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Monte Carlo analysis is a research strategy that incorporates randomness into

the design, implementation or evaluation of theoretical models. It began in the

1940s, when the development of computer hardware and mathematical models

made it possible to generate streams of random numbers. These random number

streams are combined with mathematical models in order to create models and

evaluate theories of random processes. This chapter attempts to tame this di-

verse, unmanageable collection of concepts and methods by dividing simulation

projects into three types. The first, commonly called “Monte Carlo simulation,”

is used to evaluate statistical estimators. When an estimation procedure is pro-

posed, it is standard procedure to test it against a variety of simulated research

problems. A second type of project, referred to as “Markov chain Monte Carlo”

(or MCMC), helps researchers to draw conclusions about complicated probability

models for which conventional research strategies do not yield insights. The third
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type of project arises in the study of complex systems, which are characterized

by a large number of loosely interconnected, autonomous elements. Commonly

known as agent-based models, these simulations have found enthusiastic advo-

cates in environmental and social sciences.

Keywords: Monte Carlo, Markov chain Monte Carlo (MCMC), pseudo random

number generation (PRNG), Bayesian statistics, agent-based modeling

Monte Carlo (MC) analysis is a general term that refers to research that employs random

numbers, usually in the form of a computer model (or simulation). Although this research

began in the natural sciences, computer science, and mathematics, it is now widely applied

in social science as well. This essay attempts to explain the fundamental ideas that spurred

the creation of these new procedures as well as their eventual adaptation for use in social

science research.

This chapter is not a “how to” guide for simulation, but rather it is a “what for” or “why

you might want to” guide. Some of the difficulties that arise in MC research projects are

considered as well. It begins with some background information on the development of com-

puters and algorithms for random numbers. After that, the chapter takes up applications in

the evaluation of proposed statistical estimators, the practice of Bayesian statistics via com-

puter simulation, and investigation of complex systems through agent-based models. Some

conclusions about the challenges that face the field are presented, along with a conclusion.

A significant part of the presentation is about the exciting developments that have occurred

since 1990. Rapid improvements in hardware and software have opened up opportunities for

scholars to work with models that were previously prohibited by conceptual and technical

barriers. At the current time, we are able to conceptualize and implement models that were

simply impossible just 10 years ago. The extremely rapid progress has been driven by a

fruitful interaction of substantive researchers in the natural and social sciences as well as

programmers and computer scientists.
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A secondary theme in this presentation is that we face some troubles in the dissemination of

these new research tools. The possibility that a computer simulation might approximate the

solution of an otherwise intractable math problem quickly captures our imagination. The

possibility, though, leaves in its wake a number of challenges in the creation of standardized

tools and replicable results. The necessities of research have created a fruitful tension between

our computing abilities and our conceptual models, a tension that has no doubt spurred the

development of both. However, progress is usually found in solutions to particular problems,

and we are then pressed to find out if those particular solutions can generalize to address

the problems that we would like to solve in our various research projects.

1 Background

The key elements of modern modeling–computer hardware, mathematical models, and com-

puter simulation–are inextricably interwoven. The physicists who studied atomic fission

during World War II (the Manhattan Project at Los Alamos, New Mexico) had the support

of some of the greatest mathematicians in the world. Nevertheless, there were mathematical

problems that could not be solved without the imposition of strong simplifying assumptions,

and some models could not be solved even then. In the usual usage, “solved” means that

the answer to a question can be presented as an understandable formula that illustrates the

roles played by all variables and unknowns.

Many of the problems with which they were confronted seemed to have uncertainty, or

unpredictability, at their very core. The movement of atomic particles was described by

probability models. Fixed inputs did not lead to the same output every time, so it appeared

that trial and error would be inevitable. Testing on actual bombs was both expensive and

dangerous. Where theoretical mathematics could not offer clear answers, it appeared that

simulation experiments offered the only realistic hope.

The research team proposed a tool they created for this purpose, Monte Carlo simulation.
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The quantum theory of physics holds that atomic particles move about in a way that appears

random to the observer. Perhaps a particle’s movement resembles a “random walk,” which

supposes that a particle positioned at point x will be at point x + u at the next moment,

where u is a realization of a random process. Analytical tools might describe that process

“on the average,” but a simulation may offer a richer view of the possible paths that will

be traveled. These random numbers, which have might have been “drawn from a hat” or

pulled from a roulette wheel, gave the models a quality of unpredictability (“Monte Carlo”

is a reference to the most popular gambling location of that era). Computers were in their

infancy at the time, little more than elaborate calculators. The sheer number of calculations

required to generate random numbers and put them to use would stagger a team of scientists

armed with pencils and calculators. Five hours of computer time would replace the full-time,

year-long effort of 20 computational assistants (Baines, 1962).

Aside from the atomic bomb itself, the introduction of the conceptual framework for computer-

based Monte Carlo analysis might have been the most important lasting contribution of the

Manhattan Project. They created not only the working demonstration of the importance of

random numbers in mathematical models, but also the fundamental framework of computing

itself. The team proposed what we now call the “von Neumann architecture” as a framework

for the design of computer hardware and operating systems, a design that is still in use today.

(The framework bears this name because John von Neumann was the author of the “First

Draft of a Report on the EDVAC” (1945), a report to the U.S. Army). The “contemplated

device” would be able to keep data and command sequences–programs–in memory so as to

allow repeated access to both. After proposing the architecture, von Neumann spent the

rest of his life outlining a sequence of mathematical models that could be investigated with

the computers that were still in development at the time of his death (Aspray, 1990).

Several publications appeared that outlined a sweeping set of new research strategies. In

their famous article “The Monte Carlo Method,” Los Alamos scientists Nicholas Metropolis

and Stanislaw Ulam described the approach as a research strategy for “middle sized prob-
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lems” (1949). The middle sized problems did not yield to mathematical strategies because

they had too many separate parts, but the number of parts was not big enough to justify ap-

proximations that would overlook the importance of individual pieces. The hope was offered

that sampling from a range of possibilities could allow us to appreciate the tendencies of un-

predictable processes. These ideas were implemented in the most influential essay to emerge

from that group, “Equation of state calculations by fast computing machines” (Metropolis,

et al. 1953).

By the late 1950s, Monte Carlo simulation had been introduced in many scientific fields. The

flavor of the applications that were appealing to physicists and mathematicians is quite clear

in Bauer (1958). Difficult problems in integration and differential equations were approach-

able from an MC point of view. An applied role for simulation was foreseen by scholars

in many fields, as scholars expected simulation to become an integral part of theory and

model construction (Hammersley & Morton, 1954). The potential of simulations for the

characterization of “real life” problems was recognized and put to use in the re-organization

and design of manufacturing (Youle et al., 1959; Jessop, 1956), train yards (Crane et al.,

1955), roads(Miller, 1961), landing control systems for airplanes (Blumstein, 1957), and

air defense(Rich, 1955). Martin Shubik’s comprehensive review of Monte Carlo simulation

projects showed that virtually no area of study had been left untouched (Shubik, 1960).

Monte Carlo simulation became more than just a last resort of the desperate mathematician.

It became a way to build models that were more realistic. Where the formal approach would

simplify a model in order to solve it, the simulation approach allowed scientists to implement

models as theory intended. Simulation models were cropping up in areas where we might have

least expected them, including political science (McPhee & Smith, 1962), ecology (Barnett,

1962), or even the great American pastime, baseball (Lindsey, 1961).

The remainder of the chapter is organized as follows. First, I explore the fundamental issue

of random number generation. After that, I consider three types of applications of Monte

Carlo analysis. These three methods are chosen so as to display the potential importance of
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random number distributions in all stages of the research project. Simulation models can play

vital roles in the creation, derivation, and evaluation of mathematical and statistical models

or theories. Theories of subatomic particles, animals, trees, or people are thus seen in the

same light. When the mathematical model represents the separate behaviors and interactive

tendencies of these many parts, a simulation can project the tendencies of the whole system

(the ensemble of particles, in the terminology of the Manhattan project scientists).

2 Where Do Random Numbers Come From?

In the 1940s and 1950s, programming expertise was necessary even to generate random

integers. Today, random number generators are widely available, perhaps too much so. A

leading researcher tested many common random number generators and concluded, “Do not

trust the random number generators provided in popular commercial software such as Excel,

Visual Basic, etc., for serious applications. Some of these [random number generators] give

totally wrong answers for the two simple simulation problems....”(L’Ecuyer, 2001). A random

number generator may fail if it repeats itself in a predictable pattern, or if there are sections

in the stream that are compressed or trended.

I hasten to point out that it is actually impossible to generate random numbers with a

computer ! A program that generates a stream of random numbers today can generate the

exact same stream tomorrow. Instead, computers use pseudo random number generator

(PRNG) algorithms, procedures that will generate streams of numbers that appear to be

unpredictable. The author of a simulation program must specify the starting values and

parameters of a PRNG, thus causing the streams to differ. The resulting numbers appear

random from the point of view of the observer who is not privy to that information; the

pattern in the numbers cannot be deduced.

Before computers, one could buy books full of random numbers (I recall using these as late

as 1980). There were algorithms to generate random numbers, such as rolling dice, but
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computers made testing and development of these procedures much more feasible. There

was quite a bit of trial and error as various randomization schemes were tried. An early

review essay on computer PRNGs included 142 citations with a seemingly endless collection

of proposed generators (Hull & Dobell, 1962)!

A pseudo random number generator aims to select values in an “equally likely” fashion from

a set of integers, usually the range from 0 to the largest possible integer that the system can

hold. On a 64-bit operating system, the integers range from 0 to 1.844674 × 1019. To help

the reader grasp the magnitude of that range, consider this. If one started counting, reading

one number per second, she would be reading for 5, 848, 424, 173 centuries before finishing.

A good random generator will generate a long scramble of integer values with no discernible

pattern. A fast algorithm is preferred, of course, since a project may require millions of

random numbers.

At the current time, two random number generators are considered acceptable for researchers

conducting Monte Carlo simulation (Lemieux, 2009, p. 24). The Mersenne Twister (Mat-

sumoto & Nishimura, 1998), which is known as MT19937, does not repeat itself until it has

dispensed 219937 − 1 values. Even among scientists who are accustomed to dealing with big

numbers, that is a huge number. MT19937 is the default random generator in the R statisti-

cal program (R Development Core Team, 2010), Matlab, and the Swarm Simulation System

(Minar et al., 1996). Also in widespread use is L’Ecuyer’s combined multiple-recursive gen-

erator, MRG32k3a (L’Ecuyer, 1999). The repetition period of that generator is 2191, not so

incredibly huge as the MT19937, but still impressive (3.1×1057 values can be drawn without

repetition). Both of these approaches generate vectors of numbers that pass most tests for

randomness. These have been the most widely accepted PRNGs for about 10 years, but

there is always effort to improve upon them (see Panneton et al., 2006).

The stream of random integers is only the first stage in the typical simulation project. Re-

searchers usually want to shape those random numbers into a statistical distribution, such

as the normal, gamma, beta, binomial, or other distributions. Procedures to convert the
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equally-likely stream of integers into a desired distribution have been the focus of much re-

search (Knuth, 1968; von Neumann, 1951). A leading contributor has been George Marsaglia

(to cite just a couple of his papers, Marsaglia, 1961; Marsaglia & Tsang, 1998). Procedures

to generate continuous uniform and normal variates were available quite early in the com-

puter era, but research on nonsymmetric, truncated, or multivariate distributions has been

ongoing (Marsaglia & Tsang, 2000; Everson & Morris, 2000).

The generators that have been discussed so far are proposed as methods with which to draw

a single long stream of numbers. Many simulation projects will require the creation of 100s

or 1000s of separate random streams. This ability to create independent streams is especially

important in the new era of parallel high performance computing where it is necessary to

launch separate processes on many different compute cores.

In practice, many of us who work on simulation projects have not been too concerned with

this problem. In many projects, seeds for separate generators have been set by more-or-less

unpredictable events (e.g., the time, current weather). There were no practical, well doc-

umented methods for creating provably separate streams of numbers until quite recently.

There are two especially prominent strategies to deal with the problem. The authors of

MT19937 (Matsumoto & Nishimura, 2000), and a research team at Florida State Univer-

sity (Mascagni et al., 2000), have proposed schemes that would dynamically “spawn” new

generators and their streams are be kept separate because each new generator is controlled

by a unique set of parameters. The intuition for this approach is very appealing. However,

designing the program that can actually spawn those separate generators turns out to be a

dicey problem. Some successful reports have been published (Srinivasan et al., 2003).

The other leading approach, due to L’Ecuyer et al. (2002), is to take the one long stream

of numbers from the generator and then divide it into separate substreams. Their imple-

mentation uses the MRG32k3a. Most practitioners with whom I have discussed this issue

believe the theory behind this approach is stronger than that of its competitors: since the

whole vector meets the requirements of randomness, then one can “splice into it” at vari-
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ous points and extract separate random sequences. This method is currently the preferred

implementation in parallel processing packages that are used with R (Sevcikova & Rossini,

2009).

When computers were scarce and slow (say, before 1985, perhaps even 1990), practitioners of

MC analysis had to be careful because computer time was expensive. Collecting observations

from a computer simulation might have been as expensive as sampling human subjects at

one time. Many early Monte Carlo researches were focused on efficiency, finding the smallest

workable simulation experiment (Kahn & Marshall, 1953; Ehrenfeld & Ben-Tuvia, 1962).

At the current time, the generation of random numbers can still be the major source of

computational expense, but the rapid increase of the speed of central processing units and

memory has relieved us of most concern about the cost of generating random numbers.

3 Applications of Monte Carlo Analysis

Monte Carlo analysis includes a broad array of research activities. In an effort to make this

manageable, I’ve divided the research problems into three categories. First, I consider Monte

Carlo experiments that evaluate statistical estimators. For social scientists, this will be the

most familiar application. Second, the Markov chain Monte Carlo (MCMC) procedure for

simulation of probability models is introduced. The MCMC procedure was pioneered in

the late 1940s and was a primary research objective of the development team that invented

modern computers. Third, I consider agent-based simulation modeling projects in the field

of complex systems research. In these simulations, the random samples are used to perturb

the small scale interactions of components in dynamical systems.
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3.1 Understanding Sampling Distributions

In this section, we explore Monte Carlo simulation for testing and illustrating statistical

estimators. In the mid 1960s, Yates proclaimed that the widespread availability of computers

would constitute the “second revolution in statistics” (Yates, 1966). Statisticians generally

prefer a formal proof, but a problem may not yield to analytical methods. Sometimes a

simulation may have to do. Simulation is a way of forming an educated guess about the most

likely outcomes or the range of possibilities. In this type of MC analysis, “from the point of

view of a statistician, the problem is nothing more than to find the sampling distribution of

an intricately and irregularly defined statistic” (Youle et al., 1959, p. 491).

Researchers who conduct Monte Carlo experiments are usually aiming to compare several

research procedures by applying them to randomly generated problems. For applied social

scientists, this the most recognizable usage of the term “Monte Carlo.” The repeated applica-

tion of a procedure to hundreds or thousands of simulated datasets will not constitute proof

of a method’s superiority, but it will surely be serious evidence. To name just a few, this

method of comparing procedures has been used in analysis of distributional tests (Thomp-

son et al., 1967; D’Agostino & Rosman, 1974; Scott & Factor, 1981), regression (Huang

& Bolch, 1974; McGee & Carleton, 1970; Royston & Thompson, 1995; Stefanski & Buzas,

1995), systems of equations (Foote, 1955; Wagner, 1958; Klein, 1960; Raj, 1980), comparison

correlation estimators (Elston & Stewart, 1970; Kowalski, 1972; Srivastava & Keen, 1988),

time series models (Beck & Katz, 1995; Granger & Hughes, 1968; Neave, 1972; Bhansali,

1973; Nelson & Schwert, 1982), multiple comparison procedures (Carmer & Swanson, 1973;

Ramsey, 1978), and variance components (Boardman, 1974). Today, virtually every new

statistical procedure is accompanied by a Monte Carlo simulation. The widespread use of

this method for investigation of tools has brought calls for the creation of a more standard-

ized methodology for the analysis and reporting of simulation testsHarwell (1992); Skrondal

(2000); Paxton et al. (2001).
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This kind of Monte Carlo simulation has shown itself to have strong benefits in the educa-

tional process. The old adage that “a single picture is worth a thousand words,” certainly

applies. In their book Statistical Methods for Social Scientists, Hanushek & Jackson (1977)

combined mathematical derivations of estimator properties with systematic Monte Carlo in-

vestigation. Experience indicates that students appreciate the power of mathematical proofs

more meaningfully after they have seen evidence that a procedure “actually works.”

As a part of the educational role, Monte Carlo analysis is often used to demonstrate results for

which we have formal derivations. Consider the Central Limit Theorem (CLT): the averages

of repeated samples from a distribution (including non-normal distributions) will tend to be

normally distributed. In Figure 1a, I illustrate the probability density of a variable following

a beta distribution, a skewed, nonsymmetric distribution. Using the statistical software R

(R Development Core Team, 2010), 10,000 samples of size 500 were drawn from the beta.

The histogram of the means of those samples is presented in Figure 1b. Whereas the parent

population is not symmetric or normal in the slightest, the means do appear to be normal.

The Central Limit Theorem leads us to expect that the sampling distribution of the means

will be normal in shape with a mean of about 0.557 and a variance of 0.00016 = 0.083/500.

The observed means match that prediction almost exactly. In Figure 1b, the solid line

depicts the predicted normal probability that would correspond with those parameters and

the dotted line is the observed “kernel density”. Note that the theoretical prediction of the

CLT is almost exactly matched by the experimental means.

Monte Carlo simulation allows rapid exploration of informal conjectures that may be formal-

ized later. Specific research problems may arise for which one has not yet found guidance in

the literature. Suppose we are fitting a logistic regression model and one of the predictors

is badly unbalanced. If a sample turns up many more women than men, for example, how

reliable is the estimate of a “gender effect”? A hypothetical logistic model was constructed

in which the “true” gender effect was 0.4. A collection of 1000 data sets was created in which

males and females were equally represented, and then 1000 samples were drawn in which
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Figure 1: The Sampling Distribution of Beta’s Mean
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Figure 2: The Impact of Imbalance in Logistic Regression
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90% of the observations were females.

The effect of unbalanced samples is summarized in Figure 2, which compares the estimates

when the gender split is 50-50 (balanced) with samples in which the split is 90-10 (badly

unbalanced). The bars represent the density of estimates. At first glance, the estimates are

encouraging. The “true gender effect” is 0.4, and the average of the estimates is close to

0.4 in both the balanced and unbalanced cases. However, when the sample is unbalanced,

the distribution of estimates is more uncertain: the estimates of the gender effect are spread

more widely and the standard errors estimated in the individual models are larger as well.

There is another serious consequence of the imbalance, one which I had not expected. The

bars in the histogram are color-coded to summarize the “statistical significance” of the

estimated coefficients in the runs. The dark gray bars indicate that all of the estimates in

that range were deemed to be statistically significant, in the sense that p ≤ 0.05 according to

the Wald test. The white bars indicate that none of the estimates are statistically significant.

Even in the balanced case, there are plenty of estimates that are not statistically significantly

different from 0. Some textbooks indicate that when an estimate is “not significant,” no

weight should be placed on its interpretation. One might be inclined to conclude that

“gender doesn’t matter” and drop that variable from the model altogether. As a result,

when gender is reported (i.e., when a case from a “dark bar” has manifested itself), the

reported parameter estimates will tend to exaggerate the effect of gender. In the balanced

case, the average of the significant coefficient estimates is 0.52, about 25% higher than the

true value of 0.4. The mean of the significant estimates with unbalanced data is 0.78, almost

twice as large as the true value. The fact that the estimates are, at the same time, both

more uncertain and more biased presents us with a sobering assessment of the situation.

After describing this finding to a colleague, I was directed to a now burgeoning literature on

probable widespread bias in reported parameter estimates in published research (e.g., Dwan

et al., 2008; Kyzas et al., 2007).

A final method that can be viewed as a member of this category is the so-called “Monte
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Carlo hypothesis test.” Suppose there is no theoretical guidance on what to expect from a

statistical estimator, but the process that is thought to generate the data can be simulated.

Instead of treating the result in Figure 1b as an approximation of a sampling distribution,

we now proceed as though it actually is the sampling distribution. If field data leads to the

estimate of 0.99, far from the mean of 0.57, we would conclude that the data is probably not

derived from the hypothesized process.

One might wonder how this MC hypothesis test is different from the well-known bootstrap

estimation process (Efron & Tibshirani, 1993). Both of these tools are intended to solve the

same problem: draw inferences when the sampling distribution of an estimator is unknown.

However, they approach the problem from different directions. The bootstrap will repeat-

edly draw samples from a set of observations. The estimates from those “re-samples” are

investigated in order to obtain an impression of the reliability of an estimator. When the

estimates are clustered tightly in one part of the parameter space, one concludes that the

standard error is low and thus a null hypothesis that is “far” from the estimate is probably

wrong. The MC hypothesis test, on the other hand, only calculates one estimate from the

observed data, but it calculates many possible estimates from random samples from the hy-

pothesized model. If the one estimate appears to be grossly different than the simulated set

of possibilities, then the null hypothesis is rejected.

The Monte Carlo hypothesis test can be thought of as an extension of the idea behind

Fisher’s exact test (Fisher, 1922). The Fisher approach could exactly enumerate the full

sample space and obtain the probability of each element, but only for small samples and

specialized problems. For larger problems, the MC hypothesis test approximates that dis-

tribution by sampling. Algorithms have been developed to extend the exact test to some

logistic regressions, for example, (Hirji et al., 1987; Mehta & Patel, 1995), and yet for larger

problems, an approximation by simulation is necessary (Zamar et al., 2007). The MC hy-

pothesis test is not discussed in most statistics texts, perhaps a signal that it is not considered

necessary for most common statistical problems. Nevertheless, we can trace the use of this
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tool back into the 1950s. Efforts to frame out a standard methodology have been offered

from time to time (see Hope (1968); Jockel (1986);Besag & Clifford (1989)).

Some very well regarded applications of the MC hypothesis test and simulated sampling

distributions are found in the analysis of spatial patterns. One recent stream of research

follows the concepts proposed by Bartlett (1963) (see Besag & Diggle, 1977; Ripley, 1977;

Marriott, 1979). Random processes are hypothesized to cause things (animals, plants, etc.)

to be positioned across a space. After data is collected, one can check for clustering or un-

predicted patterns by comparing observations against the hypothetical sampling distribution

of various summary statistics. More recently, Manly (1997; 1995; Manly & Sanderson, 2002)

has drawn the attention of researchers in ecology to this method by proposing a type of

test for the distribution of features within a spatial environment (Raes & ter Steege, 2007;

Lehsten & Harmand, 2006; Gotelli & Entsminger, 2003, 2001).

3.2 Markov Chain Monte Carlo: Approximating Solutions to Hard

Problems

Nicholas Metropolis, the physicist who played such a prominent role in the first nuclear

fission experiments at the University of Chicago and later in the Manhattan Project, is

remembered most widely as the lead author on a paper that proposed the “Metropolis algo-

rithm” (Metropolis et al., 1953; Hitchcock, 2003). The Metropolis algorithm is a simple idea

with a very far-reaching set of implications. It is “the cornerstone of all Markov chain-based

Monte Carlo methods” (Liu, 2001, p. 105) that have been at the forefront of methodolog-

ical development in statistics and in many fields of science. It was recently called “one of

the major contributions to theoretical chemistry of the twentieth century” (Jorgensen, 2000,

226).

The potential uses of calculations based on random numbers were anticipated by several

mathematical developments in the 1920s and 1930s. Before the invention of the computer,
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however, the actual use of these ideas was impractical. Stan Ulam, as Metropolis later

recalled, felt that by the 1940s, “statistical sampling techniques had fallen into desuetude

because of the length and tediousness of the calculations” (Metropolis, 1987).

To help the reader understand how the different pieces of the puzzle fit together, a thumbnail

sketch of mathematical terminology is probably required. We might say there are 3 ways to

“solve” for an unknown quantity in a mathematical problem.

1. Derive a closed form analytical solution.

Consider the quadratic equation:

y = ax2 + bx+ c (1)

The values of x for which y is equal to 0 are known as “roots.” The famous solution

for the roots is

x = −b±
√
b2 − 4ac

2a (2)

As another example, consider a simple statistical exercise: regression analysis. The

theory is

yi = β0 + β1x1i + β2x2i + ei (3)

where βj ∈ R and ei ∼ N(0, σ2) . In Ordinary Least Squares analysis, the unknown

coefficients β̂ = (β̂0, β̂1, β̂2) are found by minimizing the sum of squared errors, ∑(yi−

ŷi)2, where the prediction formula is ŷi = β̂0 + β̂1x1i + β̂2x2i. In matrix algebra, the

solution is

β̂ = (XTX)−1XTy (4)

This formula is the famous solution that was discovered by Gauss in the late 18th

century.

2. Calculate a numerical solution.
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There are situations in which there is no closed formula with which to calculate an

answer to a question. Nevertheless, there is a mathematical statement of an equation

(or equations) that must hold exactly if a solution is to be found. Methods for finding

numerical solutions are as old as the calculus itself; mathematicians have sought ways

to approximate a function’s slope, its roots, or the area under a curve.

The quadratic equation’s roots can be found exactly. However, if the equation also

includes higher powers, such as x5 or higher, no such analytical solution exists. A

numerical approach must be used to find the roots of the equation. Similarly, in the

regression context, a change of the criterion for estimating β̂ will generally prevent use

of closed-form analytical solutions. Essentially all generalized linear models (McCul-

lagh & Nelder, 1983) that do not use a normally distributed dependent variable will

require numerical solution. Almost all models estimated by the principle of maximum

likelihood require a numerical solution for the roots of complicated equations.

It is important to note that numerically derived estimates are not, in principle or

interpretation, different from estimates that can be obtained analytically. They are

simply more difficult to calculate. We act as though there’s a number β̂ and we

calculate it.

3. Approximate a solution by Monte Carlo simulation.

Suppose that a problem cannot be solved directly or even numerically. Nevertheless,

one might be able to derive a range of likely values and their probabilities. That

was the situation in which Nicholas Metropolis and his colleagues found themselves

when they introduced the Metropolis algorithm. To summarize the tendencies of a

system, they sought to “average across” the many different positions in which the

system could exist. The authors observed, “It is evidently impractical to carry out a

several hundred-dimensional integral by the usual numerical methods, so we resort to

the Monte Carlo method. The Monte Carlo method for many-dimensional integrals
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consists simply of integrating over a random sampling of points instead of over a regular

array of points”(Metropolis et al., 1953, 1088).

To understand the difference in this approach, note that we are no longer attempting to

calculate the “one right number,” either analytically or numerically. Instead, we might need

to derive hundreds or thousands of estimates of a number, and then draw conclusions that

take our uncertainty into account.

As an effort at a simple explanation of this approach, I would offer the following. Recall

from elementary statistics that the average of a random sample of scores,

x̄ = 1
N

∑N
i=1 xi (5)

is interpreted as an estimate of the “expected value” of a continuous probability distribution.

The expected value is, of course, an integral. Let π(x) represent the “true probability” of

observing x. The expected value, E[x], is defined as:

E[x] = ´
π(x) · x dx . (6)

The “Law of Large Numbers” asserts that, as N grows larger, the mismatch between E[x]

and x̄ shrinks.

The procedure known as “Monte Carlo integration” will have us reconsider that problem

from the other direction. Theory leads us to believe there is a probability process, π(x),

that is generating data. We want to understand its properties, one of the ways we do so

is to calculate an integral, such as expression (6). However, we have no analytical solution

for that integral. If we can draw random observations from π(x), we can approximate that

integral by calculating the sample average. As long as we draw enough observations, we are
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confident that the approximate solution is reasonably accurate.

This example does not seem so imposing because it has only one dimension under considera-

tion. Numerical approximations will almost always out-perform Monte Carlo approximations

in one dimension. However, when there are many dimensions, the Monte Carlo strategy can

succeed where the numerical approach might fail altogether.

Consider a system that has, say, 10 characteristics.

(x1, x2, . . . , x10) (7)

We theorize that there a probability process that causes the system to “evolve” over time by

skipping from one position to the next. The Monte Carlo model is intended to imitate that

theoretical adjustment process. Begin at time 1 with a randomly selected position, x(1), and

then repeat the Metropolis algorithm over and over:

time 1 x(1) = (x(1)
1 , x

(1)
2 , . . . , x

(1)
10 )

time 2 x(2) = (x(2)
1 , x

(2)
2 , . . . , x

(2)
10 )

... ...

time k x(k) = (x(k)
1 , x

(k)
2 , . . . , x

(k)
10 )

time stop x(stop) (x(stop)
1 , x

(stop)
2 , . . . , x

(stop)
10 )

(8)

As we repeat the process, we are exploring the space of possible system positions. After k

steps, we believe our model has reached its equilibrium distribution. Once the equilibrium

distribution is obtained, the chance of moving from one position to another is fixed (the

probability model is “converged”), so sampled cases will reflect that system’s tendencies.

After time k, we harvest a few thousand observations as the system moves from one position

to another. Then the collection of vectors x(k), x(k+1), . . . , x(stop) gives us a sample of the
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system’s tendencies. The frequency of outcomes after k is an approximation of π(x).

The true genius of the paper by Metropolis et al. (1953), of course, is that they proposed a

way to make all of this actually work. The initial values of the system are x(1)
1 , x

(1)
2 , . . . , x

(1)
10 .

A “proposal mechanism” suggests new values. The proposed mechanism is, more or less,

a random walk. The Metropolis algorithm always accepts proposals that are “better” (ac-

cording to the extent to which the change makes the system more closely approximate the

theoretical model), and sometimes it accepts proposals that are “worse.” When the algorithm

drops the system into an “unlikely” position, the next step will propose a random adjustment

that will almost certainly be better, so the system will not stay in the bad region very long.

This self-correcting aspect means that when the full history of the process is considered,

the simulated system spends just a small amount of time in “unlikely” spots, and it spends

more time in “good” spots. Metropolis, et al (1953) showed that the long run frequency

of positions summarized in the chain is representative of the theoretical probability model

π(x). The system is forced to visit the “unlikely” spots only because we want to make sure

they really are unlikely, and the fact that the system does not stay there is evidence that

they are unlikely positions. The one-step proposal system is called a Markov chain in honor

of Russian mathematician Andrei Markov, who pioneered the study of systems in which the

move from x(i) to x(i+1) depends only on information available at time i.

The original Metropolis algorithm was concerned with the potential energy of a set of N

particles. Proposals that have lower potential energy among all of their parts are “better”

than others, and the simulation ends up generating a sample that is representative of the

likely energy states of the system. They proved that there is some time k after which the

simulation of the system generates numbers that match the theoretical distribution that they

are seeking to understand. In other words, the collection of observed outcomes x(k) through

x(stop) meaningfully represents the distribution of outcomes that would be observed if this

system were re-created and re-run many times.

Everything else, as they say, is detail work. There have been many practical contributions
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that improved the performance of the algorithm (perhaps most notably by Hastings (1970)).

One can find many excellent comprehensive reviews of the Metropolis algorithm and the

Markov chain modeling strategy that it inspired (Lemieux, 2009; Liu, 2001; Robert, 2010;

Robert & Casella, 2009). Many new approaches have been suggested to improve the proposal

mechanism, speedup calculations, make k smaller, and to enhance the statistical quality of

the output.

In the early 1980s, applied research interest in Monte Carlo simulation of Markov chains

was rekindled. By the end of that decade, most “research methodologists” in physical and

social science had become aware of these applications. Two applications of the method,

optimization via simulated annealing and the Markov chain Monte Carlo (MCMC) Bayesian

parameter estimation, have had widespread impact.

1. Optimization: Simulated Annealing

Since the calculus was invented, we have understood that the high and low points of a

function are found where the slope is 0. If the function is “bumpy” or “rugged,” we are often

uncertain about whether a solution is a “global maximum” or a “local maximum”.

To illustrate the problem, consider the irregular surface in Figure 3. Suppose we are assigned

to find the (x, y) coordinates that correspond the maximum value of z. It is possible to

imagine that we might wander about in the (x, y) plane, becoming trapped at the top of a

small hill. A “hill climber” algorithm might reach the top of a mole hill and stop.

How can the Metropolis algorithm help? A paper by Kirkpatrick et al. (1983) showed

the Metropolis proposal scheme can be used to improve the optimization process for these

“bumpy” landscapes. The Metropolis algorithm generally goes up hill, but there is a chance

that it will go downhill sometimes. Begin at some point, say (x(i), y(i)) , and then “tweak” one

or two elements by adding a random value to create a new proposed position, (x(i+1), y(i+1)).

If the new proposed point is “better” according to the objective function, then it is accepted

and becomes the system’s new position. The Metropolis algorithm will sometimes “walk
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Figure 3: Irregular Surface
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into a valley,” from whence the next random draw may lead it up a different hill toward a

better outcome.

The adaptation of the Metropolis algorithm in this way is often called simulated annealing. It

has been implemented as an optimization algorithm in many computer programs, including

R’s optim function. The procedure has been widely investigated as a method of finding

optimal solutions to problems in which there are many parameters (Vanderbilt & Louie,

1984;Suman & Kumar, 2006)

2. Bayesian Statistics: Markov chain Monte Carlo (MCMC)

Until the mid 1990s, many researchers (like me) thought that Bayesian statistics had a

theoretically compelling foundation, but it was not useful. The math was too difficult. It

was difficult not just in the sense that much careful mathematical study was required, but

also in the sense that no amount of analytical mathematics would be likely to help. Even

expert mathematical statisticians could not draw conclusions from many Bayesian models.

Solutions were known to exist for only a small set of possible problems.

The fundamental Bayesian idea is that we ought to integrate our beliefs about the world

with our statistical analysis of it. The competing view, dubbed the “frequentist” view, holds

that a parameter is equal to a particular value (the “null” value) and if the sample estimate

is “far enough” away from that value, we reject the original hypothesis completely. Despite

the teaching of that method, most researchers will admit that they do not actually approach

science in that way. If we believe that the average height of a male in the United States is

5’11”, and a sample estimate indicates that it is 6’4”, we don’t actually conclude that 5’11”

was completely wrong. Rather we may think it is less likely to be correct. Our understanding

of the world is not usually held as a “right” or “wrong” dichotomy. The Bayesian approach

formally “updates” beliefs about parameters in light of observations. This approach appears

to be both a more realistic description of what researchers actually do and also a better way

to make decisions (DeGroot, 2004).

24



The Reverend Thomas Bayes’s was probably not the first person to “discover” this principle,

but his name is associated with it nevertheless (Stigler, 1983; Fienberg, 2006). Let Pr(obs.)

represent the probability of collecting a set of observations. Let Pr(hyp.) be the probability

that a particular hypothesis is correct. Usually hyp. would be values for a set of parameters.

Bayes’s law holds that we can derive beliefs that reflect our observations, Pr(hyp.|obs.)

through this formula:

Pr(hyp.|obs.) = Pr(obs.|hyp.) · Pr(hyp.)
Pr(obs.) (9)

The left hand side, Pr(hyp.|obs.), is the “posterior probability distribution,” which indicates

how likely it is that a hypothesis is correct in light of the observed data. We don’t intend

to conclude that any particular hypothesis is correct. Instead, we want to be able to state

how likely any each one is to be correct. Pr(hyp.) is called a “prior” belief. It is a reflection

of the researcher’s experience. For example, a priori, we believe that the most likely height

of a randomly drawn male is 5’11” and it is unlikely that we will find a 7’ tall. Finally,

Pr(obs.|hyp.) is the “likelihood” that a given sample can occur if a given hypothesis is

correct. The likelihood, of course, will be familiar to people who have conducted maximum

likelihood analysis. Whereas a traditional maximum likelihood analysis would stop after

finding a set of estimates that maximizes Pr(obs.|hyp.), the Bayesian goes the extra step of

blending that with previous beliefs.

This is the point at which Bayesian methodology becomes too difficult (or at least, it used

to be). We would like to have a workable formula for calculating posterior probabilities, an

analytical way of combining our beliefs with our sample. Some prior belief distributions do

merge workably with the likelihood models (so-called conjugate distributions), but most do

not. In practice, applied researchers quickly wander away from the safe path of workable

models and into a forest of interesting but impractical models. This is true of maximum
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likelihood analysis, of course, so it is not a uniquely Bayesian problem. But the practitioners

of maximum likelihood analysis have learned to stay on the mathematically tractable path,

whereas the Bayesian paradigm seems to invite us to wander away from it.

Consider as an example the so-called “hierarchical regression” or “mixed regression” model.

Scholars are increasingly interested in taking the usual regression model, as in equation 3,

and supposing that the parameters themselves are drawn from a random process. Suppose

yijk = β0 + β1x1i + β2jx2i + β3kx3i + ei (10)

A school student’s scores on a standardized test (yijk) reflect personal characteristics (the

subscript i ) as well as characteristics of the school (subscript j ) and the city (subscript k ).

Other variables and random processes at those higher levels are thought to determine these

other parameters

β2j = γ0 + γ1x4j + uj, uj ∼ N(0, σ2
u) β3k = ξ0 + ξ1x5k + vk, vk ∼ N(0, σ2

v) (11)

All of the unknowns are assumed to be normally distributed, so it is likely that this can

estimated by maximum likelihood as a mixed model with software such as lme4 (Bates &

Maechler, 2010). For all practical purposes, it will simplify down to one equation.

Instead of assuming that there are normally distributed errors, suppose that there are random

effects from some other distribution. Carlin et al. (2001) make a persuasive case in a study of

smoking that the individual-level random effect needs to mix at least two distributions, one

that may be normal, but another is concentrated near 0. Or, for another example, suppose a

random effect has more extreme observations than the normal distribution will countenance.

We might suppose that uj is drawn from a t distribution, a distribution that has fatter tails

(see Albert, 2007). Any wrinkle of that sort will probably turn this into a problem for

which we do not have workable tools for maximum likelihood analysis. Maximum likelihood
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calculations are prohibitively difficult, and, until recently, Bayesian analysis was unlikely to

take us any further.

The MCMC approach gives the Bayesian statistician a workable strategy for this problem.

The MCMC approach mirrors the Metropolis approach very closely. The vector of parame-

ters to be estimated can be arranged like so :

β(1) = (β(1)
0 , γ

(1)
0 , γ

(1)
1 , σ(1)

e , η
(1)
0 , η

(1)
1 , η

(1)
2 , η

(1)
3 , η

(1)
4 ) (12)

and then we would sample by creating a chain. We can calculate the probability that this

vector is correct, then impose some random perturbations, and re-calculate. The so-called

“burn in” period brings the model up to time k, after which it is said to have converged and

the following samples are used to represent the posterior distribution.

This adaption of the Metropolis algorithm seems obvious in retrospect, but it was not recog-

nized and put to use for about 40 years. Gelfand & Smith (1990) and Gilks & Wild (1992)

were among the first to put the pieces of the puzzle together. Instead of the Metropolis algo-

rithm, an update method known as Gibbs Sampling, which had been introduced for digital

image reconstruction by Geman & Geman (1984), was incorporated by Gelfand and Smith.

Gibbs sampling simplifies the problem of creating a proposed draw from the multivariate

distribution by dividing the process into several one dimensional adjustments. We don’t

need to write down a probability model for the transition from the whole vector from one

state to another. We only need to write down a shift for one parameter, taking all of the

others as given. That is, we move from this starting position

(β(1)
0 , γ

(1)
0 , γ

(1)
1 , σ(1)

e , η
(1)
0 , η

(1)
1 , η

(1)
2 , η

(1)
3 , η

(1)
4 ) (13)

by drawing a new estimate of just one parameter:
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(β(2)
0 , γ

(1)
0 , γ

(1)
1 , σ(1)

e , η
(1)
0 , η

(1)
1 , η

(1)
2 , η

(1)
3 , η

(1)
4 ) (14)

and then we draw an estimate of another parameter:

(β(2)
0 , γ

(2)
0 , γ

(1)
1 , σ(1)

e , η
(1)
0 , η

(1)
1 , η

(1)
2 , η

(1)
3 , η

(1)
4 ). (15)

This is possible because we can, more-or-less easily, because a conditional probability model

for one parameter is relatively easy to derive (whereas a conditional model for all parameters

is not). Gilks and Wild (1992) demonstrated that this conditional sampling strategy could be

used reliably for complicated, hierarchical models. “We have shown that adaptive rejection

sampling can be used as a black box routine for efficiently sampling from complex densities,

in particular those arising in applications of Gibbs sampling to the analysis of hierarchical

Bayesian models involving non-conjugacy” (p. 347). In other words, there is a meaningful

approximation for the previously unsolvable problem. Around that same time, a lively

debate following Geyer’s proposal (1992b) was evidence that many research teams were hard

at work developing the theory of simulated chains (Gelman & Rubin, 1992; Tierney, 1994),

diagnostics for the convergence of the process (Cowles & Carlin, 1996), working examples of

applications to problems that researchers frequently encounter (Albert & Chib, 1993), and

additional enhancements of the algorithms (Duffie & Glynn, 1995; Neal, 1994).

As great as they are, these insights would not have been so influential if they were not

accompanied by high quality textbooks (Gelman et al., 2003; Gill, 2007; Jackman, 2009) and

by computer software. The first widely available program, BUGS (“Bayesian Updating with

Gibbs Sampling”) was circulated in the mid 1990s (Thomas, 1994; Gilks et al., 1994). It was

accompanied by a thorough set of worked examples (Gilks et al., 1995). The implementation

of WinBUGS (for Microsoft Windows operating system) made the Bayesian breakthrough

widely accessible. The documentation included examples with discussion that educated the

reader not only about WinBUGS, but Bayesian analysis more generally. The BUGS language
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for model specification today lives on in the OpenBUGS project (Lunn et al., 2009). That

language seems to have been accepted broadly in the community; it is also used in JAGS,

Martyn Plummer’s new implementation (Plummer, 2010a,b), whose name is an acronym,

Just Another Gibbs Sampler. For researchers who don’t want to learn the entire BUGS

language framework to estimate basic models, there are several programs that have pre-

packaged basic models with standard prior belief distributions (Martin et al., 2010; Hadfield,

2010; Rossi & McCulloch, 2008). A probit regression, for example, can be estimated with

several R packages, including MNP (Imai & van Dyk, 2005a,b), bayesm (Rossi & McCulloch,

2008), or MCMCpack (Martin et al., 2010). These approaches typically allow one to adopt

a simplified model of the prior, with the possibility that it can be uninformative, or “flat”

(meaning it does not influence the posterior results very much). If one wants an “in between”

approach, I’d recommend Albert’s R package LearnBayes (2010) and the associated textbook

(2007). It supplies a workable set of building blocks for Bayesian estimation and provides a

gateway to the more general BUGS modeling framework.

The most frequently asked question among my students has been, “what do I get in return

for learning all of that Bayesian jargon and math?” It seems not persuasive to say, “you get

to be a Bayesian!” That’s the correct answer, of course; one is freed from the limitations

imposed by a certain way of thinking. If one adopts a Bayesian perspective, then models

with unknown parameters, latent (unobserved) variables, and missing data all come into the

focus of a single lens (Jackman, 2000a). One can fold the imputation of missing data into

the MCMC analysis procedure, eliminating the need for a separate “multiple imputation”

step that would ordinarily precede statistical analysis (Jackman, 2010).

As an example of the MCMC experience, I have often presented a political science classic:

the spatial voting model. Consider the problem of estimating the preferences of U.S. Senators

from data on roll calls. From the “yeahs” and “nays”, we attempt to estimate each voter’s

favorite position (ideal point) in an underlying (possibly multidimensional) space. Many

political scientists will point to this as a foremost contribution of Bayesian analysis (Clinton
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et al., 2004; Martin & Quinn, 2002, 2007; Jackman, 2000b). Adapting the concepts of

Bayesian item response theory proposed in a path-breaking paper by (Albert, 1992), the

multi-dimensional IRT estimation routines in MCMCpack can estimate either a one or a

multidimensional preference model. (We might as well have used Jackman’s ideal estimator

for R (2010), or the free-standing IRT package MultiNorm (Edwards, 2010)).

In Figure 4, a small bit of the output from a two dimensional model is presented. The

figure represents just one Senator (Ted Stevens, Alaska), but any of the other Senators

could have been selected for illustration. The estimation process included a 10,000 period

burn-in, followed by 50,000 draws from the MCMC process. The plot on the left tracks

all 60,000 estimates. The first 10,000 are thrown away, and then we “thin” the rest (a

way of ameliorating autocorrelation). We keep only 1 in 10 estimates, leaving 5000 for the

construction of the posterior density plots on the right side. However, we might not be

finished, however. The chains, particularly the one on the bottom, may not have converged

after 10,000 iterations, so we would apply some diagnostic checks. It may be necessary to

throw away a much larger block of burn-in estimates. After a satisfactory set of results has

been obtained, we might summarize the estimates for the individual voters by the modes or

means of their posteriors.

In my experience, a few examples of problems that are otherwise unsolvable will go a long

way to break down the resistance of the audience. Practitioners of “hierarchical models” are

often framed in by their assumptions; MCMC offers a way out. In their leading textbook

on hierarchical regression, Raudenbush & Bryk (2002) weave their way through the normal

models, noting their limitations and pointing the reader in a Bayesian direction for the

consideration of difficult cases. In his recent review of MCMC in psychology, Levy observes

that, “A Bayesian framework ... supports the removal of historical boundaries that are likely

to hinder the growth of substantively rich and methodological complex psychometric models”

(Levy, 2009). One need only consider the range of examples provided with WinBUGS, or that

which is surveyed in (Congdon, 2006), to gain the appreciation for the potential richness of
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Figure 4: MCMC Estimation of Senator Ted Stevens Voting Tendencies

these models. Whereas the advocates for Bayesian tools may not have reached their audience

before MCMC, they certainly have reached it today. Treatments of the Bayesian method

have appeared the leading journals of many fields, including my field of political science

(Western & Jackman, 1994; Jackman, 2000b, 2009).

The argument that Bayesian tools offer an “exact” view of the sampling distribution of

parameter estimates is also persuasive. Typically, a frequentist will conduct t or Wald tests

with the ratio θ̂/s.e(θ̂). When parameters have been estimated by maximum likelihood,

those tests are not based on an exact characterization of the sampling distribution. Instead,

they are based asymptotic (large sample) approximations. They are known to be correct

only for infinite sample sizes. Proponents of the Bayesian MCMC claim their approach

yields an “exact” representation of the sampling distribution, even if the sample is small (see

Albert, 1992; McCulloch & Rossi, 1994). Estimates of the variance components in mixed

models have unknown statistical properties, and only wishful thinking allows us to proceed by

conducting ordinary hypothesis tests as if those parameters followed t distributions. Because

of that problem, Baayen et al. (2008) suggest using MCMC to characterize the sampling
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distributions of variance component estimates. A leading package for mixed models in R,

lme4, implements that strategy (Bates & Maechler, 2010). That approach has also been

proposed in ecological analysis (Clancy et al., 2010).

If the sales pitch for the Bayesian approach is still insufficient for the reader, I fall back to

argue that simulation with MCMC may be helpful to frequentists who conduct maximum

likelihood analysis. First, MCMC can facilitate the calculation of maximum likelihood es-

timates. Recall that the EM algorithm (Dempster et al., 1977) has been a staple in the

calculation of maximum likelihood estimates. The E stands for Expectation, a procedure

in which estimates for missing parameters are inserted to create a complete data set, and

the M stands for Maximization. Wei & Tanner (1990) showed that MCMC simulation can

be used to make the E step more practical. A number of similar approaches for the use of

MCMC in the EM algorithm have been tested and found workable for particular classes of

problems (Geyer, 1992a; Nielsen, 2000; Jank & Booth, 2003; Caffo et al., 2005; Marschner,

2001; Valpine, 2003). Second, very recent publications indicate that MCMC calculations can

be used to derive ML estimates. Virtually the same algorithm was proposed in economics

(Jacquier et al., 2007) and in ecological modeling (Lele et al., 2007). In the latter presenta-

tion, the procedure is given the memorable name “data cloning.” It is a blend of the “data

augmentation” method for the EM algorithm (Tanner & Wong, 1987) and MCMC estima-

tion. Both of the teams that propose this method claim it is fast and easy to use, portraying

it as something of a magic bullet for difficult-to-estimate models. Lele et al. (2007) claim

not only to produce ML estimates, but also a matrix of variance estimates that can be used

to conduct the t or Wald hypothesis tests that frequentists usually employ (Ponciano et al.,

2009).
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3.3 Simulation Modeling and Hypothesis Construction

We have seen that Monte Carlo simulation can play a role in the evaluation of statistical

procedures. It can also play the role of a connective tissue between complicated theoretical

constructs that cannot otherwise talk to each other. In this section, we explore simula-

tions that are used to derive theories and hypotheses. In this usage, MC simulation is not

in principle different from mathematical formalization of a problem and the derivation of

propositions from a model.

Suppose the research question is “How much money can a person earn by playing roulette

a Casino?” We could hire a fleet of graduate students and bankroll them at the Flamingo

Hotel in Las Vegas. This approach might be expensive, but that is not the worst problem.

It leaves quite a few things to chance. Some students might bet carelessly, some might be

distracted, some might take the money and play poker instead. If we could design a computer

version of roulette, and then make a computer program that plays according to strategies

we specify, then we might make some progress. Perhaps the authors would quibble with this

characterization, but I’d say this is almost exactly what goes on at the genesis of projects like

the Santa Fe Artificial Stock Market (Palmer et al., 1994; Johnson, 2002; Linn & Tay, 2007;

Levy et al., 2000) or the so-called “minority game” (Challet et al., 2005), which flowed out of

a whimsical story about Brian Arthur’s desire to hear Irish folk music in a not-too-crowded

bar (Casti, 1996; Arthur, 1994).

When a computer program is designed so as to represent the behaviors of autonomous

entities, it is often called an agent-based model (ABM) or an individual-based model (IBM).

ABMs were originally developed (primarily) for the modeling of complicated environmental

and natural systems (DeAngelis & Gross (1992); Grimm & Railsback (2005); Parker et al.

(2003)), but social science usage has also resulted in some notable insights. The social science

applications are surveyed in several textbooks (Gilbert & Troitzsch, 1999; Gilbert & Conte,

1995; Miller & Page, 2007). Apart from the economic study of markets and individualistic
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decision-making (Luna & Stefansson, 2000), there are sociological approaches, with thematic

applications, that a can be found in Growing Artificial Societies (Epstein & Axtell, 1996)

and Turtles, Termites, and Traffic Jams (Resnick, 1994).

Most ABMs rely on random numbers in two ways. First, the substance of the model might

call for unpredictable events, such as changes in the weather, the stock market, or an election

outcome, which are interpreted as exogenous shocks. Second, the researcher may use a

sample from a statistical distribution to initialize the positions and characteristics of the

agents. In either case, because the course of the simulation will reflect random input, it will

be necessary to conduct a Monte Carlo analysis. The simulation will be run many times in

order to ascertain the range of possibilities.

Social science simulation modeling has its roots in the study of cellular automata, the models

on which von Neumann was working at the time of his death (Neumann & Burks, 1966). A

cellular automaton is a “grid” or “lattice” of points that can be thought of as a checker board

in which the squares can change color. Each cell will have transition rules, such as “if two of

my neighbors are red, change my own color to black.” The grid’s main role is to determine

the immediate neighbors of each cell. In a computer implementation of a cellular automaton,

one can dispense with the grid concept altogether and simply define a neighborhood (a list

of other cells) for each cell along with a status transition rule (Hegselmann, 1996; Nowak &

Lewenstein, 1996).

Early social science applications of the cellular automata were not computer models, but

rather they were conducted on a checker board or graph paper. Schelling’s model of neigh-

borhood segregation was a pioneering effort. The squares on a board are homes, and markers

of different colors represent the races of families that move about in order to find agreeable

neighborhoods. A sharp separation of races can develop over time even if the families are

relatively tolerant of each other (Schelling, 1971, 1978). This publication gave rise to a

steady succession of studies of segregation (for example, Singh et al., 2009; Zhang, 2004;

Aydinonat, 2007) and the “tipping models” of social behavior (Granovetter & Soong, 1988).
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Tipping models are especially important in the history of simulation in social science because

they appeal to the social scientist’s intuition that interactive individual behaviors can have

unexpected social consequences.

If we venture outside the confines of academic research, the most famous cellular automaton

is The Game of Life, which was attributed to John Conway (Gardner, 1970). The Game

is driven by simple rules that allow cells to remain lighted (alive) if they have a medium

number of lighted neighbors. Cells can be turned off (die) if they are either too lonely

or over-crowded. Some initial patterns can reproduce themselves endlessly, while others

beget streams of strange, even bizarre patterns. Professionals and amateurs alike have

been captivated by the seemingly endless variety. On the academic side, Life addresses the

fundamental questions in computer science concerning the computational power of artificial

machines. On the popular side, well, seeing is believing. The reader should do a Google

search for “spaceship” in association with the Game of Life and play the interactive game at

this Website: http://www.conwaysgameoflife.net.

Robert Axelrod’s study of the Prisoner’s Dilemma might be the most influential computer

simulation in social science. The Prisoner’s Dilemma (PD) is unique among two person

games: each player has a dominant individual strategy to behave uncooperatively, and yet

the payoffs of both players would be improved if they behaved differently. This conundrum,

the apparent mismatch of individual incentives and social welfare, has fueled the study of the

PD game. A computer tournament simulated social evolution by pitting strategies against

each other and then rewarding successful strategies with more prevalence over time. The

simulation led, somewhat unexpectedly, to the success of cooperative strategies (Axelrod,

1981, 1984). I’m more convinced now than ever that the Prisoner’s Dilemma is the drosophila

(fruit fly) of modern social science (Johnson, 1999). Love it, or hate it (Binmore, 1994), the

simulations of the Prisoner’s Dilemma in the last three decades outweigh any other topic,

and by a considerable margin (see Hoffmann, 2000; Axelrod & D’Ambrosio, 1996; Gotts

et al., 2003). Public opinion dynamics (to cite just a few, (Nowak et al., 1990; Latane, 1996;
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Huckfeldt et al., 2004)) or competitive position taking by political parties Kollman et al.,

1992, 1998; de Marchi, 1999; Laver, 2005; Laver & Schilperoord, 2007; Fowler & Laver, 2008

have also received a considerable amount of attention.

It seems certain that agent-based modeling has benefited from three developments in science.

The first was the so-called “chaos theory,” which is often summarized by reference to the

Lorenz model (1995), now commonly known as the “butterfly effect”(Gleick, 1988). Whereas

scientists had assumed that a system that starts out in “roughly” the same position should

generate “roughly” the same result, the chaos theorists found that virtually identical models

could generate grossly different results (May, 1976). An especially highly prized result is a

“bifurcation,” a “line in the parameter space” that separates systems that behave differently

(for example, Nowak et al. (1994b); Nowak Martin & May Robert (1993); Nowak et al.

(1994a)). The study of bifurcation is closely tied to the study of fractals, complicated

geometrical designs that can evolve from simple mathematical expressions (Mandelbrot,

1983; Barnsley, 1993;Wolfram, 2002 ). Also highly prized, of course, is the opposite result

which indicates that a system tends to evolve in a particular direction, regardless of where

it starts or how it might be exogenously shocked. Perhaps the Schelling segregation model,

or Axelrod’s culture model (Axelrod, 1997), would fall into this latter category.

The second development that dovetailed with the growth of ABM was the new science of

“complexity” and the establishment of the Santa Fe Institute (Waldrop, 1994). A complex

system has many loosely interconnected elements (Mitchell, 2009; Johnson, 2009). In most

cases those elements include individual agents, such as models of people, animals, trees, etc.

One main emphasis in this area of study is the development of “emergent” properties, which

are defined as characteristics of systems that evolve without conscious guidance. Terms

like “self-organized criticality” (Bak, 1999; Jensen, 1998), “hidden order” (Holland, 1996),

“self-organization” (Camazine et al., 2003), “spontaneous order” (Kauffman, 1995, 1993)

and “sync” (Strogatz, 2003) are all referring to this basic idea which, as one might expect, is

open to many interpretations. Chris Langton, whose research on cellular automata (Langton,
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1984, 1990) triggered the formation of a field of study called Artificial Life (Langton, 1995),

contended that the individual pieces tend to adjust themselves over time to a position that

he called “the edge of chaos.” In his model, systems that adapt well to stress are systems in

which the individual components tend to position themselves close to the line of separation

between stable and chaotic systems. Brian Arthur, an economist, found many examples

of systems which seemed to defy the standard principles of his field (Arthur, 1999). A

comprehensive collection of materials for economic applications is found at the Agent-Based

Computational Economics Website (Tesfatsion, 2010).

A third development that dovetailed with the growth of simulation was a change in the field

of computer science. The philosophy of object-oriented (OO) computer programming was

introduced. The OO philosophy is almost exactly the same as the social science philosophy

that motivates the agent-based model. OO endorses programs that separate information

and functionality among types of objects. Information should be disclosed only through well

defined protocols. Objects are thought of as representations of classes, which are conceptually

organized from general to specific. Widely adopted languages such as C++ (Stroustrup,

1986), Objective-C (Cox, 1986), and later Java (Gosling et al., 2005), sought to make this

a reality. The idea of having individual, autonomous agents in a simulation model could

finally be implemented in a computer language that was based on the exact same idea. The

introductory chapters in the Objective-C manual(Apple Computing, 2009) could as well be

the introduction of a book on agent-based modeling.

Chris Langton, who was at the Santa Fe Institute, saw the potential of research with agent-

based modeling, but was concerned that every simulation project was done “from scratch”

using idiosyncratic concepts and code. There was no standard “workbench.” His team at the

SFI proposed the Swarm Simulation System (Minar et al., 1996), a programming library, to

address that problem. Some of the terminology of the Swarm project has filtered out to the

research community, but it did not coalesce the community around a single tool. Instead, re-

search teams sought to develop their own libraries. The Brookings Institution sponsored the
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development of Ascape, the platform used by Epstein & Axtell (1996). Flowing out of the

StarLogo framework (familiar to the readers of Resnick), software packages were made avail-

able from MIT (new variants of StarLogo) and Northwestern University (NetLogo Wilensky

(1999)). The University of Chicago and Argonne National Laboratories sponsored RePast

(REcursive Porous Agent Simulation Toolkit), and George Mason University’s Center for

Social Complexity released MASON (Multi-Agent Simulation of Networks and Neighbor-

hoods, (Luke et al., 2004)). This rendition includes only the most prevalently used libraries;

through the years, quite a few other frameworks for software development have appeared.

None of these has dominated the language or practice of agent-based modeling in the same

way that the language of BUGS came to dominate MCMC research, or the way in which R

has come to dominate development of statistical tools.

4 Practical Problems in the Immediate Future

The wave of development in Monte Carlo simulation has been driven by the urgency of the

research questions and the ability of research terms to design programs that can get the job

done. As those ideas and methods filter out to the broader class of academic practitioners,

some problems are presenting themselves. In many of these cases, there is no simple or

painless solution. It may be necessary to adopt significant changes in the way we conduct

research and train students.

4.1 Replication

Replication has two meanings, one sharper and more demanding than the other. The looser

meaning of replication is that we ought to be able to take someone’s MC project and re-write

it in a different language (or on different computers) and the results should be comparable,

“on average.” The sampling distributions of important estimators should be “about the
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same.” The stricter standard of replication is that we should be able to reproduce results

exactly, so that results coincide within the limits of precision in modern computers.

The looser standard for replication is important in practice. The value of a finding is made

more certain when two different teams can design simulations in their own styles that produce

roughly the same findings. Some computer models bring with them such a complicated

combination of statistical and software concepts that we can never feel entirely confident

that the results are completely understandable. That’s especially true in complex systems

research, in which one objective is to design a system that produces unexpected results or

emergent properties. Even if one has access to the code, it can be difficult to be sure that

the unexpected result is substantively meaningful, rather than a glitch in the program.

The stricter standard for replication is also important, and yet it is almost universally ignored

by practitioners. The ability to collect an exact set of records so as to re-run a model and

reproduce the exact same results is one point of emphasis in John Chambers’s book, Software

for Data Analysis. Chambers outlines some valuable strategies for management of micro-

level details that facilitate precise replication. These steps are advocated as a part of his

Prime Directive for developers of statistical research software. “The many computational

steps between original data source and displayed results must all be truthful, or the effect of

the analysis may be worthless, if not pernicious. This places an obligation on all creators of

software to program in such a way that the computations can be understood and trusted”

(Chambers, 2008, p. 3).

One of the problems that makes precise replication difficult is that researchers are sometimes

unaware of the subtle differences between software implementations that can cause projects

that are identical in “specification” to differ in practice. Recently, I noted that the same

random number generator (Mersenne-Twister, MT19937) has been adopted as the default

by SAS, R, Swarm, and countless other projects. On the surface, at least, that seems to

imply that if one sets the same random seed to initialize the process, then one ought to be

able to draw the exact same stream of random numbers. Documentation for most programs
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is superficial, simply stating that the generator is MT19937 and referring the authors to

the well known publication (Matsumoto & Nishimura, 1998). Many software users don’t

the vagueness of that reference. I’ve done quite a bit of testing. Within SAS itself (or R,

or any other project), one can repeatedly re-set the seed and then draw identical streams

of numbers. However, one cannot set the seed to a given value in each program and then

generate the same streams of random numbers. Theoretically, that should not happen, since

the implementation of MT19937 is available directly from the developers on the project’s

Website (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html).

The problem appears to be caused either by the usage of slightly different editions of the

generator’s C code, or (more discouragingly) poor implementations. In the open source

projects, I’ve tracked down the differences to minor changes in the initialization of the

random streams, but in the closed source programs, one can only guess about what causes

the observed differences.

4.2 Making MC available to “the masses”.

For the sake of discussion, lets suppose that computer simulation is going to become an

essential element in social science research. A significant overhaul in graduate training will

be required. The graduate curriculum in American social science, at least if we judge by

widely sold textbooks, remains under the control of the frequentists, not Bayesians. In or-

der to make Bayesian MCMC estimation accessible for most students, a substantial amount

of probability theory and mathematical statistics will have to be introduced. Apart from

mathematical training, we also need training in computer programming. Most people earn-

ing Ph.D. degrees today in political science, sociology, or psychology have never written a

program in a “low level” language like C or C++. Even though the implementations of

BUGS have come closer to putting Bayesian statistics into a common, more-or-less work-

able language, the construction and interpretation of these models still requires a good

deal of expertise and judgment. The BUGS Web page ends with this warning: “There
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is, however, a need for caution. A knowledge of Bayesian statistics is assumed, including

recognition of the potential importance of prior distributions, and MCMC is inherently less

robust than analytic statistical methods. There is no in-built protection against misuse”

(http://www.mrc-bsu.cam.ac.uk/bugs, April 21, 2011).

How is the danger ahead new and different? Commercial software. Until now, most cut-

ting edge research software has been freely shared among research teams and considerable

expertise is required to use those programs. The experts supervise each other, the rest of

us benefit. That is changing, as the more user-friendly statistical packages like SAS and

Mplus have begun to integrate some Bayesian options for MCMC simulation of parameter

distributions. I am reminded of a warning offered by Andrew Hacker in End of the American

Era(1970). He feared that the simplification of computer software packages, in combination

with the ethos of “publish or perish,” would open the gates for a flood of silly research con-

ducted by people who had not the slightest understanding of what they were doing. If that

was a threat when SPSS made regression analysis widely accessible, one can only shudder

at the danger from the dissemination of point-and-click simulation software.

Consider, for example, Mplus, a popular statistical package for structural equation model-

ing. The company offers an extensive user guide (http://www.statmodel.com/ugexcerpts.

shtml) that has detailed instructions on how one might conduct a Monte Carlo simulation.

The chapter on simulation explains how to set the seed of the program’s random generator,

but there is no mention of what random generator algorithms are used or how those val-

ues are converted into statistical distributions. In the technical appendices and references,

there are no citations to any random number generators or algorithms for the construction

of statistical distributions. I understand that many researchers are using Mplus to conduct

simulations, but I have to admit I’m concerned. Researchers who have purchased software

feel, with some justification, that they have paid good money and they ought to be allowed to

use the routines, even if they have no way of knowing what calculations are being conducted

and there is no hope of replicating the results. If there ever was a violation of Chambers’s
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Prime Directive, this is it. The warranty for Mplus offers users a refund if Mplus “does not

perform in accordance with the accompanying documentation,” which is encouraging, except

that the accompanying documentation is lacking in technical detail that might allow one to

tell if the program is performing as documented.

There is a fairly persuasive argument that legitimate research software should be offered

with code that is open for inspection. Seemingly small details, such as the algorithm for

implementing MT19937 or calculating sample variance, can have a tremendous impact on

the quality of the results. Commercial software companies do not agree, of course. Code

and algorithms are trade secrets. Users are expected to trust the numbers they receive. The

track record of some closed-source programs has been, well, poor (consider, for example,

Microsoft Excel (McCullough & Heiser, 2008)). Access to the source code is most vital when

we are on the “leading edge.” New software is most likely to have flaws, and researchers lack

the breadth of experience that would help them guess that the code for a simulation package

is mistaken.

4.3 Specification

A statistical model is a theoretical construct that approximates a data-generating process.

What goes wrong if the data-generating conditions are different from the assumptions of

the theoretical model? It is usually difficult to say. We don’t often ask, “what if I fit the

wrong model?” In fact, when new procedures are proposed, they are usually accompanied

by a Monte Carlo simulation that generates data according to a known process, and the

statistical estimator is then shown to uncover the known properties of the data-generating

process.

As time goes by, statistical models are often subjected to stresses so that we can find out

what goes wrong when the theory that inspires the model does not match the data-generating

process. The linear regression model would be a foremost example. We teach the additive
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model with normal error:

yi = β0 + β1x1i + ei, i ∈ {1, . . . , n}, βj ∈ R, j ∈ {1, 2}, ei ∼ N(0, σ2). (16)

After that, we consider the possible dangers of applying the estimator for that normal ad-

ditive model to data that comes from other data-generating processes. What if the error’s

variance is not homogeneous? or the error is not normal? and so forth. We have a pretty

good idea of the distortion that these things cause, and there are competing families of fixes

for them. There is a growing set of robust estimators for regression models (Venables &

Ripley, 2002). In that context, robust means that the estimate of β1 , for example, is (by

some standard) good, even if the assumptions about ei are violated.

The major challenge for users of new statistical tools is that there is no powerful, universally

applicable method to diagnose the mismatch between the theory and the data-generating

process. We usually believe that new procedures work when they are fitted to the “right kind”

of data. Otherwise, ambiguity reigns. In structural equation modeling, the proliferation of

indices of “model fit” is a sure indicator of the problem. We do not agree on the kinds

of mismatch that are most likely to arise in research and we do not agree on whether the

mismatch causes harm to the parameter estimates. In the hierarchical, multi-equation models

that are being explored with MCMC tools, the situation more problematic. Consider the

Bayesian claim that the Markov chain converges to the exact distribution of the parameter

estimates. That is true if the model as written matches the data-generating process. If the

model does not match the data-generating process, we have, put bluntly, no idea what the

posterior distributions mean. Of course, the same is true in maximum likelihood estimation.

The claim that a parameter estimate is asymptotically normal pre-supposes that the assumed

model is correctly specified. Many critics are quick to point out that the ratio of β̂/s.e.(β̂)

is only distributed as a t statistic when the sample is infinitely large. Most have not been

too concerned about the fact that, if wrong probability model is put to use, the distribution
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that estimator is completely unknown, no matter how large the sample size might be.

In agent-based modeling, model misfit appears where the computer implementation of some

details does not match one’s substantive understanding of the problem. This is especially

important in the effort to incorporate the passage of time in simulation models. The simu-

lated agents behavior can affect the world, and the scholar’s intuition about the passage of

time and the inter-weaving of many separate actions into the time line may not match the

computer implementation. Agents observe their world and adapt their behavior, but which

agents and when? Albert Einstein is credited with the comment, “The only reason for time

is so that everything doesn’t happen at once.” This is absolutely true in computer model-

ing. A computer’s central processing unit manages instructions in a designated sequence; we

attempt to simulate simultaneity by manipulating the model.

In the oldest tradition of computer simulation, the passage of time was represented as dis-

crete steps at which all agents decided what to do at the exact same instant. In a cellular

automaton, each cell has a “snapshot” of the world and each adjusts against it. That im-

poses synchronous patterns of action that are not generally reproduced if the cells update

one-at-a-time. A theorist might suppose that individual actions are triggered by a dynamic,

flexible system of triggers and the implementation of that idea turns out to require a great

deal of care. We expect that the scheduling framework can matter, but most of the time we

do not know what differences might be observed. One exception would be the spatial pris-

oner’s dilemma (SPD) game. May and Nowak presented results for the SPD (1992; 1993);

Huberman and Glance contended that the results were an artifact of the “everybody acts

at once” model (1993). Follow-up studies have rebutted the largest part of the criticism by

Huberman and Glance, but there are some contexts in which the scheduling framework does

matter (Nowak et al. (1994b, 1996); see also Newth & Cornforth (2009) and Axtell et al.

(1996)).
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5 Conclusion

This essay has surveyed “Monte Carlo analysis,” a collection of the research methods that

depend on computer generated random numbers. In an effort to convey the breadth of the

potential applications, the use of pseudo random number generators has been explored in

several phases of the research process.

To social scientists, the term “Monte Carlo analysis” refers to a procedure for evaluating

statistical estimators. A Monte Carlo analysis involves application of estimators to many

simulated data sets. One hopes to demonstrate that one procedure is more accurate or less

uncertain than another.

On the other hand, to physicists and chemists in the mid 20th century, “Monte Carlo analy-

sis” refers to a way of finding approximate solutions to intractable problems. Mathematical

theories of matter and energy led to models that could not be solved. A Monte Carlo anal-

ysis draws a sequence of observations from that model to build a “map” of that system’s

tendencies. That type of MC analysis was predominantly used in the natural sciences until

the 1990s, when it found broad application in the Bayesian statistical approach known as

Markov chain Monte Carlo (MCMC). Statistical models for which parameter estimates could

not be derived by other approaches seemed more amenable to the Bayesian approach, but

only after the introduction of MCMC did that potential become reality.

Finally, scholars in social sciences, ecology and land use were at the forefront of yet another

type of “Monte Carlo analysis.” These computer models are often proposed as “realistic,”

yet “mathematically unworkable” characterizations of “real world” processes. The growth

of agent-based computer simulation models offered the hope of A New Kind of Science

(Wolfram, 2002), one in which social (systemic) patterns were understood as an accumulation

of individual behaviors. Because the interaction of animals (human or otherwise) and their

environment can depend on many unpredictable events (weather, genetic mutation, etc.),

computer generated pseudo random numbers have an obvious role. New scientific models
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that incorporate nonlinearity and unpredictability (theories of chaos and complexity) found

a natural expression in computer simulation. This new science, which seems to address

the “really big questions,” such as the origin of life (e.g., Kauffman, 1995), captured the

imaginations of many.

Even though there have been many accomplishments in the use of MC simulation, one should

remember that the traditional approach was dominant for more than two centuries and, to a

large extent, it still is. There will always be tension, or at least an uncomfortable interdepen-

dence, between traditional “mathematical solutions” and “simulation approximations.” Even

though the mathematicians at Los Alamos championed the simulation approach, there’s no

doubt they would rather have had “definite”, “predictable” answers for the problems with

which they were presented. Some physical processes appear to be truly unpredictable, so

computer generated random numbers were a realistic approach. Some mathematical prob-

lems could not be answered without simulation. Nevertheless, most scientists would rather

have a formal theorem than a simulation.

Bauer’s early survey of Monte Carlo simulation focused most of its attention on mathematical

problems with which sampling could help, but he held out the hope that “most fruitful

application of the method” (1958, 449) would be found in the investigation of problems

for which there was no “mathematical expression.” Simulation would not always be the

last choice, or so it was hoped. The most widely accepted procedures based on random

sampling, the Metropolis algorithm and MCMC, are situated at the ideal position: they

have been shown to “approximately solve” an otherwise unsolvable problem and there is a

formal proof that the approximation is meaningful. Probability theory leads us to expect

that, if we did let the Markov Chain run “forever,” the draws would trace out the system’s

tendencies with virtually complete accuracy. We do not have as much theoretical support

for other applications of MC simulations, and for that reasons, conventional scientists are

“withholding judgment” on simulation results that do not yet have theoretical grounding.
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