NATURAL RESOURCE MODELING
Volume 15, Number 1, Spring 2002

SOFTWARE ENGINEERING CONSIDERATIONS
FOR INDIVIDUAL-BASED MODELS

GLEN E. ROPELLA
The Swarm Development Group
624 Agua Fria
Santa Fe, NM 87501
E-mail: gepr@acm.org

STEVEN F. RAILSBACK
Lang, Railsback & Associates
250 California Avenue
Arcata, CA 95521
Email: LRA@GNorthcoast.com

STEPHEN K. JACKSON
Jackson Scientific Computing
McKinleyville, CA 95519
E-mail: Jackson3@Humboldtl.com

ABSTRACT. Software design is much more important for
individual-based models (IBMs) than it is for conventional
models, for three reasons. First, the results of an IBM are
the emergent properties of a system of interacting agents that
exist only in the software; unlike analytical model results, an
IBMs outcomes can be reproduced only by exactly reproduc-
ing its software implementation. Second, outcomes of an IBM
are expected to be complex and novel, making software er-
rors difficult to identify. Third, an IBM needs ‘systems soft-
ware’ that manages populations of multiple kinds of agents,
often has nonlinear and multi-threaded process control and
simulates a wide range of physical and biological processes.
General software guidelines for complex models are especially
important for IBMs. (1) Have code critically reviewed by
several people. (2) Follow prudent release management prac-
tices, keeping careful control over the software as changes
are implemented. (3) Develop multiple representations of the
model and its software; diagrams and written descriptions of
code aid design and understanding. (4) Use appropriate and
widespread software tools which provide numerous major ben-
efits; coding ‘from scratch’ is rarely appropriate. (5) Test the
software continually, following a planned, multi-level, exper-
imental strategy. (6) Provide tools for thorough, pervasive
validation and verification. (7) Pay attention to how pseudo-
random numbers are generated and used. Additional guide-
lines for IBMs include: (a) design the model’s organization
before starting to write code, (b) provide the ability to ob-
serve all parts of the model from the beginning, (c¢) make an
extensive effort to understand how the model executes—how

Copyright (©2002 Rocky Mountain Mathematics Consortium

5

6 G.E. ROPELLA, S.F. RAILSBACK AND S.K. JACKSON

often different pieces of code are called by which objects, and
(d) design the software to resemble the system being mod-
eled, which helps maintain an understanding of the software.
Strategies for meeting these guidelines include planning ade-
quate resources for software development, using software pro-
fessionals to implement models and using tools like Swarm
that are designed specifically for IBMs.

KEY WORDS: Individual-based model, observability, soft-
ware, validation, verification.

Introduction. Individual-based models (IBMs) simulate systems of
independent agents interacting with each other and their environment.
The technique of building and using IBMs is an essential tool for un-
derstanding complex systems and is increasingly applied to ecological,
economic and sociological issues related to natural resource manage-
ment.

While most natural resource models are implemented in computer
software, IBMs are uniquely dependent on their computer implemen-
tation. The root cause of this dependence is that the results of IBM
simulations we are interested in are the complex, emergent behavior
of a system of interacting agents, and these agents exist only in the
software. A conventional analytical model can be solved many ways
(e.g., by using calculus or a variety of numerical methods to solve the
equations) all of which should produce the same results. An IBM,
however, has no intrinsic “solution” and its results are completely (and
often subtly) dependent on the computer methods used to implement
the model. The only way to exactly reproduce an IBM simulation is to
exactly reproduce its software implementation. Because they represent
complex systems and abandon such concepts as equilibrium or con-
vergence, IBMs are expected to produce novel and dynamic outputs,
making the artifacts of software mistakes difficult to distinguish from
valid results.

The close dependence of the results of an IBM on its software is
undoubtedly one of the main reasons why many scientists and managers
remain wary of the technique. Therefore, using appropriate software
engineering methods is a critical part of advancing the IBM technique
to acceptance as an essential tool for ecology and natural resource
management. Individual-based simulations will not, and should not,
be accepted as credible unless the software issues addressed here are
given due attention.

SOFTWARE ENGINEERING CONSIDERATIONS 7

The importance of software design for IBMs has been recognized,
yet software engineering remains inadequately addressed in many
individual-based modeling projects (Grimm [1999]; Grimm et al. [1999];
Lorek and Sonnenschein [1999]; Railsback [2001]). To date, little spe-
cific guidance on implementing IBMs in software has been published in
the natural resource and ecological modeling literature.

The goal of this paper is to identify important software engineering
issues for IBMs and provide general recommendations for addressing
these issues. Our intent is to provide guidelines that will help an IBM
project develop software that (1) does not contain important unde-
tected errors, (2) helps keep the project efficient and cost-effective, and
(3) provides the tools necessary to conduct valid science or responsible
management with the model. Early detection of mistakes is crucial to
the cost-effectiveness of any software project. Failure to detect mistakes
leads to spending much of the project’s time and budget on work that
must be discarded after mistakes are found or (worse yet) the promulga-
tion of “research” results or management decisions based on erroneous
simulations. Likewise, failure to provide key software features can make
it difficult or impossible to understand and learn from an IBM. These
guidelines are based mainly on the authors’ extensive experience im-
plementing IBMs and designing software libraries for individual-based
simulation.

We address three specific objectives. The first is to provide a
set of software issues and recommendations that are applicable to
modeling projects in general. The second objective is to describe why
IBMs have different software considerations than conventional natural
resource models. Finally, we provide recommendations specifically for
developing IBM software.

2. General software guidelines. This section briefly presents
recommendations on seven software issues that apply to any modeling
project of nontrivial complexity.

2.A Conduct critical reviews. Software is like other products of
science that greatly benefit from critical review. Review is especially
important in the unfortunately common situation in which one person
both designs the model and implements it in software. As with review

8 G.E. ROPELLA, S.F. RAILSBACK AND S.K. JACKSON

of written work, software reviews are most likely to be successful in
improving the code if they are conducted by multiple reviewers that
are adequately qualified and interested. Reviews should address all
aspects of a model—its objectives, written specification and software.
We find that a large majority (but not all) of software mistakes can be
found in a careful review process.

An efficient way to produce quality code is for the model to be im-
plemented by a team of modeler and programmer. The modeler (a
scientist that understands the system being modeled and has primary
respousibility for the model’s formulation) writes the model’s full spec-
ification out and provides it to the programmer. The programmer
writes software implementing the model specification, at the same time
reviewing the specification for consistency and completeness. The mod-
eler then reviews the software to ensure that it faithfully implements
the model. Our experience has been that this process cost-effectively
produces both code containing few undetected mistakes and a complete
and accurate written model description of the model.

An important secondary benefit of the software review process is that
it promotes a clear and understandable coding style. For reviewers to
understand and check software, the code must be written in a relatively
simple and understandable fashion, and simple, understandable code is
more likely to be error-free. Even if copious comments are included, the
actual code statements must be understandable to reviewers and largely
self-documenting. Using variable names that fully and accurately
describe the variables’” meaning is helpful; we recommend key variable
names be assigned by the modeler instead of the programmer. It is also
usually beneficial to use simple and clear coding constructs instead of
overly clever algorithms that may be harder to understand and more
subject to obscure errors. Clear and simple code is desirable even if
it reduces execution speed because it typically reduces the time spent
writing, checking and verifying the code and therefore shortens the
software development time (our experience with IBMs is that computer
execution time rarely limits the rate at which science is conducted).

2.B Use release management. Keeping careful control over the
evolving software is critical for avoiding mistakes and wasted effort.
Common, prudent software engineering practices include:

SOFTWARE ENGINEERING CONSIDERATIONS 9

e Using version control software that automatically documents who
made what changes in the software and when. Version control is
essential for keeping track of exactly what is implemented in each
piece of code, thus allowing changes to be undone easily.

e Packaging and archiving different versions of a model as changes
and additions are made.

e Using automated processes to build and distribute software pack-
ages; for example, providing tools like installation software. Such
tools minimize the opportunities for software users (or develop-
ers) from unintentionally losing, corrupting or misusing code and
input files.

e Careful tracking of when changes are made to, and errors removed
from, each version of a model.

e Assigning specific responsibilities for conducting software main-
tenance tasks; even if only one person is responsible for a code,
maintenance tasks should be scheduled and documented.

2.C Create multiple representations of a model. It is essential
that a model be described in several ways, including a full written
description as well as its software implementation. Models that are
completely described only by their software, and not in written text,
mathematics, diagrams, etc., are of little value for science or resource
management. The lack of such multiple representations of a model
makes software reviews much less valuable because there is nothing
to check the software against. Multiple representations make a model
easier to communicate and reproduce, both of which are critical for
conducting science. Models of complex systems (as most IBMs are) are
especially important to represent in multiple ways because complex
systems require more effort to understand.

It is also valuable to represent the model’s software in multiple ways.
Flow charts, class hierarchy and class relationship diagrams for object-
oriented codes, and various kinds of code maps help in designing and
understanding software for complex models. We often write a verbal
description of the function of each important method (or subroutine)
in a complex code, which makes future code changes (even by the
same programmer) easier and less error-prone. Software is available
to automate some of these code documentation processes.

10 G.E. ROPELLA, S.F. RAILSBACK AND S.K. JACKSON

2.D Use widespread tools. There are many software development
tools available for modelers, and using them has many advantages.
For IBMs and natural resource models, available tools include high-
level simulation languages and graphical environments, code libraries
(several of which are available specifically for IBMs; see Section 4),
and existing codes (Lorek and Sonnenschein [1999]). Using these tools
can greatly reduce the amount of code that needs to be written from
scratch, reducing costs and error potential. The right software tools can
also provide the kinds of interfaces (graphs, animations, etc.) needed
to fully observe and test models. Using existing tools also reduces the
amount of documentation needed for a model, since the existing code
should already be fully understood and documented, with its design
justified. Searching for appropriate development tools should be an
early step in any software project, and those with large projects should
continually watch for useful new tools becoming available. Given the
tools now available, it is difficult for us to envision any situations where
building code from scratch in a base computer language (e.g., C++,
Java) would be a wise decision.

There is an important secondary advantage to using widespread tools:
the benefits of cooperation and sharing with fellow modelers. Just
as science advances by individual researchers building on the work
of others, simulation toolboxes grow in power and quality as more
people use them. Model developers should be active in the user
community for their chosen software tools, reporting any errors found
and contributing a new code that is potentially useful to others. The
result of this community activity is a continual increase in the reliability
and usefulness of the software tools.

2.E Test continually. Treating software testing as a low, late or
optional priority is a sure sign that a modeling project is in trouble.
Software testing is a verification process—showing that the software
accurately implements the model. (Note that software testing therefore
requires that the model be represented separately with a written or
other description—software cannot be verified if there is no other
description of the model to verify it against.) Software mistakes are
inevitable in complex models, and finding as many mistakes as early as
possible is critical to project success. Therefore, comprehensive testing
measures must be built into the software development process.

SOFTWARE ENGINEERING CONSIDERATIONS 11

A critical element of successful and efficient software testing is ap-
plying a clear experimental strategy to the process. Testing should be
treated as a scientific enquiry, with the testers designing experiments,
predicting the outcomes of the experiments and then running the code
to compare actual outcomes to the predicted outcomes. Documentation
is also an essential part of the testing process—there is little value in
testing a code without also providing the documentation to show future
developers, users and clients exactly what testing was completed.

The following sequence of methods provides a minimum appropriate
level of testing for complex codes. (Note that these methods do not
include the all-important task of testing the model’s design; they only
test whether the software faithfully implements the model.)

Code reviews (Section 2.A above).

Spot checks of key model subcomponents. For a small set of
example cases, the input and output of specific routines can be
obtained and hand-checked. This helps find code errors that
have widespread effects. However, spot-checks are not adequate
by themselves because they cannot test all the model’s possible
combinations of variables and conditions.

Pattern tests. The modeler executes example simulations and
observes patterns of behavior via graphical outputs. Observing
unexpected or unrealistic behavior often quickly leads to the
identification of a mistake in the code or formulation.

Systematic tests against an independent implementation. Be-
cause an IBM typically has many potential combinations of input
variables, control paths and intermediate results, the only way
to test software thoroughly is by implementing it independently
in two codes and looking for differences in the output of the two
codes. These tests are best conducted separately for each major
component of the model as they are added to the code. Testing
software must be written to execute the model component over
a wide range of inputs, recording the inputs and results for com-
parison to another implementation of the same part of the model.
This testing software is often a separate driver program, or it can
be written into the full model code and switched on and off. We
often program our models’ major components in spreadsheets and
compare spreadsheet calculations to intermediate results printed

12 G.E. ROPELLA, S.F. RAILSBACK AND S.K. JACKSON

out from the whole model’s code, over a wide range of input val-
ues. This approach can be an easy and inexpensive way to test
the model for thousands of cases, finding the inevitable mistakes
that only occur in rare circumstances.

2.F Provide tools for pervasive validation and verification.
To thoroughly verify that software is error-free, and to thoroughly val-
idate a model’s formulation, it is necessary to be able to collect data
from throughout the model. A model may produce quite believable
output even if many of its subcomponents have major errors in design
or implementation. Therefore, software should be designed to provide
easy access to all of its parts—during verification and validation, model
users should be able to observe the state of all model components. The
need for pervasive validation should be an important consideration in
selecting software tools; at least some widely used simulation platforms
provide facilities for observing all parts of a model. Grimm [2002] dis-
cusses design and use of graphical tools for validation and verification.

An important element of verification is identifying and preventing
run-time errors. A run-time error occurs when the software reaches an
invalid or erroneous state during execution as a result of input values
instead of mistakes in code syntax. Run-time errors due to invalid
or uninitialized parameter values and input data errors are common;
these can be prevented by including code to check for errors or detected
by using the tools provided for pervasive validation and verification.
Some widely used programming languages do not necessarily abort
when division by zero occurs (for example, we found variables given
the value “Not a Number” following a division operation in which the
denominator was e raised to a large negative number) or when messages
are sent to null objects and nil methods. Without pervasive verification,
such run-time errors can cause significant undetected errors.

2.G Pay attention to pseudo-random number generators.
Many simulators use pseudo-random numbers to represent some pro-
cesses. In most cases, pseudo-random numbers are used to represent
the outcome of processes that occur at too fine a resolution to be repre-
sented mechanistically, providing diversity to the model’s results with-
out excessive model detail.

SOFTWARE ENGINEERING CONSIDERATIONS 13

Pseudo-random numbers are provided by generator software, and
pseudo-random number generators vary widely in quality. Generators
vary in their execution speed, but much more importantly, in their cycle
length or the number of values they produce before starting to repeat
the sequence. The built-in generators in some computer languages and
spreadsheets can have short cycle lengths that can induce artifacts into
simulation results. Substandard generators can also have tendencies
to produce occasional sequences of values having non-random trends.
Such non-random tendencies can depend on the computer architecture
(e.g., a generator that passes standard tests for randomness on a 64-bit
machine may not pass on a 32-bit machine). These problems are of
additional concern if a model’s design is such that the random number
sequence affects the sequence of events in the model; such model designs
are generally questionable.

Modelers need not become experts on this issue (which has been stud-
ied extensively by computer scientists), but need access to expertise.
Wilson [2000] discusses this issue in an ecological modeling context.
Random number generation is an issue for which choosing the right
software tools is a good solution. Some simulation platforms provide
a variety of high-quality generators and documentation on the advan-
tages of each, but if a software platform does not include documentation
discussing the quality of its random number generators, it may not be
a good tool for developing a complex model.

3. Why IBMs are different. While the above issues apply to
complex models in general, IBMs have unique characteristics that make
several other software issues important (Section 4, below). This section
identifies those unique characteristics.

The primary difference between IBM software and code implement-
ing conventional natural resource models is that IBM software is essen-
tially “systems software,” not a monolithic or single-purpose code. An
IBM represents systems of heterogeneous, interacting agents and the
software must manage these systems in addition to coding the charac-
teristics of each type of agent. Some properties of IBMs resulting from
this system’s nature are:

e An IBM represents populations of (often) several types of agent,

14

G.E. ROPELLA, S.F. RAILSBACK AND S.K. JACKSON

instead of single instances of each module. A conventional eco-
logical model may have several modules, each representing the
population of one species or habitat conditions. An IBM, instead,
may have code representing an individual of one or more species,
and code representing the habitat patches the organisms use; in
addition the IBM has code to manage the populations of multiple
copies of both organisms and habitat patches. The software for
managing these populations can be as important as the software
defining each type of agent.

The modules within an IBM are heterogeneous at several levels.
In a typical IBM there is a hierarchy of agent types, including
habitat units and organisms of one or more species and life stages.
At the higher levels, each broad category of agent type (organism,
habitat unit) has a completely different structure and rule set.
At intermediate levels, organisms of similar species or of different
life stages within a species may share some rules but not others,
or share rules but use different parameter values. At the lowest
level are individuals of the same type that all use the same rules
and parameter values, but each has its own state variable values
(location, age, size, energy reserves, etc.). Only in the simplest
models might there be multiple model modules that are exactly
the same. At the other extreme are IBMs where new model
structures emerge during simulations: emergent flocks or herds of
animals, symbiotic structures, or patterns of spatial distribution
may be as important to model results as the modules written
into the code. Omne of the primary benefits of IBMs is that
they can represent variation among individuals and organizational
hierarchies; however, the heterogeneity of model modules means
that the modeler’s perception and understanding of the model is
highly dependent on the software tools for collecting data from
the model’s diverse modules.

Process control in an IBM is often multi-threaded and variable,
instead of strictly procedural and linear. The sequence in which
program statements are executed often depends on the events
occurring in an IBM. This is especially true when an “event-
based” software architecture is used; this approach allows model
agents to trigger the events that occur next (for example, when
an animal enters a habitat patch, it may trigger the other animals

SOFTWARE ENGINEERING CONSIDERATIONS 15

in the patch to execute their code that determines whether they
stay or leave).

e An IBM typically includes a wider range of dynamic processes
than do conventional models. Multiple ways in which individuals
can adapt (e.g., via behavior, evolution, coevolution) are often
included in IBMs. This is another reason why understanding the
cause of IBM outcomes can be a challenge.

4. Guidelines for IBM software development. As a conse-
quence of the properties of IBMs identified in Section 3, IBM software
requires additional engineering to assure that models are complete and
coherent. We present four key issues in IBM software engineering, dis-
cuss how one software platform for IBMs (Swarm) helps address these
issues and provide additional general recommendations for implement-
ing IBMs.

4.A Key issues in IBM software engineering. There are four
general issues that developers of IBMs need to consider from the start
of a project. Understanding these issues and designing the software
in consideration of them will greatly increase the odds that an IBM
project will be efficient and successful.

Process. The model’s process is the sequence of events that occur
during a run. In an IBM, the process design can have a great influence
on results—executing the same events in a different order can produce
different outcomes. The modeler needs to carefully consider the desired
order of events, and the software developer must be able to enforce the
modeler’s desired process.

Causality. This issue is the need to understand why a model
produces the results (both intermediate and final) that it does. Little
can be learned from an IBM that provides only outcomes with nothing
known about why the outcomes occurred. The model and software
should be designed so that the events causing a specific model state
can be determined. This concept applies both to final model outcomes
and to intermediate states of model individuals.

Constituency. The constituency of a model code is the classification
of the various kinds of things in the model. For example, in designing
the constituency of an IBM one might consider such questions as

16 G.E. ROPELLA, S.F. RAILSBACK AND S.K. JACKSON

whether two similar species (or habitat types) have separate code
or share code, but use different parameter values. A logical and
consistent constituency makes an IBM easier to understand and makes
the software simpler and less error-prone.

Observability. Testing software, conducting pervasive validation
and verifying and understanding a model’s causality all require that
many parts of an IBM be observable to users. In our experience the
failure to use software that makes the models sufficiently observable,
and therefore testable, is one of the main reasons why few IBMs have
contributed successfully to ecology and natural resource management.

Because IBMs are by definition driven by the actions and interactions
of individuals, they are not truly testable unless the individuals can be
observed. Observing individuals’ state variables such as age, size and
growth rate is necessary for verifying the software that calculates these
variables and for validating the assumptions used to model them.

The interactions among agents, and among agents and their envi-
ronment, must also be observable for an IBM to be truly verified and
validated. Graphical user interfaces (GUIs) are an essential tool pro-
viding this kind of observability (Grimm [2002]). For spatial models,
observing the location of individuals in space as a model executes, is
especially informative. Using GUIs to observe the “locations” of indi-
viduals in other model dimensions besides space can also be helpful.
The GUIs attached to conventional models are sometimes merely a
nonessential add-on; however, the users of IBMs with GUIs typically
consider the GUIs to be absolutely essential for model verification and
validation. In every model we have developed, the GUI showing ani-
mal locations over time has allowed us to rapidly identify and correct
at least one important error in the software, the model design or the
input data. Many of these errors had major effects on model results,
but almost certainly would not have been detected without the GUI.
Our experience indicates that IBMs that lack GUIs are very unlikely
to be free of important errors.

Observability is also an issue in how an IBM reports population-
level results. If IBM software reports only the number and mean
state (size, age, etc.) of the population, then important information on
variation among individuals is unavailable to the user. The variability,
uncertainty and observer-bias concerns that apply to studies of real

SOFTWARE ENGINEERING CONSIDERATIONS 17

natural systems also apply to how an IBMs software reports population
data to the model user.

4.B A software platform that addresses IBM needs: Swarm.
One good way to address the issues raised above concerning IBM soft-
ware is to use a software platform designed specifically for the purpose.
The Swarm simulation system is a software library originally devel-
oped at the Santa Fe Institute to facilitate agent-based simulation in
the study of complex adaptive systems (Minar et al. [1996]). (Several
other similar platforms are also now available.) Swarm is currently
maintained by the non-profit Swarm Development Group, with infor-
mation available at www.swarm.org. Because Swarm is a software li-
brary, model developers write the code specific to their model and its
agents (e.g., what individual organisms do; how habitat is represented)
in a common programming language. Most of the software needed to
build, maintain and observe the individual agents and to control the
process is provided by the Swarm libraries. In addition to software li-
braries, Swarm also provides a set of conventions for organizing IBMs.

An additional, very valuable, part of Swarm is its user community. A
diverse and active group of scientists working on agent-based simulation
provides ideas and code of great benefit to IBM developers.

Following is a summary of the ways that Swarm is designed to address
the specific concerns of implementing IBMs.

Process. Swarm includes a variety of scheduling mechanisms that
provide control over the execution of model actions. A “swarm” is
defined as a collection of model agents and a specific schedule of actions
that the agents execute. A Swarm model has a hierarchy of swarms,
each with its own schedule. Typically, the highest level swarm is an
observer swarm, and its schedule may (1) execute the model swarm
for one time step, then (2) update the graphical and file outputs.
The model swarm contains the actual model agents and its schedule
typically includes (1) updating habitat conditions, (2) telling the model
individuals to execute their schedule and (3) performing bookkeeping
and clean-up tasks like removing dead individuals from the model. The
individuals can have their own schedule in which they are told the order
to conduct such actions as moving, feeding, reproducing and undergoing
mortality. Swarm also allows event-based actions, in which a model

18 G.E. ROPELLA, S.F. RAILSBACK AND S.K. JACKSON

maintains a queue of events waiting to be executed; the agents or the
model itself can add events to the queue. Swarm provides a “logical
concurrency model”, an explicit definition of the sequence in which
the events treated in the model as occurring concurrently are actually
executed by the computer.

Causality. Understanding the cause of events in a model is greatly
facilitated by Swarm’s process control and observer tools. The first step
in understanding why a particular model state occurred is understand-
ing the sequence of model actions that preceded the state; as discussed
above, Swarm provides easy and explicit control over event scheduling.
Swarm'’s observer tools (below) allow modelers to trace the state of in-
dividuals and aggregations as a model executes, which is often essential
for understanding causality.

Constituency. Swarm follows the object-oriented paradigm for or-
ganizing a model and provides several additional levels of constituency.
Object-oriented programming is a natural fit to individual-based mod-
eling. In the object-oriented paradigm, components of a model are
individual objects, with one or more objects to a class and hierar-
chies of classes. In a typical object-oriented IBM there may be several
species of organism that are subclasses of a general organism class.
Each species can inherit some code from the general organism class
but also has some species-specific code. Similarly, all the individuals of
a species have the same code, but each individual has its own state vari-
ables. Likewise, habitat units may be organized in subclasses (e.g., for
meadow, forest, lake). With its hierarchical organization of individual
objects, object-oriented programming resembles the natural systems
modeled with IBMs, so it is a natural approach to the constituency of
an IBM.

Via the concept of a “swarm,” a collection of objects and their action
schedule, Swarm provides a second level of organization. Designing the
exact contents of a swarm is an important step in designing a model.

Observability. Providing a high level of observability is one of
primary benefits of Swarm. Observer tools that can be built into a
Swarm model with a few lines of code include:

e A control panel that allows model execution to be stopped and
restarted at will.

e “Probe displays,” windows displaying the state of any model

SOFTWARE ENGINEERING CONSIDERATIONS 19

& Riverworld

e B E
@I | Cutioat |
twansectumber [10 agef0
celNumber [¢ fishLength 556709
velosiy [fiskiweicht [208933
depth 85 fishCondiion]1
aieaf120000 prevL ength 552795
cellShekeidrea previeicht 204615
shelleuhieatvalable [739255 prevCondifon[|
diftHouyCellTotal [T.38558 nelEneigyForBestCel 5115
houlybvalDiitFood [0 372062 dalyDifFoodntake [100458
searchHouhCellTora [1.04 daipDitNelEnergy 120955
. [tobiveiSearctFood Ed daiySeachFoodintake [016457
— | celFizcSpawn [0 daiSeschietEnergy [55 115 fr—
— celDistToHide [200 — feedTime[16283
addFish I . potertiaHouDritlisks [FT0BT5358 -
| — . potentalHourySearchintake |ULUTUTUEY -
QelllumbedFish o S —
getlumberDffedds - — standardResp [120.737
activeResp [35.5133
e feedStrategy [SEARCH
geltabDiitCone ingheter 1D L
getHabDiiftRegenDist deadUibive lALIVE
deathCausedBy [NULL

FIGURE 1. Example Swarm animation window and probe displays, from
a stream fish model. The habitat cells are shaded by depth, with deeper
cells being lighter. Fish appear as horizontal line segments, with segment
length proportional to fish size. The probe displays provide access to the state
variables and code methods of organisms (in this case, a cutthroat trout) and
habitat units (a stream habitat cell).

object. These windows can be used, for example, to continually
display the simulation date, abundance and average characteris-
tics of a population and habitat conditions. The windows also
allow users to change an object’s variable values during a simula-
tion and to manually execute parts of an object’s code.

An animation window that can show the location of each individ-
ual in an IBM, overlaying a display of habitat conditions.

The ability to click on the animation window and open a probe
display to objects shown on it. A mouse click can be used,
for example, to open windows showing the state of individual
organisms and habitat units (Figure 1).

Line graphs and histograms that can be attached to collections of
model objects to report data such as population size, animal size
distributions and habitat conditions, as the model executes.

4.C General recommendations for software implementation

of IBMs. The following are practices that we find helpful in ensuring
that software faithfully implements an IBM and promotes understand-
ing of, and learning from, the model.

20 G.E. ROPELLA, S.F. RAILSBACK AND S.K. JACKSON

e Build a constituency (organization of model components and ob-
jects) before starting to write code. Having the model organiza-
tion in hand helps make coding efficient and clean.

e Build verification and validation mechanisms and the necessary
observability into the model from the beginning. These tools
will help find mistakes early and help guide the design and
implementation of additional parts of the model.

e Make extensive effort to understand how the model is executing.
Use tools such as code profilers (which report how much processor
time is spent on each code statement), and trace how often model
objects have their methods called by which other objects.

e Design the code so it resembles the system being modeled, an
important way to promote understanding and avoid subtle errors.
Use additional metaphors to relate the code to real systems.
Thinking about the code as if one were inside the simulation helps
find subtle mistakes and create good designs.

5. Conclusions. An unfortunately large number of IBM projects
has produced little scientific understanding, and software inadequacies
have been a major contributor to this lack of productivity (Grimm
et al. [1999]; Lorek and Sonnenschein [1999]). This situation is not
surprising, considering (1) the newness of the IBM technology, (2) the
lack of software engineering expertise and training among the natural
resource scientists that typically undertake IBMs and (3) the fact that
software design is much more important and challenging for IBMs than
it is for conventional ecological and natural resource models. Software
practices traditionally used for conventional models are not likely to
succeed with IBMs.

We hope that the primary conclusion readers draw from this paper
is that software engineering is a very important consideration in de-
veloping IBMs and using them for research and resource management.
Compared to conventional models, the results produced by an IBM are
much more closely linked to its software implementation. This charac-
teristic, and the unique complexity of IBM simulations, demand a much
greater engineering effort to assure that errors are eliminated and that
tools are provided to make IBMs observable and understandable.

Several important strategies can make the software engineering for

SOFTWARE ENGINEERING CONSIDERATIONS 21

an IBM project manageable. First is to recognize the importance of
the software process and to provide the resources for it. Whereas a
conventional ecological modeling project may spend little of its budget
on software, an IBM project should budget a much greater amount for
software design and verification. Planning and budgeting for adequate
software implementation will make an IBM project much more likely
to succeed and therefore much more cost-effective.

Second is to involve software professionals in the project, instead of
expecting modelers to handle the software themselves. All the issues
raised in this paper are widely understood among computer scientists
and software engineers, and using such professionals frees the modeler
to concentrate on designing the IBM and conducting science with it
(which still requires being thoroughly familiar with the software). The
traditional practice of scientist writing both a model and its software
has a poor track record with IBMs; the consequence too often has been
the scientist’s spending too much time writing inadequate software and
therefore having neither time nor tools to do science with the IBM
(Minar et al. [1996)).

The third strategy is to use appropriate software tools to implement
a model. Swarm is one of a number of platforms that can reduce
coding and documentation effort, reduce errors and provide the tools
needed to observe and understand an IBM. The benefits of an active
user community are not to be overlooked.

Our conclusions regarding the importance of software engineering for
IBM projects are important not just for those conducting IBM projects
but also for research managers and ecology instructors. Managers in
charge of funding IBM-based research should expect to see significant
resources dedicated to software and should encourage researchers to
take software considerations seriously. A proposal to build and use
an IBM that mentions little about the software issues and techniques
mentioned in this paper is not likely to be a good investment. Finally,
the (as yet, few) instructors teaching students how to do individual-
based ecology and resource management need to instill in their students
an understanding of the relation between an IBM and its software.

Acknowledgments. These thoughts were originally presented by
the first author to the special symposium, Advancing the Individual-

22 G.E. ROPELLA, S.F. RAILSBACK AND S.K. JACKSON

Based Modeling Approach: New Tools and Concepts, at the 2000 Eco-
logical Society of America annual meeting. Funding for the authors’
participation in the conference was provided by Columbia Basin Re-
search, University of Washington.

REFERENCES

V. Grimm [1999], Ten Years of Individual-Based Modelling in FEcology: What
Have We Learned and What Could We Learn in the Future? Ecological Modelling
115, 129-148.

V. Grimm [2002], Visual Debugging: A Way of Analyzing, Understanding, and
Communicating Bottom-Up Simulation Models in Ecology, Natur. Resource Mod-
eling 15, 23-38.

V. Grimm, T. Wyszomirski, D. Aikman and J. Uchmanski [1999], Individual-
Based Modelling and Ecological Theory: Synthesis of a Workshop, Ecological Mod-
elling 115, 275-282.

H. Lorek and M. Sonnenschein [1999], Modelling and Simulation Software to
Support Individual-Based Ecological Modelling, Ecological Modelling 115, 199-216.

N. Minar, R. Burkhart, C. Langton and M. Askenazi [1996], The Swarm Simula-
tion System: A Toolkit for Building Multi- Agent Simulations, Working Paper 96-06-
042, Santa Fe Institute, Santa Fe, NM. Available at http://www.santafe.edu/sfi
/indexPublications.html.

S.F. Railsback [2001], Concepts from Complex Adaptive Systems as a Framework
for Individual-Based Modelling, Ecological Modelling 139, 47-62.

W. Wilson [2000], Simulating Ecological and Evolutionary Systems in C, Cam-
bridge Univ. Press, Cambridge, England.

