
Swarm Sugar Scape as a
Starting Point

Paul E. Johnson

Dept of Political Science

University of Kansas

Prepared for Ecological Society
of America, 2004

Plan for SSS Tutorial

• Modified Suzuki method:
– Run/Study examples

– Tinker with examples

– Hope theory/framework will percolate up

• Goal is to develop appreciation for model
building from the “bottom up”.

• Defer discussion of Swarm installation to
smaller platform-specific groups

Presentation linked to Handouts

• file-line numbered handouts are cited in this
presentation

• Available online as:

 sss-2.2-Handouts.tar.gz

• Original Sugarscape model presented in
famous book by Epstein & Axtell, Growing
Artificial Societies (MIT Press, 1996)

Begin with Swarm Sugarscape

• Step by step [0-sss-shell1.txt]
– Download a “tarball” [0-001]

– Unpack it with tar and gzip [0-013]

– Compile with: [0-046]

make

– Run with:

 ./sss [0-127]

– see “screenshots” sss-1.png, sss-2.png

Study File Layout

• Paired “*h” and “*m” files

• “h” is a “header file” containing:
– A class declaration

– A list of variables

(aka: instance variables, IVARS)

– A list of methods

• “m” is the “implementation file”, where the
methods are fully written out.

Study File Layout #2

• Makefile [11]
– used by “make” program to manage compiling

(compile=convert text into an executable
program)

• README [1]
– comments from authors

Study File Layout #3

• main.m [2]
– only file actually required in order to have a

program because it has the “main” function in
it.

– The function “main” [2-011] is the one that the
system runs when you start the program. It
orchestrates everything else.

– // means “comment”
• same as /* comment */

– If this were written in C, it would be “main.c”

What does main do?

• initSwarm() [2-015]
– a big, multi-purpose function called from the

Swarm library. Does much work behind the
scenes.

• create observerSwarm [2-017]

• which is then told to: [2-019]
– buildObjects (create “things” for the simulation)

– buildActions (scheduling framework)

– activateIn (places observer's schedule into
context)

Note Objective-C syntax

• Message: brackets [] indicate an object or
Class is sent a message

• returnValue = [messageReceiver

 theMessage: anArgument];

• returnValue = [messageReceiver

 messageArg1: argument1

 arg2: argument2];

• [fred getGroceriesMeat: steak Fish: cod];

Miscellaneous

• You really are “programming”

• Objective-C includes C, plus objects and
messages

• Objective-C allows “inheritance” in classes

• “self” [self doThisAndThat];

• “super” [super doThisAndThat];

• Note small & capital letter style

Good News/Bad News

• Its like Unix (even if you run on Mac or
Windows)

• Swarm creed: Only use “open source”
tools. Never rely on proprietary software
(even if it might be easier to do so).

 Deciphering sss: What is your
mission?

When studying a model, remember that
every model must have

• agents who can:
– do “stuff”

– remember information

– “find” each other and/or environment and place
self in the “environment”

• a way to observe/measure events in the
model

 sss easy to decipher

● SugarAgent class: individual agents are
instances of this class

● Examine SugarAgent.h to see what kinds of
messages the SugarAgent can respond to:

● move about
● live & die: take sugar, metabolize sugar
● “get” info on status (for observational purposes)
● drawSelf on the indicated “raster”

Little Wrinkles in Sugar Agent

• x,y declared as public [3-025]
– allows other objects who are in contact with a

sugar agent to “directly read” the agent's
location with this syntax:

x_coord = agent->x;

y_coord = agent->y;

– relatively rarely used in Swarm models
because it ignores “encapsulation”

• could instead add getX and getY methods
for SugarAgents

Little Wrinkles in Sugar Agent #2

• Note SugarAgents don't directly kill
themselves [4-034]

• They ask the modelSwarm to kill them

• That's
– not intuitive

– method to avoid runtime crashes

– allowing “recycling” of objects

SugarSpace

• SugarSpace is a “family” of grids
– agentGrid: lattice of “hangers” where agents

place themselves [5-033,6-082]

– sugar: a lattice of integer values [5-026,6-032]

– sugarMax: a lattice of maximum allowed sugar
values[5-030,6-040]

• Agents repeatedly ask SugarSpace to tell
them if (x,y) is
– occupied [5-060]

– full of sugar [5-051]

Sugar Agents don't directly
interact

• - step { }; [4-015]
– find best open spot

– go there, take the sugar

– calculate metabolism

– consider dying (or not!)

• Interaction is indirect, via
– search for open spaces and

– values in the sugar grid.

Little Wrinkles #1

• The world is a flat square

• Agents should have to worry about
stepping off edge [0, xsize-1] x [0, ysize-1]

• Agents don't worry, however.

• The SugarSpace worries for them. It
translates all requests for information about
(x,y) to be “in bounds”.

• Work done by “xnorm:” and “ynorm:”[5-070]

Little Wrinkles #2

• How to initialize sugar values?
– text file: sugarspace.pgm [6-038]

– hdf5 file: sss.hdf [6-050]

• As README explains, user can choose
which format by a C compiler flag [1-084]

Little Wrinkles #3

• See how agents move in the SugarSpace?

• Agent tells the space it wants to move to
(1,1)
[sugarSpace move: self toX: 1 Y: 1];

• Watch what the “moveAgent:toX:Y:”
method in SugarSpace does: [6-177]
– figures out where agent is now

– puts “nil” on agent's current position

– adds agent at desired position

Hierarchy

• Swarm conceptualized as a “bottom up”
modeling system

• Agents are lowest level, most
“autonomous” elements

• ModelSwarm is “intermediate level”
– causes agents to be created

– causes environment to be created

– makes agents aware of environment

– schedules agent & environment actions

Frequently used method names

Optional but recommended:

- buildObjects;

- buildActions;

Mandatory!

- activateIn:

Special Items Worth Noting

• Agents are created and stored into a
“linked list” object:

 agentList = [List create: self];

• Could create & add agents:

 agent = [self addNewRandomAgent];

 [agentList addLast: agent];

• -addNewRandomAgent creates agents and
puts them into the agentGrid in
SugarSpace

Wrinkle: Overwrite Warnings

• Swarm's Grid2d can hold one object per
cell.

• If one tries to add a second object to a cell,
the cell “loses” the first and issues a
warning to the programmer

• addNewRandomAgent turns off warnings to
place agents

• harmless?

Helping the Compiler

• Generic declaration
id anAgent;

• Specific declaration
SugarAgent * anAgent;

• Interchangable

• Specific declaration preferred to help
compiler find the methods you want (avoids
confusion over duplicate method names)

Classes, Objects, & Protocols

• What's the difference between these
declarations:
1.id agentList;

2.id <List> agentList;

3.List * agentList;

• Answer: often interchangeable.

• Answer 2: Swarm usage prefers 2

Protocols #2

• id: a generic Object, could be anything

• <List>: a “protocol” declaration, which is
the programmer's promise that
“agentList” will be able to carry out
methods listed in the List protocol.

• Protocol: a list of methods. If a class
“adopts” a protocol, it must either inherit
or implement all of the listed methods

Protocols #3

• List * agentList would work, except Swarm
prefers the protocol

• Swarm collections block subclassing.

buildActions

• ActionGroup: things that should happen in
a particular order

• Schedule: object that can link future times
with collections and messages (abstract
enough?)

• sss has “modelActions”, an ActionGroup

• Put modelActions into the modelSchedule

• activateIn: method ties modelSchedule into
“global time sequence”, meshing with
observer.

About Selectors

• Difficult concept!

• Its a “symbolic handle” for a method that an
agent can carry out

• Needed in Swarm because of Activity
framework.

• Associate objects with selectors to
schedule future events.

• Integral part of “run-time” (dynamic) binding

Observer Swarm

• Controls the graphical interface

• Creates & advances displays

• Raster: grid of dots
– agentDisplay uses Object2dDisplay tools to

collect info from agents

– setDisplayWidget: tells agentDisplay that, when
it “displays”, it should do so on the Raster

– Raster does not show on screen until
“drawSelf” is called.

Graphs: 3 step sequence

• EZGraph class can create graph window

• User must add sequences to be graphed
– createSequence:withFeedFrom:andSelector:

– createAverageSequence:...

– createMovingAverageSequence:...

• Schedule must include a “step” command
to update the graph

Integrate a Predator

• SugarAgents may be “killed” by agents
from a Predator class

• Handout: Transition-2.2-to-2.3.txt
– Output from diff program

– + new lines

– ! edited lines

Easy (?) steps :)

• Add Predator.o to Makefile

• cp SugarAgent.[hm] Predator.[hm]

• Edit Predator.h

• Edit Predator.m

• Edit ModelSwarm to create Predators and
schedule their actions.

• Edit SugarSpace to create predator grid

• Edit ObserverSwarm to draw predators

Predator Step method [12-132]

• rename moveToBestOpenSpot to “move”

• returns a “targetAgent” [12-166]

• Take that agent's sugar [12-139]

• Tell ModelSwarm and SugarSpace to slate
that targetAgent for death [12-149]

Hunting SugarAgents

• Predator is able to search in the agentGrid
by asking SugarSpace for agents

• -move method scans “up” and “down”,
never diagonal [12-184]

• agent with highest sugar value is taken.

• Caution: Predators move carelessly,
possibly stepping on each other in
predatorGrid.

Model Swarm

• new IVARS:
(int)numPredators; [12-446]

id <List> predatorList [12-464

• buildObjects adds new for loop creating
predators [12-538]

• new method called to create Predators
-addPredator; [12-575]

ObserverSwarm

• predatorDisplay: tracks positions of
predators [12-666]

• Note RASTER showing predator positions
with “pixmaps”

• Right/Left button selects agent-types

• New killGraph of predators [12-702]

Laments

• No BatchSwarm class

• No command-line option processing

• No data output that would support Batch
Swarm runs

• Separate Parameters class would make
work much easier

