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What about b’s and betas and R-square?
Start with a model like this:

yi = b0 + b1X1i + b2X2i + ... + bkXki + ei i = 1, ..., N (1)

and through _____________ procedure, you make estimates with which to calculate predicted values:

ŷi = b̂0 + b̂1X1i + b̂2X2i + ... + b̂kXki i = 1, ..., N (2)

1 How are you supposed to interpret the b̂
′
s?

These are “partial regression coefficients”.
“other things equal, a 1 unit increase in X2 causes an estimated b̂2 unit increase in the predicted value of y”.
Maybe the calculus says it best:

dŷ

dX2
= b̂2

This foreshadows the problem with multicollinearity, by the way. We prefaced with “other things equal,” but if
there is multicollinearity, then other things don’t remain equal when you change X2.

2 Betas. AKA

3 Standardized Regression Coefficients
If you do a regression in which you replace yi and X1i and X2i and X3i by standardized variables, what you
get is called a standardized regresison equation, and the estimated coefficients are “standardized regression coeffi-
cients” and, in the slang of statistics, they are called “Betas.”.

Recall a standardized variable is calculated like so:

standardized yi =
yi − ȳ

s.d.(yi)

Or, if you like to use sy for standard deviation of y, write it that way instead:

standardized yi =
yi − ȳ

sy

By definition, all standardized variables have a mean of 0 and a standard deviation of 1. See why?
So if you standardize the variables in a regression model, you have a model like so:

(
yi − ȳ

sy

)
= β1

(
X1i − X̄1

sX1

)
+ β2

(
X2i − X2

sX2

)
+ β3

(
X3i − X3

sX3

)
+ ui (3)

The error term has a new name because it gets “automagically” rescaled when you rescale the variables.
1. Why do they do this?
They seek an easy comparison, like “a one standard deviation rise in X1 causes a β̂1-standard-deviation-increase

in y.” So, if X1 is measured in “dollars” and y is measured in some grossly different unit, like “bushels of wheat
per year”, the standardization intends to make them comparable.

2. Guess where the y-intercept term went?
3. How does the beta, say β1 differ from the unstandardized coefficient, b1?
To find out, let’s just make some scale translations in the orignal regression equation. Let’s change X1 and see

what effect they have.
A. Suppose we change X1 by a constant, so we replace X1 by X1i − X1.
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Does that have an effect?
Not really.
Start here:

yi = b0 + b1X1i + b2X2i + ... + bkXki + ei

change X1:

y∗

i = b∗
0

+ b∗
1
(X1i − X1) + b∗

2
X2i + ... + b∗kXki + vi

If you estimated that model with data, your estimate b̂∗
1

would be equal to the original estimate b̂1.
The estimate of the constant would be changed, however. It would be b∗

1
X1 units different.

B. Suppose we change X1 by dividing it by a constant, which we could call sX1 for fun. Then the model
changes to:

y∗

i = b∗
0

+ b∗
1
(
X1i

sX1

) + b∗
2
X2i + ... + b∗kXki + vi

How would the estimate of b∗
1

differ from b1 in the original model? Obviously, the two are proportionally re-
lated, as you can clearly see that

b∗
1

sX1

= b1

or

b∗
1

= b1 ∗ sX1

So, if you take any independent variable and divide it by a constant, the only impact is that you end up re-scaling
the parameter estimate for that variable. Humpf!

So look at 1 and then compare it against 3. After a while it becomes apparent:

β1 =
sX1

sy

b1

You can prove this to yourself by multiplying 3 by sy

(yi − ȳ) = β1

[
sy

sX1

] (
X1i − X1

)
+ β2sy

(
X2i − X2

sX2

)
+ β3sy

(
X3i − X3

sX3

)
+ ui (4)

4 Betas are no good.
King says, flat out, that the people who want betas because they can compare the “impact” of variables are mis-
guided. They want to say “a 1 standard deviation increase in X1 causes a β1 standard deviations in crease in yi.”

There are big problems, however.
1. If we knew for sure the “true standard deviation” σX1 the above procedure might not be a total disaster.

However, we don’t. We estimate that by the sample standard deviation, sX1. That means that, even if the un-
derlying regression relationship is the same, then different samples will have different standardized coefficients.
There was never a regression assumption that the variance of X1 is fixed, and it should not matter. But betas
make it matter.

This means that betas in a single sample are not so meaningful as we originally thought, and furthermore
2. One must not compare betas across samples, because differences in the distribution of X in two cases will

affect standardized coefficients.
3. Does standardization have any meaning for dichotomous variables? A “one standard deviation increase in

the variable ’male’ causes....”
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5 What about the R
2.

King’s “how not to lie with statistics” essay digs into this pretty well.
First start by noting that R2 is not a proper parameter estimate of an underlying parameter of the model. Some

(Luskin, Lewis-Beck) will contend otherwise.
Here are some bad things about R2

1. R2 depends on the variance of the X’s

2. adding variables always makes the R2 get bigger. The “adjusted-R2” statistic is an ad hoc adjustment to
penalize the addition of variables.

3. No absolute standard exists to answer the question “is my R2 good enough”.

4. Emphasis on R2 undercuts the main objective of understanding the relationship between X and Y and find-
ing the coefficients of that relationship.

As far as I know, the best use of the R2 is this. Given a dependent variable, suppose we estimate several models
with different functional forms. The R2 is a good criterion for selecting the “best” one.

As far as I know, there is another pretty good use for R2. That is in the diagnosis of multi collinearity.
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