentation
Sfest03_serialization.pdf
* Scheduling variations

e Documentation

Artificial Stock Market

* Pioneering ABM study (LeBaron, et al).

* Swarm project on Sourceforge
http://ArtStkMkt.sf.net
Code revisions discussed Johnson, “Agent-based
Modeling...”, Soc. Sci. Computer Review, 2001.

I What's in the ASM?

* Agents receive info on the world and on
stock price patterns

* Each agent has an intricate "mental model”
of the world (Genetic Algorithm)

* Agents invest in isolation: never meet

* Runs for hours in order for agents to “learn”

I * Agents buy or sell a single stock

Classges used in Artificial Stock Market| Versicon 2. 2)

Top Level Swarm
[Thiz can kbe elther GUI: ASMObserverSwarm
Faramseters

or
Batch: ASMBatchSwarm) [& "holder clas;
4—P crcated at start time
which can process
comnmand line paramnseters

and create parameter
objects used by other
A5 MModel Params classes)
| Keeps input paramneters A
used by ASMModel Swarm)

ASMModel Swarm P Ooutput
[The outpuat
clasgss collects
data and gaves
it 1n a variety
of formatsg, 1f data
writing is turned on)

DLvlidend
[Generates data
on returns)

4

Many BFAgents

World [BFAgent subclass from Agent. N BFParams
[Collects dividend BFagents formulate demand and | Paramsters
and price info, converts buy/sell /hold stock). that control
info into kbits, the behavior of
shares info to BFagents BFAgents. Instances
when they asgk for it) Qf ph;s Can be
) T individualized
Specialist Many BFCasts to model
[Collects kuyisell | These are forecastas. completely
orders from agents, Each BFAgent creates het erogensous
completes trades, nany forecast objects, agent gl
reports data to World) sukclassed from BFCast)
Movinghverags ¢
[Many records are kept B RS

in the form of moving [Each BFCast object

dveldges, Posslbly incluss an ingtance of
exponaentially welghted. Objects BibVeation 'a alasg e

that keep the moving averages whichbite are kept and
are subclassed from Movinghverage.) manipulated. All Bit math

ig segregated into
Flq e Al gy

ASM
In
Action

price

vaolume

o E'_l Fa rans

Start | :.HSMOhserverS\uann '
| display Frequency 1 an
Stop N . - %
i write Simulation Params
f ||
ozl toggle DataWrite
Fave lispSaveSeral:

120 — — actual price
- risk neutral price
100 —
50 —
50 —
40 —

Yolume v, time
40 — —— actual volume
30 — 0.1
=
- ()
¢
fak}
20— =X
- T
o w -
D A
[U | L |
o] 10000 20000
fime

RFelative YWealth of Agents

fraction of

\ |[asmMmModelParams | |-

numBFagents |25
initholding [1
initialcash (20000
minholding [-5
mincash [-z2000
intrate [01
baseline 1D
mindividend [5e-05
maxdividend [100
amplitude [0.0573
petiod [15 5
maxprice (99333
minpHce [0.001
taup |50
exponentialMis 1
sptype [1
maxiterations [20

minexcess [0.01
[by

fraction of bits used (by type)

tup el

numfcasts [100
condwords [1
condbits |12
mincount. _;2
gafrequency (1000
firstgatime [foo
longtime [4000°
individual |1
tauv [75
lambda [0.5
maxhid [10
hitprob [0.1
subrange 1
a_min o7
amax [z
b_min [0
b_max |0

C_min —1D

—— fundemerital bits |00Z
technical bits

dummy hits
total bits

plinear [0.333
prandom [0.333

=

1 —
E=
w4
=i} — -
= =
z w0
& 2 =
@]
o el
o —
L i e L e o e e e s A e 5 0 e P A L LI L L
01 2 3 4 5 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24 o1 2 3 4
agents

pmutation CEEE
plong 0.2
pshort [0.2
nhood [0.05
genfrac [0.25
gaproh (0,001
npool |20
nnew |20

q nnulls [4

npoolmax 20

I ASM: Serialization

* ASM-2.4 implements Serialization:
I — able to save entire state of simulation and restart
- valuable because of long “burn in” time for ASM

* Serialization allows one to change agent
behavioral assumptions within a “stabilized”
context.

* Developing “Social ASM” in which agents
can copy from each other

I Public Opinion (home & work)

Disagreement: The Survival of Diverse
Opinions within Communication Networks
(Cambridge, 2004)

* Code available PJ's MySwarmCode

* Agents interact only when they
- find another available agent and
— choose to initiate interaction

* Various behavioral premises
* (Comparatively) complete documentation

I * Huckfeldt, Johnson, Sprague, Political

Many agents per cell allowed

Opinion Model #2

* Full implementation of Swarm serialization in
LispArchiver format

* Run model to equilibrium

* Restart repeatedly after small random
shocks.

Number of agents that hold opinion O onissue 2

20 restarts

Impact of Random Shocks

Impact=5 %

260 280 300 320 340
|

0 1000 2000 3000 4000 5000

Time
5 Random shocks (20 repetitions)

I Opinion Model #3

* Makes picture (png format) snapshots of
grids at designated intervals.

* Text output: use C commands to write text
into files

* Unix tools for post-processing data files (tail,
etc) & R scripts for graphs

* Some (smarter) users prefer HDF5 output
which can be obtained from EZGraph

I * Thorough example of batch processing.

I Multi-Agent Grids

Grid2d with one agent per cell
* Sometimes we want multi-agent cells

* Sven Thommesen developed 1° prototype of
multi-agent grid (MoGrid2d)
* PJ's MultiGrid2d is MoGrid2d on steroids.
- answers all ordinary Swarm instructions suitable
for grids
— allows full customization of “cell sites™ to allow
diagnostic information collection

I * Original Swarm designers always considered

