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Suppose your dependent variable is Normally distributed. What are you supposed to do?

1 The Longitudinal Data Problem

Longitudinal data sets include repeated observations on each of many units, such as nations, states,
counties, or cities.

So we use 2 subscripts for data, the first refers to the unit –or “cluster”–the second to the time.
A vector of coefficients isb and the dependent variable isyit and the set of independent variables ob-
served for each country and time isxit. The model looks something like:

y11 x11b + e11

y12 x12b + e12

y13 x13b + e13

. . . +
y1T x1T b + e1T

y21 = x21b + e21

y22 x22b + e22

. . . +
y2T x2T b + e2T

y31 x31b + e31

y32 x32b + e32

. . . +
y3T x3T b + e3T

What is the variance of the error term? And how do deviations from the assumptions that underly
OLS affect the results of our analysis?

We ordinarily break that down in several steps.
First, in the longitudinal analysis literature, it is common to assume the variance/covariance matrix

is “block diagonal”. That means there can be correlations of error terms within each cluster, but the ob-
servations of the clusters are not influenced by events in other clusters. In the i’th unit, at the j’th time,
the variance isσ2

ij and the covariance of errors within that unit at times s and t isσ2
ist = E(eis, eit).
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V ar(e) =



σ2
11 ... σ2

11T 0 0 0 0 0 0 0 0
σ2

112 ... σ12T 0 0 0 0 0 0 0 0

...
... 0 0 0 0 0 0 0 0

σ2
11T ... σ2

1TT 0 0 0 0 0 0 0 0
0 0 0 σ2

21 ... σ2
21T 0 0 0 0 0

0 0 0
...

... 0 0 0 0 0
0 0 0 σ2

21T ... σ2
2T 0 0 0 0 0

0 0 0 0 0 0 σ2
31 ... σ2

31T 0 0

0 0 0 0 0 0
...

...
... 0 0

0 0 0 0 0 0 σ2
31T σ3T 0 0

0 0 0 0 0 0 0 0 0
... 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
...

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 σ2

N(T−1) σ2
N(T−1)T

0 0 0 0 0 0 0 0 0 σ2
N(T−1)T σ2

NT


(1)

Sometimes a symbol such asΩ is used instead ofV ar(e).
It is often easier to think of this matrix as a block-diagonal matrix in which each unit’s error terms

are intercorrelated according to the variance/covariance matrixVj , which isTxT .

V ar(e) = Ω =


V1 0

V2

V3

...
0 VN

 (2)

Second, the next big simplifying assumption is often that these submatrices are of a common sort.
They may be assumed to be identical, or to differ according to just one or two coefficients. Let’s sup-
pose that the blocks have exactly the SAME correlation structure,V .

Ω =



V 0
V

V
...

V
0 V


(3)
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2 Detours into matrix algebra

The data matrixX is a “stack” of smaller matrices, one for each cluster. Suppose there is an intercept
and 3 variables to be estimated:

X =



X1

X2

X3
...

XN−1

XN


=



1 x111 x211 x311

1 x112 x212 x312

1 x11T x21T x31T

1 x121 x221 x321

1 x122 x222 x322

1 x123 x223 x323

1 x131 x231 x331

1
1
1 x1N(T−1) x2N(T−1) x3N(T−1)

1 x1NT x2NT x3NT


Similarly, the vector of observations:

y =



y11

y12
...

y1T

y21
...

y2T
...

yN1
...

yNT


Because the data is so obviously separable into clumps, there are some special elements from ma-

trix algebra that arise.

2.1 Kronecker product

The expression (3) can be written more compactly if we use the notation of the “Kronecker product”⊗.

I ⊗ V

The Kronecker product means that one takes each term in the first matrix and multiplies it by the EN-
TIRE second matrix and then puts the result in place of the element of the first matrix. SinceI is the
identity matrix

I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


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It is quite easy to imagine what⊗ is doing. Take each element of theI matrix, multiply it by the
matrix V . The result is either1∗V = V or 0∗V = 0. When that result is put into the identity matrix in
place of the0 or the1, then the result is 3 in the short form or the larger thing in the matrix above it.

One often sees the Kronecker product defined as:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
am1B am2B amnB


Where A is anm× n matrix

A =


a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
am1 am2 · · · amn


Some authors use the Kronecker product a lot, others use the nature of the block-diagonal matrix in

order to simplify their findings.

2.2 The inverse of a block-diagonal matrix.

The inverse of a block-diagonal matrix is made-up of the inverses of the individual cluster matrices:

Ω−1 =


V −1

1 0 0 0 0
0 V −1

2 0 0 0

0 0
... 0 0

0 0 0 V −1
N−1 0

0 0 0 0 V −1
N


2.3 The cross-product of a block-diagonal matrix

The productX ′X is the block-diagonal matrix made up of products of the individual cluster matrices.

X ′X =


X ′

1X1 0 0 0 0
0 X ′

2X2 0 0 0

0 0
... 0 0

0 0 0 X ′
N−1XN−1 0

0 0 0 0 X ′
NXN


2.4 Behold: The information matrix.

X ′Ω−1X =
N∑

i=1

X ′
iV

−1
i Xi
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3 Recall OLS

Assume:

1. ŷ = Xb + e

2. Homoskedasticity and no autocorrelation:V ar(e) = σ2I

3. E(e) = 0

which impliesŷ = Xb̂
The sum of squared errors:
SS(b̂) =(y − ŷ)′(y − ŷ) = (y −Xb̂)(y −Xb̂)
From elementary calculus,∂∂b(bx) = x. The same is true of matrices,

∂

∂b̂
(Xb̂) = X (4)

The derivative of SS wrt̂b is

∂SS

∂b̂
= −2

[
∂ŷ

∂b

]′

(y − ŷ) = −2X ′(y −Xb̂) = 0 (5)

This uses the fact stated in 4.
The constant−2 gets “divided away”. As a result, the first order condition is the same as the “score

equation” in maximum likelihood:

X ′(y − ŷ) = X ′(y −Xb̂) = 0 (6)

The solution for the best OLS estimator:
b̂ = (X ′X)−1X ′y
and the variance/covariance matrix of the b’s is estimated by
V ar(b̂) = σ2(X ′X)−1

If you don’t know σ2 estimate it from the residuals on the regression line. The Mean Square Error
is estimate ofσ2

σ̂2 = e′∗e
T−M = (sum.of.squared.resituals)

(N.of.cases)−(N.of.elements.in.b)

4 Recall GLS/WLS

Check my GLS handout. Basically:
If your assumptions aboutΩ are violated, there is a fix.
Recall that, unless you employ a fix, the estimates ofb̂ are inefficient and the estimates ofV ar(b̂)

are simply wrong.
If we know whatΩ is, the solution from WLS/GLS is a weighted regression. UseΩ in the Sum of

Squared formula to weight observations so that “high variance” cases have less weight.

SS(b̂) = (y − ŷ)Ω−1(y − ŷ) (7)

The GLS equivalent of the OLS equation 5 is:

∂SS

∂b̂
= −2

[
∂ŷ

∂b̂

]′

Ω−1(y − ŷ) = −2X ′Ω−1(y −Xb̂) = 0 (8)
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This reduces to: [
∂ŷ

∂b̂

]′

Ω−1(y − ŷ) = X ′Ω−1(y −Xb̂) = 0 (9)

The estimator ends up being a close parallel to the OLS solution forb̂:
b̂ = (X ′Ω−1X)−1X ′Ω−1y
and the variance of̂b is:
V ar(b̂) = (X ′Ω−1X)−1

5 Recall “robust” variance matrix estimates

The White-Huber estimate of the standard error is a “heteroskedasticity consistent” estimate of the stan-
dard error of̂b. Look at the end of my GLS handout, where the robust estimate is stated in equation
15.

V arhc0(b) = (X ′X)−1X ′{ ̂V ar[e]}X(X ′X)−1 (10)

V arhc0(b) = (X ′X)−1X ′{diag[ê · ê′]}X(X ′X)−1 (11)

The middle part is an “empirical estimate” of the variance of the error terms.

̂V ar(e) = diag[ê · ê′] =



ê2
1 0

ê2
2

ê2
3

...

ê2
N−1

0 ê2
N


In White’s original paper, he assumes there is no autocorrelation, we are looking only at the main

diagonal.

6 Normally distributed variables, PCSE, and what not

There is a separate handout called CXTS-PSCE that details the meaning and importance of the “panel
corrected standard error” as proposed in Beck & Katz (American Political Science Review, 1995)

7 Longitudinal with Normal Data: FGLS returns?

Suppose we assume the error term satisfies the core assumption of longitudinal data analysis, which is
that the observations within clusters are correlated with each other, but are not affected by observations
in other clusters.
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7.1 As the Song says, “If you knew Omega, like I know Omega, Oh, Oh, Oh what a Ma-
trix...”

The GLS and the Maximum Likelihood approaches lead to the same conclusion. SupposeΩ is as speci-
fied in expression 2.

Remember we are thinking ofy as a “stacked column” of observations on clusters,y1, y2, ..., yN .
And X is a stacked matrix of observations on clusters, and so forth.

The Score equations are
∂lnL

∂b̂
= X ′Ω−1(y −Xb̂)

Because we assume the clusters are separable, this can be written as a sum of within-cluster re-
sults:

=
N∑

i=1

X ′
iV

−1
i (yi −Xib̂) = 0

Solve that for̂b , figure out an estimator forV ar(b̂), and all the work is done.

b̂ = (X ′Ω−1X)−1X ′Ω−1y

= (
N∑

i=1

X ′
iV

−1
i Xi)−1(

N∑
i=1

X ′
iV

−1
i yi)

V ar(b̂) = (X ′Ω−1X)−1 =

(
N∑

i=1

X ′
iV

−1
i Xi

)−1

7.2 FGLS: If you don’t know Omega

I’m looking at Dobson (2002, p. 200). Repeat:
Estimate the parametersb̂
calculate the residuals,
estimateΩ̂
recalculate thêb.
There are some standard suggestions for “working models” ofVi, such as
1. Exchangeable

Vi = σ2



1 ρ · · · ρ ρ ρ
ρ 1 ρ ρ

1 ρ
...

...
ρ ρ
ρ ρ ρ 1


2. AR(1)

Vi = σ2



1 ρ ρ2 · · · ρT−2 ρT−1

ρ 1 ρT−3 ρT−2

1 ρT−3

...
...

ρT−2 ρT−3

ρT−1 ρT−2 ρT−3 1


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3. Unstructured

Vi = σ2



1 ρ12 · · · ρ1(T−2) ρ1(T−1) ρ1T

ρ21 1 ρ2(T−1) ρ2(T )

1 ρ3(T )
...

...
ρ(T−1)1 ρ(T−1)2

ρT1 ρ(T−1)1 ρ(T−2)1 1


7.3 Watch out for those nonrobust standard errors!

Liang and Zeger (1986) pioneered the quasi-likelihood/GEE approach to longitudinal data analysis.
Their robust estimator of the variance/covariance matrix ofb̂ is stated on their p. 15. If one puts the
linear model with Normally distributed error term into that framework, then the Z&L expression simpli-
fies radically (becauseθij = ηij , so∆i = I). The simplified version for Normally distributed dependent
variables with the identity link is stated in Dobson, 2002, p. 200

V (b̂) =
(
X ′Ω̂X

)−1
(

N∑
i=1

X ′
iV

−1
i

(
(yi −Xib̂)(yi −Xib̂)′

)
V −1

i Xi

)(
X ′V̂ X

)

8 What if there are “random effects” at the unit level?

Suppose there is some effect at the level of the unit.

yit = c + γi + Xitb + eit

There are many different names for models that attempt to take this into account. Here are some:

• variance components model

• mixed model (because some coefficients are random and some are fixed)

• hierarchical linear model

Suppose that the random effectγi is Normally distributed with varianceσ2
γ .

From an econometric standpoint, this turns into a problem of heteroskedasticity, because the unob-
served unit-level error termγi is dissolved into the unobserved individual level error termeit. A GLS
approach can be used to deal with the heteroskedasticity.

There is a separate handout CXTS-ECM that investigates these as error components models.
In the longitudinal data analysis literature, such as the Diggle, et al book (which is authoritative),

they treat this as a maximum likelilhood problem, one which is thought of as a ’conditional’ problem.
It is conditional in the sense that we would first like to know the value ofγi and then we think of the
impact ofXitb as “above and beyond” that random intercept. That’s the sense in which our understand-
ing of yit is conditional onγi.

I’m struck by the wide variety of terminology and approaches to these models.

9 What if there are Fixed Effects at the unit level

The famous “least squares dummy variables” model. Blech!

8



10 What if the dependent variable is not normal, or the link function is not
the identity function, or both?

Recall the GLM. It deals with nonNormal variables and wild link functions.
But it does not directly translate to deal with a longitudinal data exercise.
Part of the problem is that, up to this point, our discussion of the longitudinal model has followed

the old econometric tradition of talking about the distribution of an “error term.”
In most GLM applications, there is no such thing as an “error term.” In the GLM, we talk directly

abouty being distributed as Poisson or Gamma.
Since the GLM does not have an error term, it is not obvious where one should fit in intercorre-

lated errors!
Liang and Zeger (1986) proposed a modeling strategy that they called GEE, Generalized Estimat-

ing Equations. GEE is an extension of the “quasi-likelihood” approach to estimation. Suppose for each
cluster there is a covariance matrix for the observed values ofy.

I’m writing the GEE details down in a separate handout, but I want to point out the continuity with
the GLS model.

The GEE is defined as the solution to an equation that looks like a hybrid between the Score equa-
tion from the Quasi-likelihood model and the Score from the GLS in 8. Suppose the estimated mean
vector isµ̂. [

∂µ̂

∂b̂

]′

Ω−1(y − µ̂) = 0

That’s just like the GLS score equation, because it has a weight matrixΩ in the middle. But it is

different from GLS
[

∂µ̂

∂b̂

]′
does not resolve to a simple thing likeX ′.

And its different from the GLM, because it hasΩ−1.
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