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Introduction

Remember the Basic OLS

Theory behind the Linear Model

yi = β0 + β1x1i + ei

Error term, we assumed, for all i ,

E(ei ) = 0 for all i (errors are “symmetric” above and below)
Var(ei ) = E [(ei − E(ei ))2] = σ2 (Homoskedasticity: same variance).

Heteroskedasticity: the assumption of homogeneous variance is
violated.
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Introduction

Homoskedasticity means

Var(e) =


σ2
e 0 0 0 0

0 σ2
e 0 0 0

0 0 σ2
e 0 0

0 0 0
. . . 0

0 0 0 0 σ2
e





Heteroskedasticity 5 / 50

Introduction

Heteroskedasticity depicted in one of these ways

Var(e) =


σ2
ew1 0

σ2
ew2

σ2
ew3

...
0 σ2

ewN

 or



σ2
e

w1
0

σ2
e

w2
σ2
e

w3

...

0
σ2
e

wN


I get confused a lot when comparing textbooks because of this problem!
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Introduction

Consequences of Heteroskedasticity 1: β̂OLS still unbiased,
consistent

OLS Estimates of β0 and β1 are still unbiased and consistent.

Unbiased: E [β̂OLS ] = β
Consistent: As N →∞, β̂OLS tends to β in probability limit.

If the predictive line was “right” before, It’s still right now.

However, these are incorrect

standard error of β̂
RMSE
confidence / prediction intervals
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Introduction

Proof: β̂OLS Still Unbiased

Begin with “mean centered” data. OLS with one variable:

β̂1 =

∑
xi · yi∑

x2
i

=

∑
xi (b · xi + ei )∑

x2
i

=
β1

∑
x2
i +

∑
xi · ei∑

x2
i

= β1+

∑
xi · ei∑

x2
i

Apply the Expected value operator to both sides:

E [β̂1] = E (β1) + E (

∑
xi · ei∑

x2
i

)

E [β̂1] = β1 + E (

∑
xi · ei∑

x2
i

) = β1 + (

∑
E [xi · ei ]∑

x2
i

)

Assume xi is uncorrelated with ei , E [xiei ] = 0, the work is done

E (β̂1) = β1
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Introduction

Consequence 2. OLS formula for V̂ar(β̂) is wrong

1 Usual formula to estimate Var(β̂), V̂ar(β̂) is wrong. And it’s square
root, the std .err .(β̂) is wrong.

2 Thus t-tests are WRONG (too big).
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Introduction

Proof: OLS V̂ar(β̂) Wrong

Variance of ei : Var(ei ).

The variance of the OLS slope estimator, Var(b̂1), in
“mean-centered (or deviations) form”:

Var(β̂1) = Var

[∑
xi · ei∑

x2
i

]
=

Var [
∑

xiei ]

(
∑

x2
i )

2 =

∑
Var(xiei )

(
∑

x2
i )

2 =

∑
x2
i · Var(ei )

(
∑

x2
i )

2

(1)

We assume all Var(ei ) are equal, and we put in the MSE as an
estimate of it.

V̂ar(β̂1) =
MSE∑

x2
i

(2)
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Introduction

Proof: OLS Var(β̂)Wrong (page 2)

Instead, suppose the “true” variance

Var(ei ) = s2 + s2
i (3)

(a common minimum variance s2 plus an additional individualized
variance s2

i ).

Plug this into (1):∑
x2
i (s2 + s2

i )

(
∑

x2
i )

2 =
s2∑

x2
i

+

∑
xi · s2

i

(
∑

x2
i )

2 (4)

The first term is ”roughly”what OLS would calculate for the variance
of β̂1.

The second term is the additional ”true variance” in β̂1 that the OLS

formula V̂ (β̂1) does not include.
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Introduction

Consequence 3: β̂OLS is Inefficient

1 β̂OLS
i is inefficient: It has higher variance than the “weighted”

estimator.

2 Note that to prove an estimator is “inefficient”, it is necessary to
provide an alternative estimator that has lower variance.

3 WLS: Weighted Least Squares estimator, β̂WLS
1 .

4 The Sum of Squares to be minimized now includes a weight for each
case

SS(β̂0, β̂1) =
N∑
i=1

Wi (y − ŷi )
2 (5)

5 The weights chosen to “undo” the heteroskedasticity.

W 2
i = 1/Var(ei ) (6)
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Introduction

Covariance matrix of error terms

This thing is a weighting matrix
1

Var(e1) 0
1

Var(e2)

. . .

0 1
Var(eN )


Is usually simplified in various ways.

Factor out a common parameter, so each individual’s error variance
is proportional

1

σ2
e


1
w1

0
1
w2

. . .

0 1
wN
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Introduction

Example. Suppose variance proportional to x2
i

The “truth” is

yi = 3 + 0.25xi + ei (7)

Homoskedastic:

Std .Dev .(ei ) = σe = 10 (8)

Heteroskedastic:

Std .Dev .(ei ) = 0.05∗(xi−min(xi ))∗σe
(9)

30 40 50 60
−

20
0

20
40

60

Heteroskedasticity

x

y
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Introduction

Compare Lines of 1000 Fits (Homo vs Heteroskedastic)
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Introduction

Histograms of Slope Estimates (w/Kernel Density Lines)
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Introduction

So, the Big Message Is

Heteroskedasticity inflates the amount of uncertainty in the
estimates.

Distorts t-ratios.
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Fix #1: Robust Standard Errors
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Fix #1: Robust Standard Errors

Robust estimate of the variance of b̂

Replace OLS formula for V̂ar(b̂) with a more “robust” version

Robust “heteroskedasticity consistent” variance estimator: weaker
assumptions.

No known small sample properties

But are consistent / asymptotically valid

Note: This does not “fix” b̂OLS . It just gives us more accurate
t-ratios by correcting std .err(b̂).
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Fix #1: Robust Standard Errors

Robust Std.Err. in a Nutshell

Recall: the variance-covariance matrix of the errors assumed by OLS.

Var(e) = E (e · e′|X ) =


σ2
e 0 0 0 0

0 σ2
e 0 0 0

0 0 σ2
e 0 0

. . . . . . . . . 0
0 0 0 0 σ2

e

 (10)
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Fix #1: Robust Standard Errors

Heteroskedastic Covariance Matrix

If there’s heteroskedasticity, we have to allow the possibility like this:

Var(e) = E [e · e′|X ] =


σ2

1 0 0 0 0
0 σ2

2 0 0 0

0 0
. . . · · · 0

0 0 0 σ2
N−1 0

0 0 0 0 σ2
N
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Fix #1: Robust Standard Errors

Robust Std.Err. : Use Variance Estimates

Fill in estimates for the case-specific error variances

V̂ar(e) =



σ̂2
1 0 0 0 0

0 σ̂2
2 0 0 0

0 0
. . . · · · 0

0 0 0 σ̂2
N−1 0

0 0 0 0 σ̂2
N


Embed those estimates into the larger formula that is used to
calculate the robust standard errors.

Famous paper
White, Halbert. (1980). A Heteroskedasticity-Consistent Covariance
Matrix Estimator and a Direct Test for Heteroskedasticity.
Econometrica, 48(4), 817-838.
Robust estimator originally proposed by Huber (1967), but was
forgotten
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Fix #1: Robust Standard Errors

Derivation: Calculating The Robust Estimator of Var(b̂)

The true variance of the OLS estimator is

Var(b̂1) =

∑
x2
i Var(ei )

(
∑

x2
i )2

(11)

Assuming Homoskedasticity, estimate σ2
e with MSE.

V̂ar(b̂1) =
MSE∑

x2
i

and the square root of that is std .err .(b̂1) (12)

The robust versions replace Var(ei ) with other estimates. White’s
suggestion was

Robust V̂ar(b̂1) =

∑
x2
i · ê2

i

(
∑

x2
i )2

(13)

êi
2 : the “squared residual”, used in place of the unknown error

variance.
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Weighted Least Squares

WLS is Efficient

Change OLS:

SS(β̂) =

N∑
i=1

(yi − ŷi )
2

to WLS:

minimize SS(β̂) =
N∑
i=1

Wi (yi − ŷi )
2

In practice, weights are guesses about the standard deviation of the
error term

Wi =
1

σi
(14)
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Weighted Least Squares

Feasible Weighted Least Squares.

Analysis proceeds in 2 steps.

Regression is estimated to gather information about the error
variance.
That information is used to fill in the Weight matrix with WLS

May revise the weights, re-fit the WLS, repeatedly until convergence.
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Weighted Least Squares

Combine Subsets of a Sample

Data From Categorical Groups

Suppose you separately investigate data for men and women

men : yi = β0 + β1xi + ei (15)

women : yi = c0 + c1xi + ui (16)

Then you wonder, “can I combine the data for men and women to
estimate one model”

humans : yi = β0 + β1xi + β2sexi + β3sexixi + ei (17)

This “manages” the differences of intercept and slope for men and
women by adding coefficients β2 and β3.

But this ASSUMED that Var(ei ) = Var(ui ).

We should have tested for homoskedasticity (the ability to pool the
2 samples).



Heteroskedasticity 28 / 50

Weighted Least Squares

Random coefficient model

Methods Synonyms

The basic idea is to say that the linear model has “extra” random error
terms.

Synonyms

Random effects models

Mixed Models

Hierarchical Linear Models (HLM)

Multi-level Models (MLM)

This “Laird and Ware” notation has now
become a standard. Let the “fixed”
coefficients be β’s, but suppose in
addition there are random coefficients
b ∼ N(0, σ2

b).

y = Xβ + Zb + e (18)

I’ll probably write something on the
board.
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Weighted Least Squares

Random coefficient model

Simple Random Coefficient Model

Start with the regression model that has a different slope for each
case:

yi = β0 + βixi + ei (19)

Slope is a ”random coefficient” with 2 parts

βi = β1 + ui

β1 is the “same” for all cases
ui is noise in the slope that is individually assigned. It has expected
value 0 and a variance σ2

u.
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Weighted Least Squares

Random coefficient model

Simple Random Coefficient Model

The regression model becomes

yi = β0 + (β1 + ui )xi + ei

= β0 + β1xi + uixi + ei

Note: My “new” error term is uixi + ei . NOT homoskedastic

What’s the variance of that? Apply the usual rule:

Var [uixi + ei ] = x2
i Var(ui ) + Var(ei ) + 2xiCov(ui , ei )

Get rid of the last part by asserting that the 2 random effects are
uncorrelated, so we have

= x2
i σ

2
u + σ2

e
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Weighted Least Squares

Aggregate Data

With Aggregated Data, the Variance is Almost Never
Homogeneous.

Each row in the data set represents a collection of observations
(“group averages” like “mean education” or “mean salary”)

The averaging process causes heteroskedasticity.

The mean ȳ =

∑
yi

N and standard deviation σ2
y imply the variance of

the mean is

Var(ȳ) =
Var(yi )

N
=
σ2
y

N

Regression Weights proportional to
√

Ngroup should be used.
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Testing for heteroskedasticity

Categorical Heteroskedasticity

Adapt tests from Analysis of Variance

Idea: Estimate the error variances for the subgroups, try to find
out if they are different.

Bartlett’s test: Assuming normality of observations, derives a
statistic that is distributed as a χ2.

l i b r a r y ( l m t e s t )
p l o t ( count ∼ spray , data = I n s e c t S p r a y s )
b a r t l e t t . t e s t ( count ∼ spray , data = I n s e c t S p r a y s )

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests.
Proceedings of the Royal Society of London Series A 160, 268–282.

Fligner-Killeen Test : Robust against non-normality (less likely to
confuse non-normality for heteroskedasticity)

l i b r a r y ( l m t e s t )
f l i g n e r . t e s t ( count ∼ spray , data = I n s e c t S p r a y s )
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Testing for heteroskedasticity

Categorical Heteroskedasticity

Adapt tests from Analysis of Variance ...

William J. Conover, Mark E. Johnson and Myrle M. Johnson (1981). A
comparative study of tests for homogeneity of variances, with applications
to the outer continental shelf bidding data. Technometrics 23, 351–361.

Levene’s test

l i b r a r y ( c a r )
l e v e n e T e s t ( y∼x*z , data=dat ) ##x and z must be factors
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Testing for heteroskedasticity

Checking for Continuous Heteroskedasticity

Goldfield Quandt test

S.M. Goldfeld & R.E. Quandt (1965), Some Tests for Homoskedasticity.
Journal of the American Statistical Association 60, 539–547

Consider a continuous numeric predictor. Exclude observations “in
the middle” and then compare observed variances of the left and
right.

Draw a picture on Board here!

HOWTO: compare the Error Sum of Squares for 2 chunks of data.

F =
ESS2

ESS1
=

the ”lower set” ESS

the ”upper set” ESS

and the degrees of freedom for both numerator and denominator are
(N − d − 4)/2 , where d is the number of excluded observations.

The more observations you exclude, the smaller will be your degrees
of freedom, meaning your F value must be larger.

l i b r a r y ( l m t e s t )
g q t e s t ( y ∼ x , f r a c t i o n =0.2 , o r d e r . b y=c ( z ) )
g q t e s t ( y ∼ x , p o i n t=0.4 , o r d e r . b y=c ( z ) )
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Testing for heteroskedasticity

Checking for Continuous Heteroskedasticity

Example of Goldfield-Quandt Test: Continuous X

Use heteroskedastic model from previous illustration.

mymod <− lm ( y∼x )
g q t e s t (mymod , f r a c t i o n =0.2 ,

o r d e r . b y= ∼ x )

Goldfe ld−Quandt t e s t

data : mymod
GQ = 4 .497 , d f1 = 198 , d f 2 =

198 , p−value < 2 .2e−16
a l t e r n a t i v e h y p o t h e s i s :

v a r i a n c e i n c r e a s e s from
segment 1 to 2

This excludes 20% of the cases
from the middle, and compares
the variances of the outer
sections.

20 40 60 80

−
40

−
20

0
20

40
60

80

Scatter for Goldfield−Quandt Test

x

y
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Testing for heteroskedasticity

Toward a General Test for Heteroskedasticity

Test for Predictable Squared Residuals

Versions of this test were proposed in Breusch & Pagan (1979) and
White (1980).

Basic Idea: If errors are homogeneous, the variance of the residuals
should not be predictable with the use of input variables.

T.S. Breusch & A.R. Pagan (1979), A Simple Test for
Heteroscedasticity and Random Coefficient Variation. Econometrica
47, 1287–1294
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Testing for heteroskedasticity

Toward a General Test for Heteroskedasticity

Breusch-Pagan test

Model the squared residuals with the other predictors (Z1i , etc) like
this:

êi
2

σ̂2
= γo + γ1Z11 + γ2Z2i

Here, σ̂2 = MSE .

If the error is homoskedastic/Normal, the coefficients γ0, γ1, and γ2

will all equal zero. The input variables Z can be the same as the
original regression, but may are include squared values of those
variables.

BP contend that 1
2 RSS (the regression sum of squares) should be

distributed as χ2 with degrees of freedom equal to the number of Z
variables.

l i b r a r y ( l m t e s t )
mod <− lm ( y ∼ x1 + x2 +x3 , data=dat )
b p t e s t ( mod , s t u d e n t i z e=F) ##for the classic bp test
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Testing for heteroskedasticity

Toward a General Test for Heteroskedasticity

A Robust Version of the Test

The original form of the BP test assumed Normally distributed
errors. Non-normal, but homoskedastic, error, might cause the test
to indicate there is heteroskedasticity.

A “studentized” version of the test was proposed by Koenker (1981),
that’s what lmtest’s bptest uses by default.

l i b r a r y ( l m t e s t )
mod <− lm ( y ∼ x1 + x2 +x3 , data=dat )
b p t e s t ( mod ) ## Koenker 's robust version
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Testing for heteroskedasticity

Toward a General Test for Heteroskedasticity

White’s Version of the Test

White’s general test for heteroskedasticity is another view of the
same exercise. Run the regression

êi
2 = γo + γ1Z11 + γ2Z2i + . . .

The Z ’s should include the predictors, their squares, and cross products.

Under the assumption of homoskedasticity, N · R2 is asymptotically
distributed as χ2

p, where N is the sample size, R2 is the coefficient of
determination from the fitted model, and p is the number of Z
variables used in the regression.

Algebraically equivalent to robust version of bp test (Waldman,
1983).
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Appendix: Robust Variance Estimator Derivation
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Appendix: Robust Variance Estimator Derivation

Where Robust Var(β̂) Comes From

The OLS estimator in matrix form

b̂ = (X ′X )−1X ′Y (20)

If ei is homoskedastic, the “true variance” of the estimates of the b’s
is

Var(b̂) = σ2 · (X ′X )−1 (21)

Replace σ2, with the Mean Squared Error (MSE).

V̂ar(b̂) = MSE · (X ′X )−1 (22)
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Appendix: Robust Variance Estimator Derivation

Where OLS Exploits Homoskedastic Assumption

In the OLS derivation of (22), one arrives at this intermediate step:

OLS : Var(b̂) = (X ′X )−1(X ′Var(e)X )(X ′X )−1 (23)

The OLS derivation exploits homoskedasticity, which appears as

Var(e) = E (e · e′|X ) =


σ2 0 0 0 0
0 σ2 0 0 0
0 0 σ2 0 0
. . . . . . . . . 0
0 0 0 0 σ2

 (24)

= σ2


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
. . . . . . . . . 0
0 0 0 0 1

 = σ2 · I (25)

OLS Var(b̂) = (X ′X )−1(X ′ · σ2 · X )(X ′X )−1 = σ2(X ′X )−1
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Appendix: Robust Variance Estimator Derivation

But Heteroskedasticity Implies

If there’s heteroskedasticity, we have to allow the possibility like this:

Var(e) = E [e · e′|X ] =


σ2

1 0 0 0 0
0 σ2

2 0 0 0

0 0
. . . · · · 0

0 0 0 σ2
N−1 0

0 0 0 0 σ2
N


Those “true variances” are unknown. How can we estimate Var(b̂)?
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Appendix: Robust Variance Estimator Derivation

White’s Idea

The variance of e1, for example, is never observed, but the best
estimate we have for it is the mean square for that one case:

ê1
2 = (y1 − X1b̂)(y1 − X1b̂)

Hence, Replace Var(e) with a matrix of estimates like this:

V̂ar(e) =


ê1

2

ê2
2

êN−1
2

êN
2
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Appendix: Robust Variance Estimator Derivation

Heteroskedasticity Consistent Covariance Matrix

The “heteroskedasticity consistent covariance matrix of b̂” uses

V̂ar(e) in the formula to calculate estimated variance.

hccm Var(b̂) = (X ′X )−1(X ′V̂ar(e)X )(X ′X )−1

White proved that the estimator is consistent, i.e, for large samples,
the value converges to the true Var(b̂).

Sometimes called an “information sandwich” estimator. The matrix
(X ′X )−1 is the “information matrix”. This equation gives us a
“sandwich” of X ′Var(e)X between two pieces of information matrix.
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Practice Problems
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Practice Problems

echo=F = dir.create(”plots”, showWarnings=F)

Outline

1 Introduction

2 Fix #1: Robust Standard Errors

3 Weighted Least Squares
Combine Subsets of a Sample
Random coefficient model
Aggregate Data

4 Testing for heteroskedasticity
Categorical Heteroskedasticity
Checking for Continuous Heteroskedasticity
Toward a General Test for Heteroskedasticity

5 Appendix: Robust Variance Estimator Derivation

6 Practice Problems



Heteroskedasticity 48 / 50

Practice Problems

Problems

1 Somebody says “your regression results are obviously plagued by
heteroskedasticity. And they are correct!” Explain what might be
wrong, and what the consequences might be.

2 Run a regression on any data set you like. Suppose you call it“mod”.
Run a few garden variety heteroskedasticity checks.

l i b r a r y ( l m t e s t )
b p t e s t (mod)

If you have a continuous predictor “MYX” and you want to check for
heteroskedasticity with the Goldfield-Quandt test, it is best to
specify a fraction to exclude from the “middle” of the data. If you
order the data frame by “MYX” before fitting the model and running
the gqtest, it works a bit more smoothly. If you do not do that, you
have to tell gqtest to order the data for you.

l i b r a r y ( l m t e s t )
g q t e s t (mod , f r a c t i o n =0.2 , o r d e r . b y=∼MYX)
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Practice Problems

Problems ...

On the other hand, the help page for gqtest also suggests using it to
test a dichotomous predictor, but in that case don’t exclude a
fraction in the middle, just specify the division point that splits the
range of MYX in two. You better sort the dataset by MYX before
trying this, it will be tricky.

l i b r a r y ( l m t e s t )
dat <− dat [ dat $MYX, ] ##Sorts rows by MYX

g q t e s t (mod , p o i n t =67) ## splits data at row 67.

3 We have quite a few different ways to check for “categorical
heteroskedasticity”. I think I’ve never compared them side by side,
but maybe you can. Run a regression that has at least one
dichotomous predictor, and then run the various tests. I have in
mind Bartlett’s test, Fligner-Killeen test, and Levene’s test. I noticed
at the last minute we can also use the Goldfield Quandt test, in the
method demonstrated in ?gqtest (or in previous question).
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Practice Problems

Problems ...

Run those tests, check to see if they all lead to the same conclusion
or not. Try to understand what they are testing so you could explain
them to one of your students.
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