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5th April 2004

Suppose your dependent variable is Normally distributed. What are you supposed to do?

1 The Longitudinal Data Problem

Longitudinal data sets include repeated observations on each of many units, such as nations, states,
counties, or cities.

So we use 2 subscripts for data, the first refers to the unit —or “cluster’-the second to the time.
A vector of coefficients i$ and the dependent variablegs and the set of independent variables ob-
served for each country and timeas. The model looks something like:

Y11 z11b + en

Y12 zi2b +  en2

Y13 z13b + en3
+

yir rirtb + er

Y21 = w21b + exn

Y22 T22b  + e
_l’_

Yor xoTb +  ear

Y31 r31b +  e3

Y32 xr32b  +  e3
_l’_

Y3 z3rb +  esr

What is the variance of the error term? And how do deviations from the assumptions that underly
OLS affect the results of our analysis?

We ordinarily break that down in several steps.

First, in the longitudinal analysis literature, it is common to assume the variance/covariance matrix
is “block diagonal”. That means there can be correlations of error terms within each cluster, but the ob-
servations of the clusters are not influenced by events in other clusters. In the i'th unit, at the j'th time,
the variance is;% and the covariance of errors within that unit at times s andof;,,s: E(eis, €it).
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(1)
Sometimes a symbol such &sis used instead o¥ ar(e).
It is often easier to think of this matrix as a block-diagonal matrix in which each unit's error terms
are intercorrelated according to the variance/covariance méfriwhich isTzT.

Vi 0
Vs
Var(e) =Q = Vs (2)

0 %N
Second, the next big simplifying assumption is often that these submatrices are of a common sort.

They may be assumed to be identical, or to differ according to just one or two coefficients. Let’s sup-
pose that the blocks have exactly the SAME correlation strucidre,

Vv 0 ]
V

Q= § 3)




2 Detours into matrix algebra

The data matrixX is a “stack” of smaller matrices, one for each cluster. Suppose there is an intercept
and 3 variables to be estimated:

[ 1 xlq x211 311 |
1 33112 37212 1'312
r Xl ] 1 l‘llT 5621T $31T
X, 1 xloy 291 321
X 1 A T299 399
X = . = 1 x123 .1‘223 $323
: 1 xl3p 231 331
XN-1 1
XN 1
I zlyr-1y 22nr-1) T3N(T-1)
i 1 zlnT T2NT r3NT
Similarly, the vector of observations:
[ 11 ]

Y12

wr

Y21

y=|
Yar
YN1
L YNT

Because the data is so obviously separable into clumps, there are some special elements from ma-
trix algebra that arise.

2.1 Kronecker product

The expression (3) can be written more compactly if we use the notation of the “Kronecker prgduct”

IV

The Kronecker product means that one takes each term in the first matrix and multiplies it by the EN-
TIRE second matrix and then puts the result in place of the element of the first matrix. [Sitlkee
identity matrix
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It is quite easy to imagine wha is doing. Take each element of tliematrix, multiply it by the
matrix V. The result is eithet xV =V or 0« V' = 0. When that result is put into the identity matrix in
place of thed or the 1, then the result is 3 in the short form or the larger thing in the matrix above it.

One often sees the Kronecker product defined as:

anB  ai2B -+ a,B
ag1B  axB - ayB
A® B =
amiB amaB Amn B
Where A is anm x n matrix
a1 a2 -0 Aim
a1 G2 A2m
A=
aml Am2 " Gmn

Some authors use the Kronecker product a lot, others use the nature of the block-diagonal matrix in
order to simplify their findings.

2.2 The inverse of a block-diagonal matrix.

The inverse of a block-diagonal matrix is made-up of the inverses of the individual cluster matrices:

vit oo 00 0
0o V' 0 0 0
Q'=1 0 0o . 0 0
0 0 0 Vit o
O 0 0 0 Vi

2.3 The cross-product of a block-diagonal matrix

The productX’X is the block-diagonal matrix made up of products of the individual cluster matrices.

XX, 0 0 0 0
0 XiXo 0 0 0
X'X = 0 0o - 0 0
0 0 0 Xy Xy O
0 0 0 0 X\ X

2.4 Behold: The information matrix.

N
XX =Y X[VX;
=1



3 Recall OLS

Assume:
1. = Xb+e
2. Homoskedasticity and no autocorrelatidnar(e) = o1
3. E(e)=0

which impliesj = Xb
The sum of squared errors: R R
SSO0) =(y—9)(y—9) = (y — Xb)(y — Xb)
From elementary calculu%(bx) = x. The same is true of matrices,

- (Xb) = X 4
8b( ) @)
The derivative of SS wrb is
855__ 83)’ N ot iy
e 2 {ab] (y—9)=—-2X(y—Xb)=0 (5)

This uses the fact stated in 4.

The constant-2 gets “divided away”. As a result, the first order condition is the same as the “score
equation” in maximum likelihood:

X'(y—19)=X"(y —Xb)=0 (6)

The solution for the best OLS estimator:

b= (X'X)"1X"y

and the variance/covariance matrix of the b’s is estimated by

Var(b) = 02(X'X) !

If you don’t know o2 estimate it from the residuals on the regression line. The Mean Square Error
is estimate o2
~2 _ exe (sum.of.squared.resituals)

A v (N.of.cases)—(N.of.elements.in.b)

4 Recall GLS/WLS

Check my GLS handout. Basically:

If your assumptions abouW? are violated, there is a fix.

Recall that, unless you employ a fix, the estimates afe inefficient and the estimates %hr(?))
are simply wrong.

If we know what(2 is, the solution from WLS/GLS is a weighted regression. Qsm the Sum of
Squared formula to weight observations so that “high variance” cases have less weight.

SS(b) = (y— 92y~ 9) @
The GLS equivalent of the OLS equation 5 is:

!

| oty - 5) =207y - XD =0 ®)

055 _ {81}
ab ab
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This reduces to:

!/

| oty 9) = X0y - XB) =0 (©)

5
b
The estimator ends up being a close parallel to the OLS solutiob: for
b= (X'Q7'X)'X'Q 7y

and the variance of is:

Var(b) = (X'Q71X)~!

5 Recall “robust” variance matrix estimates
The White-Huber estimate of the standard error is a “heteroskedasticity consistent” estimate of the stan-

dard error ofb. Look at the end of my GLS handout, where the robust estimate is stated in equation
15.

Varneo(d) = (X'X) " X {Var[e]} X (X' X) (10)
Varpeo(b) = (X' X)X {diag[e- &} X (X'X) ™! (12)
The middle part is an “empirical estimate” of the variance of the error terms.
- /e\% 0 -
&
Var(e) = diag[e - €] =
G
L 0 ey |

In White’s original paper, he assumes there is no autocorrelation, we are looking only at the main
diagonal.

6 Normally distributed variables, PCSE, and what not

There is a separate handout called CXTS-PSCE that details the meaning and importance of the “panel
corrected standard error” as proposed in Beck & Katz (American Political Science Review, 1995)

7 Longitudinal with Normal Data: FGLS returns?

Suppose we assume the error term satisfies the core assumption of longitudinal data analysis, which is
that the observations within clusters are correlated with each other, but are not affected by observations
in other clusters.



7.1 Asthe Song says, “If you knew Omega, like | know Omega, Oh, Oh, Oh what a Ma-
trix...”

The GLS and the Maximum Likelihood approaches lead to the same conclusion. SUpjmas speci-
fied in expression 2.

Remember we are thinking af as a “stacked column” of observations on cluste§s,ys, ..., yn.
And X is a stacked matrix of observations on clusters, and so forth.

The Score equations are

olnL .
— =X'0"'(y - Xb
% (y )

Because we assume the clusters are separable, this can be written as a sum of within-cluster re-
sults:

N A~
= X[V My — Xib) =0
=1

Solve that forb , figure out an estimator foVar(B), and all the work is done.

b= (X'Q' X)) X'Q Yy

N N
=XV X)) O XV )
=1 =1

N —1
Var(h) = (X'Q7' X)) = (Z X{Vi_lXi>

=1
7.2 FGLS: If you don't know Omega

I'm looking at Dobson (2002, p. 200). Repeat:
Estimate the parametei:s
calculate the residuals,
estimate()
recalculate thé.
There are some standard suggestions for “working modeld’;,oduch as
1. Exchangeable

L p p PP
p 1 pop
1 p
Vi =o?
p P
Lp P p L]
2. AR(1)
Tl p P2 pr2 prl—
p 1 pt s p;‘i
1 ptT
Vi = o? :
pr2 pT73
_,OT_l pT—Q pT—S 1 |




3. Unstructured

1 p12 o puT-2) PUT-1)  PIT
p21 1 PoAT-1) P2AT)

1 P3(T)

P(r-1)1  P(T-1)2
L P11 P11 P(T-2)1 L]

7.3 Watch out for those nonrobust standard errors!

Liang and Zeger (1986) pioneered the quasi-likelihood/GEE approach to longitudinal data analysis.
Their robust estimator of the variance/covariance matrik isf stated on their p. 15. If one puts the
linear model with Normally distributed error term into that framework, then the Z&L expression simpli-
fies radically (because;; = n;;, s0A; = I). The simplified version for Normally distributed dependent
variables with the identity link is stated in Dobson, 2002, p. 200

V(b= (xax)” (fj XV (i = Xib) (i — Xib)') Wl&) (x'Vx)
=1

8 What if there are “random effects” at the unit level?
Suppose there is some effect at the level of the unit.
Yit = c+vi + Xib + eq
There are many different names for models that attempt to take this into account. Here are some:

e variance components model
e mixed model (because some coefficients are random and some are fixed)

e hierarchical linear model

Suppose that the random effegtis Normally distributed with varianceg.

From an econometric standpoint, this turns into a problem of heteroskedasticity, because the unob-
served unit-level error term,; is dissolved into the unobserved individual level error tesm A GLS
approach can be used to deal with the heteroskedasticity.

There is a separate handout CXTS-ECM that investigates these as error components models.

In the longitudinal data analysis literature, such as the Diggle, et al book (which is authoritative),
they treat this as a maximum likelilhood problem, one which is thought of as a 'conditional’ problem.

It is conditional in the sense that we would first like to know the value;adind then we think of the
impact of X;;b as “above and beyond” that random intercept. That’s the sense in which our understand-
ing of y;; is conditional ony;.

I'm struck by the wide variety of terminology and approaches to these models.

9 What if there are Fixed Effects at the unit level

The famous “least squares dummy variables” model. Blech!
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10 What if the dependent variable is not normal, or the link function is not
the identity function, or both?

Recall the GLM. It deals with nonNormal variables and wild link functions.

But it does not directly translate to deal with a longitudinal data exercise.

Part of the problem is that, up to this point, our discussion of the longitudinal model has followed
the old econometric tradition of talking about the distribution of an “error term.”

In most GLM applications, there is no such thing as an “error term.” In the GLM, we talk directly
abouty being distributed as Poisson or Gamma.

Since the GLM does not have an error term, it is not obvious where one should fit in intercorre-
lated errors!

Liang and Zeger (1986) proposed a modeling strategy that they called GEE, Generalized Estimat-
ing Equations. GEE is an extension of the “quasi-likelihood” approach to estimation. Suppose for each
cluster there is a covariance matrix for the observed values of

I'm writing the GEE details down in a separate handout, but | want to point out the continuity with
the GLS model.

The GEE is defined as the solution to an equation that looks like a hybrid between the Score equa-
tion from the Quasi-likelihood model and the Score from the GLS in 8. Suppose the estimated mean
vector isji.

aﬂ}’ NP
ol y—a) =0
[61) (y — 1)

That's just like the GLS score equation, because it has a weight nfatiixthe middle. But it is

different from GLS[%} does not resolve to a simple thing liké€'.
And its different from the GLM, because it h&s .



