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β̂ Uncertainty

Visualize Uncertainty

How Does Uncertainty Manifest Itself?

The Truth is β0 = 3,
β1 = 0.25

Suppose sample estimate
β̂0 = 3.2 and β̂1 = 0.4.

We are a little bit off the
mark, but we are not doing
too badly to formulate a
“prediction” thusly

ŷi = 3.2 + 0.4 · xi

If we did not know true β0

and β1, could we guess “how
far wrong” our estimates are?
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β̂ Uncertainty

Visualize Uncertainty

Repeat that Exercise Hundreds of Times

Draw samples, estimate a
line for each

Vital observations

Estimates do seem to
“hover” around the correct
values
More predictive
fluctuation on edges than
in the middle
If β̂0 is “off” by a larger
amount, the β̂1 will
generally be off as well
(that’s Cov(β̂0, β̂1).
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β̂ Uncertainty

Visualize Uncertainty

How Did I Manufacture the Data?

Sample size N=100

Draw one sample of input variables, xi ∼ Normal(50, 102)

The “true” parameter values: β0 = 3, β1 = 0.25 , σe = 10

Repeatedly draw sets of errors, estimate regressions (leaving xi
vector the same)

This is what it means when textbooks say“x is fixed”across repeated
samples
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β̂ Uncertainty

Visualize Uncertainty

The Simulation Confirms The Theory

The expected values of the estimators are:

E [β̂0] = 3

E [β̂1] = 0.25

E [RMSE ] = 10

According to results derived below:

Variance of β̂1: Var [β̂1] = σ2
e/E [

∑
(x − x̄)2] = 1/100 = 0.01

Standard deviation of β̂1: std .dev(β̂1) = 0.1
β̂1 is Normally distributed if

Sample is large (Recall the Central Limit Theorem)

Or we assume ei is Normal. Then β̂ will be Normal.

t̂ = (β̂1 − β1)/s.e.(β̂1) is distributed according to a t distribution
with N-2 degrees of freedom.
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Sampling Distribution β̂

Variance Results

Var [β̂]: Theoretical “True Variance” of estimate across repeated
samples

Var(β̂1) = σ2
e

(
1∑

(xi − x̄)2

)
(1)

V̂ar [β̂]: Estimate of Var [β̂] From one sample. Replace σ2
e with σ̂2

e

(MSE).

V̂ar(β̂1) = σ̂2
e

(
1∑

(xi − x̄)2

)
(2)

std .err .(β̂)=

√
V̂ar [β̂]: Standard error of β̂1. We don’t call it a

“standard deviation” because it is based on an estimate of the
variance, rather than the true variance.



Descriptive 9 / 79

Sampling Distribution β̂

See Appendix for Derivation

The derivation begins by applying the Var operator to both sides of
the formula for the slope estimate

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2

Var(β̂1) = Var

(∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2

)
Appendix shows derivation.

Demonstrates role played by assumptions E [ei ] = 0 and
Var [ei ] = σ2

e .
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Sampling Distribution β̂

Similar formulas for variances of other parameter estimates

Variance of Intercept:

V̂ar(β̂0) = σ̂2
e

∑
x2
i

N
∑

(xi − x̄)2

Covariance of estimates of Intercept and Slope:

̂Cov(β̂0, β̂1) =
−x̄ σ̂2

e∑
(xi − x̄)2
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Sampling Distribution β̂

They Fit into a Variance/Covariance matrix

Var/Covar(β̂) :

 V̂ar(β̂0) ̂Cov(β̂0, β̂1)
̂Cov(β̂0, β̂1) V̂ar(β̂1)


The square roots of the diagonal appear in the standard regression
output

They are the 2nd column, the standard errors of parameter
estimates.

̂Cov(β̂0, β̂1) is not presented in the standard regression output, must
be obtained separately

Note: I am lazy and don’t put a giant hat over the matrix on the left.
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Sampling Distribution β̂

The Sampling Distribution of β̂1 is Normal

Simulation draws similar to
theoretical Normal
distribution

Recall, the true value of
β1 = 0.25

Variation we expect
(theoretical) is observed in
simulation

Estimates of b1
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mean= 0.251
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1000 Simulated Samples, N=100, x sample
fixed
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Sampling Distribution β̂

Sampling Distribution of (β̂1 − β1)/s.e.(β̂1) follows a t
Distribution

When we studied estimating the average from a sample, we found
the ratio x̄/s.e.(x̄) is distributed as a t statistic.

The same idea applies here: because

β̂1 follows a Normal distribution, and
s.e.(β̂1) follows a Chi-Square
therefore, (β̂1 − β1)/s.e.(β̂1) follows a t distribution

Often, people simply refer to that ratio as a “t statistic”, but I’m
calling it t̂ because it varies from sample to sample, just like β̂ and
s.e.(β̂).
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Sampling Distribution β̂

Recall a t Distribution with 100 df
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critical value= −1.983972 critical value= 1.983972

The estimate from a sample,
t̂ = β̂1 − β1/s.e.(β̂1) will
take on a range of values
around 0

Only infrequently, with
probability (2x0.025), will t̂
be in the “tails”, the critical
regions.
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Sampling Distribution β̂

The Sampling Distribution of (β̂1 − β1)/s.e.(β̂1)

Note similarity of sample
estimates (β̂1 − β1)/s.e.(β̂1)
with the theoretical t
distribution

t̂ = (b̂1 − b1) s.e.(b̂1)
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Sampling Distribution β̂

The Sampling Distribution of RMSE

distribution of estimated root mean square error is centered on the true
value of the standard deviation of the error term.

RMSE (est. std. dev. of error term)
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t-test Hypotheses about βj

Check the Standard Regression Output

r e q u i r e ( c a r )
incedmod1 <− lm ( income∼e d u c a t i o n , data=P r e s t i g e )
summary ( incedmod1 )

C a l l :
lm ( f o r m u l a = income ∼ e d u c a t i o n , data = P r e s t i g e )

R e s i d u a l s :
Min 1Q Median 3Q Max

−5493.2 −2433.8 −41.9 1491 . 5 17713 . 1

C o e f f i c i e n t s :
E s t i m a t e S t d . E r r o r t v a l u e Pr (>| t | )

( I n t e r c e p t ) −2853.6 1407 . 0 −2.028 0 . 0 4 5 2 *

e d u c a t i o n 898 . 8 127 . 0 7 . 0 7 5 2 .08e−10 ***

−−−
S i g n i f . codes : 0 ' *** ' 0 . 0 0 1 ' ** ' 0 . 0 1 ' * ' 0 . 0 5 ' . ' 0 . 1 ' ' 1

R e s i d u a l s t a n d a r d e r r o r : 3483 on 100 d e g r e e s o f f reedom
M u l t i p l e R2 : 0 .3336 , A d j u s t e d R2 : 0 . 3 2 6 9
F − s t a t i s t i c : 50 . 0 6 on 1 and 100 DF, p−value : 2 .079e−10
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t-test Hypotheses about βj

Ask R for the Covar Matrix

i n c e d v c o v <− vcov ( incedmod1 )
i n c e d v c o v

( I n t e r c e p t ) e d u c a t i o n
( I n t e r c e p t ) 1979759 . 4 −173290.4
e d u c a t i o n −173290.4 16138 . 0

Note the square root of the diagonals is same as “standard error” in
regression table

s q r t ( d i a g ( i n c e d v c o v ) )

( I n t e r c e p t ) e d u c a t i o n
1407 . 0 3 9 2 127 . 0 3 5 4
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t-test Hypotheses about βj

The Standard Error of β̂1 Leads to a T-test

The regression output has columns

Estimate of b std. error of b t=β̂/s.e.(β̂) prob t more extreme than t̂

t column is meaningful only if NULL is βj = 0 (j means either 0 or 1
in β0 and β1)

βj does not always have to be 0!. More generally

t̂ =
β̂j − βj

std .err .(β̂j)
(3)

Compare that against a t distribution.

Rule of Thumb: if |t̂| ≤ 2 , the difference between the estimate β̂j
and βj is not “statistically significant”
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t-test Hypotheses about βj

The Simulated Sampling Distribution of t

The t-stats reported by
regression models assume
null, H0 : β1 = 0

Many estimated β̂1/s.e.(β̂1)
are greater than 1.983, as
they should be!

Many are not. This is an
example of Type II error (β
error), failing to reject an
incorrect null hypothesis. 1000 t ratios
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     210 
sample estimates
 not significant 
 at 0.05

t dist

Solid line: t would follow this if β1 = 0, df=98
Dotted line: Simulated estimates of β̂1/s.e.(β̂)
when β1 = 0.25



Descriptive 22 / 79

t-test Hypotheses about βj

Two-Tailed Versus One Tailed

If Null Hypothesis is Correct, the estimate of t will be distributed like this:

Two Tailed Test
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t-test Hypotheses about βj

4 Steps of T-test: The Prestige Regression Slope

1 State Theoretical model to define terms:
incomei = β0 + β1 · educationi + ei , (E [ei ] = 0, E [e2

i ] = σ2
e )

2 State Null Hypothesis (for example): H0 : β1 = 0.

3 Define decision guideline: with 100 df, the 0.05 critical value of t is
1.983 (two-tailed test).

4 Calculate t̂ = (898.8− 0)/127 = 7.075
which is far greater than 1.983, so the null is rejected.
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t-test Hypotheses about βj

Estimated s.e.(β̂1) Will be High if

Recall, the estimated variance of an estimated slope:

V̂ar(β̂1) = σ̂2
e

[
1∑

(xi − x̄)2

]
=

RMSE 2∑
(xi − x̄)2

se(β̂1) will be high if

σ̂2
e is high (so, Big error variance -> Big β̂ Variance)∑

(xi − x̄)2 is small (Low variance of xi -> Big β̂ Variance).
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Confidence Interval of β̂j

Confidence Interval Reminder

Build a Confidence Interval around β̂.

CI : β̂ − t · std .err(β̂) ≤ β ≤ β̂ + t · std .err(β̂)

We believe that the probability is 95% that the “true value of b” will be in
the CI. The t value will depend on the degrees of freedom available
(Sample Size minus parameters estimated, or N − 2 in this case).

Result was derived in previous lecture on Confidence Intervals. With
probability 0.95, the estimated t ratio will lie in a range,

Prob(−t ≤ β̂ − β
std .err .(β̂)

≤ t) = 0.95

That implies this, with probability 0.95, the interval includes the
“true”β

−t · std .err(β̂) ≤ β̂ − β ≤ t · std .err(β̂)
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Confidence Interval of β̂j

CI(β̂) Example: The Prestige Regression

Confidence Interval for slope estimate: CI (β̂1)

β̂1 ± t · std .err .(β̂1) =

898.8± 1.98× 127

Or
[646.7792, 1150.84748]

Result: We believe that the probability is 0.95 that the “true β1”
would be between 646.7 and 1150.8.

Or, 95% of the time, when we conduct this sampling experiment, the
CI calculated according to this formula would include the true value.
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Confidence Interval of β̂j

In R, ask for the Confidence Intervals of all coefficients

c o n f i n t ( incedmod1 )

2 . 5 % 97 . 5 %
( I n t e r c e p t ) −5645.1114 −62.05979
e d u c a t i o n 646 . 7 7 8 2 1150 .84748
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Afterthought: Simulated Distribution of R2

The Sampling Distribution of R2

R2

Cov(xy)/Sd(x)sd(y)

not so encouraging

R square
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Prediction CI
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Prediction CI

Does ŷi estimate E [yi |xi ] or yi ?

We are asking “How meaningful is ŷi” What is it good for?

2 possibilities.

estimate the “true value” of yi , which is E [yi |xi ]
estimate a particular case’s outcome, yi

That leads to 2 different confidence intervals we can place around
our prediction.



Descriptive 33 / 79

Prediction CI

Recall root MSE: estimated std.dev. of error term

If we knew βo and β1 for
sure, then we could draw
lines±2× RMSE to predict
95% of the observations
(supposing ei is Normal, of
course).

That would be wrong: We
don’t know βo and β1 for
sure.

It is not wide enough to
include our uncertainty!

Danger, This is Wrong

0 2 4 6 8 10

0
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20
30

40

x

y

Don't do this! 
 it is wrong!

ŷ + 2 × rmse

ŷ − 2 × rmse
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Prediction CI

Including uncertainty about b̂0 and b̂1 leads to an hour
glass shaped region

Example: 100 regression lines
β0 = 2, β1 = 3, σ2

e = 802

30 40 50 60 70

0
50

10
0

20
0

30
0

Indep. Var.

D
ep

. V
ar

Note: Points represent one “sample”, lines represent 100 “sample fits”.
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Prediction CI

Confidence and Prediction Intervals

Confidence Interval:

Given xi and predicted value ŷi , how wide must an interval be to
include the “true (error free) yi” with probability.
Summarizes our uncertainty about ŷi as an estimate of E [yi |xi ]
ŷi should be “pretty close” to E [yi |xi ]

Prediction interval:

Given xi and predicted value ŷi , how wide must an interval be to
include a randomly drawn observation
Our uncertainty about ŷi as an estimate of a particular observation
Intuition: PI must be wider then CI because yi is less certain than ŷi
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Prediction CI

Confidence Interval for estimating E [y |x ]

Please remember: The format of these CIs is symmetric, like
[ŷ − something , ŷ + something ].

A 95% “confidence interval” includes the true E [yi |x0] with
probability 0.95

Confidence Interval = ŷ0 ± t × σ̂e

[
1

N
+

(x0 − x̄)2∑
(xi − x̄)2

]1/2

(4)

To work with that, select some “example” values of the predictor.
Call them x0 ∈ {0, 2, 4, 6}, for example

ŷo is the predicted value for a particular x, β̂0 + β̂1x0.

For 95% CI, set t 1.98

σ̂e is “RMSE,” the “estimated standard deviation of the error term”
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Prediction CI

Use predictOMatic to see some for some values of X

p r e d i c t O M a t i c ( incedmod1 , p r e d V a l s = l i s t ( e d u c a t i o n = ” q u a n t i l e ”) , n
= 10 , i n t e r v a l = ”c o n f i d e n c e ”)

e d u c a t i o n f i t l w r upr
1 6 . 3 8 0 2880 . 8 4 0 1586 . 7 4 8 4174 . 9 3 3
2 7 . 5 2 2 3907 . 2 8 5 2846 . 5 1 1 4968 . 0 5 8
3 8 . 1 2 8 4451 . 9 6 5 3502 . 7 7 0 5401 . 1 6 0
4 8 . 7 6 6 5025 . 4 0 8 4179 . 6 6 9 5871 . 1 4 7
5 9 . 7 0 8 5872 . 0 8 9 5140 . 2 1 6 6603 . 9 6 3
6 10 . 5 4 0 6619 . 9 0 2 5933 . 8 0 1 7306 . 0 0 3
7 11 . 1 7 2 7187 . 9 5 1 6494 . 9 8 2 7880 . 9 2 1
8 12 . 2 0 9 8120 . 0 2 0 7341 . 7 6 2 8898 . 2 7 9
9 13 . 6 2 0 9388 . 2 4 5 8390 . 3 3 1 10386 . 1 6 0
10 14 . 7 0 3 10361 . 6 6 0 9150 . 5 2 0 11572 . 7 9 9
11 15 . 9 7 0 11500 . 4 5 6 10014 . 8 4 4 12986 . 0 6 7

Steps across 10 values of education, showing fitted (predicted)
values and lower and upper 95% CI

Will Plot below. Is “hour glass shaped”.
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Prediction CI

Prediction Interval

A 95% “prediction Interval” includes a randomly drawn outcomes yi
with probability 0.95

Prediction Interval = ŷ0 ± t × σ̂e
[

1 +
1

N
+

(x0 − x̄)2∑
(xi − x̄)2

]1/2

(5)

Notice that the something in the PI is equal to the something in the
CI with an additional amount that depends directly on the standard
deviation of the error term σ̂e

This interval is larger because we think of “the line bouncing about”,
and the random draws are added on after that.

Derivation of CI and PI is presented in Appendix 2



Descriptive 39 / 79

Prediction CI

Use predictOMatic to see some for some values of X

p r e d i c t O M a t i c ( incedmod1 , p r e d V a l s = l i s t ( e d u c a t i o n = ” q u a n t i l e ”) , n
= 10 , i n t e r v a l = ” p r e d i c t i o n ”)

e d u c a t i o n f i t l w r upr
1 6 . 3 8 0 2880 . 8 4 0 −4150.1994 9911 . 8 8
2 7 . 5 2 2 3907 . 2 8 5 −3084.5739 10899 . 1 4
3 8 . 1 2 8 4451 . 9 6 5 −2523.8370 11427 . 7 7
4 8 . 7 6 6 5025 . 4 0 8 −1937.0716 11987 . 8 9
5 9 . 7 0 8 5872 . 0 8 9 −1077.4777 12821 . 6 6
6 10 . 5 4 0 6619 . 9 0 2 −324.9942 13564 . 8 0
7 11 . 1 7 2 7187 . 9 5 1 242 . 3 7 3 7 14133 . 5 3
8 12 . 2 0 9 8120 . 0 2 0 1165 . 4 1 5 3 15074 . 6 3
9 13 . 6 2 0 9388 . 2 4 5 2405 . 6 4 7 0 16370 . 8 4
10 14 . 7 0 3 10361 . 6 6 0 3345 . 4 1 3 9 17377 . 9 1
11 15 . 9 7 0 11500 . 4 5 6 4431 . 6 5 8 7 18569 . 2 5

Steps across 10 values of education, showing fitted (predicted) values and
lower and upper 95% PI
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Prediction CI

The Hour Glass Shaped Confidence Interval
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ŷ − 1.96  σi



Descriptive 41 / 79

Prediction CI

Prediction Interval also Hour-Glass Shaped, but Curvature
Gradual
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Prediction CI

Compare PI and CI
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confidence interval is tighter!
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Prediction CI

Too Many Intervals Floating About?

I am always surprised that students don’t see a difference between
these confidence intervals.

The CI around β̂1 says we believe the true β1 lies in here:
[β̂1 − something , β̂1 + something ]

We use β̂0 and β̂1 and the predicted value ŷi . The value
E [yi |xi ] = β0 + β1xi is the “true” expected value of yi , what would
happen if there were no random error. E [yi |xi ] is likely in
[ŷi − something else, ŷi + something else]. The something else
includes our uncertainty about β̂0 and β̂1.

The prediction interval is a statement that, for a particular xi , the
observed yiwould be in:
[ŷi − something bigger , ŷi + something bigger ]. That’s bigger
because it includes uncertainty about β̂0 , β̂1 and σ̂e .
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Prediction CI

Canadian Prestige: plotSlopes illustrates predictOMatic

Receive a fitted regression,
plot one predictor and the
desired interval

p l o t S l o p e s ( incedmod1 , p l o t x =
”e d u c a t i o n ” , i n t e r v a l = ”
c o n f i d e n c e ”)

Argument “plotx”: name of
predictor on x axis

Run example(plotSlopes) to
get the big idea
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0.95 confidence interval
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Prediction CI

Prediction Intervals are Wider

Receive a fitted regression,
plot one predictor and the
desired interval

p l o t S l o p e s ( incedmod1 , p l o t x =
”e d u c a t i o n ” , i n t e r v a l = ”
p r e d i c t i o n ” , c o l = ”r e d ”)

Argument “plotx”: name of
predictor on x axis

Run example(plotSlopes) to
get the big idea
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Regression analysis

Predicted values
0.95 prediction interval
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Re-scale variables

Outline
1 β̂ Uncertainty

Visualize Uncertainty

2 Sampling Distribution β̂

3 t-test Hypotheses about βj

4 Confidence Interval of β̂j

5 Afterthought: Simulated Distribution of R2

6 Prediction CI

7 Re-scale variables
Multiply xi to Re-Scale It
Subtract from xi to Make Intercept Easier to Interpret
Standardize Variables

8 Appendix 1. Variance of β̂

9 Appendix 2: Proofs of CI and PI

10 Practice Problems
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Re-scale variables

Here are the main points

Re-scaling predictors has predictable effects on the intercept and slope.

Multiply xi by a factor k implies

new β̂1 will be 1/k times old β̂1

new std .err(β̂1) will be 1/k times old std .err .(β̂1)

t̂ ratio β̂1

std.err.(β̂1)
is thus UNCHANGED.

Add k to xi ,

new β̂1 exactly same as old β̂1. Same standard error, same t̂
new intercept estimate β̂0 and its standard error will be changed
t statistic will be changed for β̂0.
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Re-scale variables

Multiply xi to Re-Scale It

Your Data is in Pesos?

Problem. Income is a predictor, but it is coded in a small
denomination

Example: Chile data on status quo support

M1
Estimate
(S.E.)

(Intercept) -0.042
(0.026)

income 0.000*
(0.000)

N 2591
RMSE 1.001
R2 0.002

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001
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Re-scale variables

Multiply xi to Re-Scale It

Its Not Really Zero

It’s 0.000000098

C a l l :
lm ( f o r m u l a = s t a t u s q u o ∼ income , data = C h i l e )

R e s i d u a l s :
Min 1Q Median 3Q Max

−1.71792 −1.00329 −0.06181 0 .97407 1 .74119

C o e f f i c i e n t s :
E s t i m a t e S t d . E r r o r t v a l u e Pr (>| t | )

( I n t e r c e p t ) −4.235e−02 2 .588e−02 −1.636 0 . 1 0 1 9
income 9 .809e−07 4 .971e−07 1 . 9 7 3 0 . 0 4 8 6 *

−−−
S i g n i f . codes : 0 ' *** ' 0 . 0 0 1 ' ** ' 0 . 0 1 ' * ' 0 . 0 5 ' . ' 0 . 1 ' ' 1

R e s i d u a l s t a n d a r d e r r o r : 1 . 0 0 1 on 2589 d e g r e e s o f f reedom
(109 o b s e r v a t i o n s d e l e t e d due to m i s s i n g n e s s )

M u l t i p l e R2 : 0 .001502 , A d j u s t e d R2 : 0 .001116
F − s t a t i s t i c : 3 . 8 9 4 on 1 and 2589 DF, p−value : 0 .04858
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Re-scale variables

Multiply xi to Re-Scale It

Your Data is in 1000000’s of Pesos

Solution. Divide Income by
1,000,000

M1
Estimate
(S.E.)

(Intercept) -0.042
(0.026)

income2 0.981*
(0.497)

N 2591
RMSE 1.001
R2 0.002

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

Looks as if we had taken original β̂
and std .err .(β̂) and chopped off 7
0’s at the beginning of the fraction.

Same

t-ratio
R2

intercept
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Re-scale variables

Multiply xi to Re-Scale It

Here’s the Full Printout, Just For the Record

C a l l :
lm ( f o r m u l a = s t a t u s q u o ∼ income2 , data = C h i l e )

R e s i d u a l s :
Min 1Q Median 3Q Max

−1.71792 −1.00329 −0.06181 0 .97407 1 .74119

C o e f f i c i e n t s :
E s t i m a t e S t d . E r r o r t v a l u e Pr (>| t | )

( I n t e r c e p t ) −0.04235 0 .02588 −1.636 0 . 1 0 1 9
income2 0 .98091 0 .49712 1 . 9 7 3 0 . 0 4 8 6 *

−−−
S i g n i f . codes : 0 ' *** ' 0 . 0 0 1 ' ** ' 0 . 0 1 ' * ' 0 . 0 5 ' . ' 0 . 1 ' ' 1

R e s i d u a l s t a n d a r d e r r o r : 1 . 0 0 1 on 2589 d e g r e e s o f f reedom
(109 o b s e r v a t i o n s d e l e t e d due to m i s s i n g n e s s )

M u l t i p l e R2 : 0 .001502 , A d j u s t e d R2 : 0 .001116
F − s t a t i s t i c : 3 . 8 9 4 on 1 and 2589 DF, p−value : 0 .04858
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Re-scale variables

Subtract from xi to Make Intercept Easier to Interpret

Problem: Estimated Intercept Seems Meaningless

The Y axis is placed at xi = 0, but
there are no observations near there

Your x data puts the “data cloud”
out in the “middle of nowhere”

Example: Predict income from
education. Nobody has education
equal to 0.

Seems silly to interpret the
intercept in this case.

You’d rather discuss the lowest
observed education level.
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Re-scale variables

Subtract from xi to Make Intercept Easier to Interpret

Solution: Push the y axis to the Edge of the Data Cloud

Subtract 8 or 10 (or whatever you
like) from x

The “y axis” will “move” 8 or 10 (or
whatever) to the right.

Subtract smallest value of x , then
you have the “lowest educated
person” as a baseline
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Education = Education - 7
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Re-scale variables

Subtract from xi to Make Intercept Easier to Interpret

Mean-Center xi : Then the y axis is at the mean of xi .

Rescale xi=xi − x̄ , where x̄ is the
sample mean of x

Pushes “y axis” into middle of data.

Benefit of being in the middle!
Remember the “hourglass” shape of
the CI?

−4 −2 0 2 4 6 8

20
00

25
00

30
00

35
00

40
00

mean centered education

in
co

m
e

“mean centered education” =
Education - mean(education)
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Re-scale variables

Subtract from xi to Make Intercept Easier to Interpret

Rescaling By Subtraction (or Addition)...

leaves the slope estimate EXACTLY the same (1 unit increase in xi
causes a β̂1 change in yi )

changes the intercept estimate

Changes the t-ratio

M1
Estimate
(S.E.)

(Intercept) 951.121***
(143.784)

oldx 126.882***
( 9.866)

N 100
RMSE 282.609
R2 0.628

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

M1
Estimate
(S.E.)

(Intercept) 2764.258***
(28.261)

x 126.882***
( 9.866)

N 100
RMSE 282.609
R2 0.628

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001
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Re-scale variables

Standardize Variables

Rescale by Standardizing

Recall, to Standardize means subtract sample mean and divide by
sample standard deviation

x st
i =

xi − x̄

̂Std .Dev .[x ]
y st
i =

yi − ȳ

̂Std .Dev .[y ]
(6)

If we knew the “true” standard deviations, we could call these “Z
scores”, Zxi or Zyi .

But we don’t know true standard deviations, so these are just
“standardized variables”.

For standardized data, ALWAYS,

mean equals 0: Ê [x st ] = 0

variance=standard deviation=1: V̂ar [x st ] = 1
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Re-scale variables

Standardize Variables

Note How this Changes Parameter Estimates

Recall the OLS estimator for the slope is

β̂OLS
1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
(7)

Insert the standardized variables x st
i and y st

i in place of xi and yi ,
and what do you get?

Lets call this “standardized regression coefficient,” β̂st . Note how the
math simplifies,

β̂st
1 =

∑
x st
i · y st

i (8)

And the intercept “disappears”, it becomes 0, denominator becomes
1.
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Re-scale variables

Standardize Variables

The Standardized Regression Line

The predicted value is ŷ st
i = β̂st

1 x st
i

The “units of measurement” become
standard deviation units

Dotted lines mark “one standard
deviation” units

M1
Estimate (S.E.)

1 0.455*** (0.089)
N 100
RMSE 0.890
R2 0.207

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

−3 −2 −1 0 1 2 3

−
20
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10
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“An increase in x of one of its standard
deviations causes a β̂1 standard
deviation increase in y”
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Re-scale variables

Standardize Variables

Interesting Tidbits

If there is just one independent variable, the R2 reported with
regression equals the r squared.

If both the indep. and dependent variables are standardized, the
slope coefficient of the fitted model equals the Pearson r .

In rockchalk package, there are functions standardize() and
meanCenter() that can make this more convenient.
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Appendix 1. Variance of β̂

Outline
1 β̂ Uncertainty

Visualize Uncertainty

2 Sampling Distribution β̂

3 t-test Hypotheses about βj

4 Confidence Interval of β̂j

5 Afterthought: Simulated Distribution of R2

6 Prediction CI

7 Re-scale variables
Multiply xi to Re-Scale It
Subtract from xi to Make Intercept Easier to Interpret
Standardize Variables

8 Appendix 1. Variance of β̂

9 Appendix 2: Proofs of CI and PI

10 Practice Problems
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Appendix 1. Variance of β̂

Fundamentals about Variance.

Recall the rules of working with Variance. Suppose k and m are
constants and xi and yi are variables.

1 V (k · xi ) = k2V (xi )

2 V (k · xi + m · yi ) = k2V (xi ) + m2V (yi ) + 2 · k ·m · Cov(xi , yi )

V is variance
Cov is covariance
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Appendix 1. Variance of β̂

Derive Var(b̂)

Make our lives simpler by beginning with the OLS estimator for
“data in deviations” form:

β̂1 =

∑
xiyi∑
x2
i

(9)

That means we have pre-scaled xi = xiobserved − x̄ and
yi = yiobserved − ȳ . That leaves β̂1 and the Var [β̂1] unchanged, but
math is easier.

Start by trying to figure out the “true variance” of β̂1. Apply the
Var() operator to both sides of (9)

Var(β̂1) = Var

(∑
xiyi∑
x2
i

)
(10)
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Appendix 1. Variance of β̂

Derive Var(b̂) ...

The values of xi are not thought of as random variables. Instead,
they are variables that are “fixed” attributes of the observations. (If
you want xi to be a random variable, you can do that, but the math
is slightly different).

With fixed xi , the sum of x2
i ,
∑

x2
i , is a constant, “just some

number.”
Applying Variance rule 1, we take 1/

∑
x2
i outside the parentheses in

10.

Var(β̂1) =

(
1∑
x2
i

)2

Var
(∑

xiyi
)

(11)

Replace yi by β1xi + ei (recall β0=0 with deviations form data)

Var(β̂1) =

(
1∑
x2
i

)2

Var
(
β1

∑
x2
i +

∑
xiei
)

(12)
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Appendix 1. Variance of β̂

Derive Var(b̂) ...
Apply the Variance rule 2:

Var(β̂) =

(
1∑
x2
i

)2 (
Var

(
β1

∑
x2
i

)
+ Var

(∑
xiei
)

(13)

+2Cov
(
β1 ·

∑
x2
i ,
∑

xiei
))

Expression (13) is our focal point. We want to simplify that.

Use a sneaky trick to make Var(β1

∑
x2
i ) go away. Obviously, that is

equal to:

β2
1Var(

∑
x2
i ).

Now, here is the trick. Observe:

Var(
∑

x2
i ) = 0.

How? Recall, Var() refers to variance across experiments. Since we
are thinking of xi as “fixed”, then across experiments there is no
variation in the sum of squared x’s. That sum of squared x’s is a
constant. So its variance is 0.
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Appendix 1. Variance of β̂

Derive Var(b̂) ...
Make 2Cov

(
β1 ·
∑

x2
i ,
∑

xiei
)

disappear. If k is any constant, and
x is a variable, then Cov(k, x) = 0. Covariance between a constant
and a variable equals 0.

Thus (13) reduces to:

Var(β̂1) =

(
1∑
x2
i

)2

Var
(∑

xiei
)

(14)

Be verbose about it. There’s a constant times the variance of a sum:

Var(β̂1) =

(
1∑
x2
i

)2

Var (x1e1 + x2e2 + x3e3 + ...xnen) (15)

Now apply rule #2 about variance. After a little thought, one must
realize that Cov(xiei , xjej) = 0 because all the error terms are
’stochastically independent’ of each other and the x’s are fixed. (If
you don’t assume the x’s are fixed, you have to assume instead that
the x’s are uncorrelated with the e’s).
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Appendix 1. Variance of β̂

Derive Var(b̂) ...

After applying rule #2 and throwing away all those Covariances
(which are 0), we find:

Var(β̂1) =

(
1∑
x2
i

)2 (
x2

1 Var(e1) + x2
2 Var(e2) + ...+ x2

nVar(en)
)

(16)
Since we assumed above that Var(ei ) = σ2, then this becomes:

Var(β̂) =

(
1∑
x2
i

)2 (
x2

1σ
2 + x2

2σ
2 + ...+ x2

nσ
2
)

(17)

Var(β̂) =

(
1∑
x2
i

)2 (∑
x2
i σ

2
)

(18)

Var(β̂) =

(
1∑
x2
i

)2 (∑
x2
i

)
∗ σ2 (19)
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Appendix 1. Variance of β̂

Derive Var(b̂) ...

Var(β̂) =

(
1∑
x2
i

)
∗ σ2 (20)

Whew. As Batman says, “my work is done.”
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Appendix 2: Proofs of CI and PI
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Appendix 2: Proofs of CI and PI

Show My Work: Derive Confidence Interval
We want to fill in “something” in this expression:

Pr [ŷ0 − something ≤ E [yo |xo ] ≤ ŷ0 + something ] = 0.95 (21)

“Something” depends on the sampling distribution of ŷ0 − E [y0|x0].

Var(ŷ0 − E [y0|x0]) = Var [β̂o + β̂1x0 − E [y0|x0]) (22)

= Var [β̂0] + x2
0 Var [β̂1] + 2x0Cov(β̂0, β̂1)

Put in the estimated variances and covariances, and rearrange, and
we end up with

Var(ŷ0 − E [y0|x0]) = σ̂2
CI = σ2

e

[
1

N
+

(x0 − x̄)2∑
(xi − x̄)2

]
(23)

Replace the unknown σ2
e with the estimated MSE

The square root of that is the “standard error” SE that can be used
to create the CI:

ŷ0 ± tα/2,df × σ̂CI (24)
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Appendix 2: Proofs of CI and PI

Show My Work: Derive the Prediction Interval

Go back to the basics of Confidence Intervals. We want to fill in
“something”:

Pr [ŷ0 − something ≤ yo ≤ ŷ0 + something ] = 0.95 (25)

yo is the score that “will be observed” in a case.
ŷo is the predicted value for that case (point on regression line)

“Something” ends up being a standard error for many types of
estimators (including regression coefficients), so we need the
sampling distribution of ŷ0 − y .

Var [ŷ0 − y0] = Var [β̂o + β̂1x0 − y0] (26)

= Var [β̂0] + x2
0 Var [β̂1] + 2x0Cov(β̂0, β̂1) + Var [ei ]

Put in the estimated variances and covariances, and rearrange, and
we end up with
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Appendix 2: Proofs of CI and PI

Show My Work: Derive the Prediction Interval ...

Var(ŷ0 − y0) = σ2
e

[
1 +

1

N
+

(x0 − x̄)2∑
(xi − x̄)2

]
(27)

Replace the unknown σ2
e with the estimated MSE

The square root of that is the “standard error” SE .
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Practice Problems

Outline
1 β̂ Uncertainty

Visualize Uncertainty

2 Sampling Distribution β̂

3 t-test Hypotheses about βj

4 Confidence Interval of β̂j

5 Afterthought: Simulated Distribution of R2

6 Prediction CI

7 Re-scale variables
Multiply xi to Re-Scale It
Subtract from xi to Make Intercept Easier to Interpret
Standardize Variables

8 Appendix 1. Variance of β̂

9 Appendix 2: Proofs of CI and PI
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Practice Problems

Problems

1 Run any regression and print out a summary of the estimates. Circle and
label the following elements in the output:

1 point estimate of the intercept
2 point estimate of the slope
3 estimate of the standard deviation of the estimated intercept
4 estimate of the standard deviation of the estimated slope
5 estimate of the standard deviation of the error term
6 estimate of the coefficient of determination

If you can’t find any data to experiment with, I suggest one of these
(in R’s base distribution):

l i b r a r y ( d a t a s e t s )
l i b r a r y ( h e l p=d a t a s e t s )
? Orange
m1 <− lm ( c i r c u m f e r e n c e ∼ age , data = Orange )
summary (m1)
? c a r s
m2 <− lm ( d i s t ∼ speed , data=c a r s )
summary (m2)
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Practice Problems

Problems ...

2 Write down the formula for the slope estimate, b̂1. Suppose your
assignment is to make sure that value is as large as possible.

1 Would you rather have the variable xi scattered far-and-wide across
the horizontal axis?

2 If you could get all of your xi observations at a single value, wouldn’t
that help you pinpoint the predicted value of yi , and hence make for
a better slope estimate?

3 Would you rather that the true variance of the error is really small, or
really big?

3 Did you ever want to make up your own data? Here’s the chance. I want
you to see the effect of changes in the standard deviation of the error
term. Run this:

s t d e <− 1
dat <− d a t a . f r a m e ( x=r p o i s ( 500 , lambda =200) )
dat $ y <− 3 + 0 . 0 8 * dat $ x + s t d e * rnorm ( 5 0 0 )
m1 <− lm ( y ∼ x , data=dat ) ; summary (m1)
p l o t ( y ∼ x , data=dat ) ; a b l i n e (m1)
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Practice Problems

Problems ...

We want to see what happens as stde is made larger, so re-set that to 2,
and create y2 from it, and run again:

s t d e <− 2
dat $ y2 <− 3 + 0 . 0 8 * dat $ x + s t d e * rnorm ( 5 0 0 )
m2 <− lm ( y2 ∼ x , data=dat ) ; summary (m2)
p l o t ( y2 ∼ x , data=dat ) ; a b l i n e (m2)

Hopefully 2 examples are enough to give you the idea. Adjust stde again,
create y3, run m3, and compare.

Here are the questions:

1 What changes in the regression estimates result from tuning up stde?

2 What parameter estimate in the output is supposed to represent the
variable “stde”?

3 How well does the OLS procedure do at estimating stde?



Descriptive 76 / 79

Practice Problems

Problems ...
4 Here’s a scatterplot that I found. When I fit the regression line, I can’t

understand the estimates. The numbers seem to say there is no
relationship, but it is plain to the eye that there is! How would you explain
it? I think you are more likely to get full credit if you sketch the OLS
fitted line on the scatter.

20 30 40

36
0

40
0

44
0

x

y

M1
Estimate
(S.E.)

(Intercept) 455.787***
(7.333)

x -0.741**
(0.235)

N 200
RMSE 17.686
R2 0.048

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001
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Practice Problems

Problems ...

5 Here is a fitted OLS regression model with standard errors in parentheses

âutismi = 8.0 + 6.3 · ironi (28)

(1.0) (2.1) (29)

The RMSE (or “sigma” or “residual standard error” is 10.0), the R2 = 0.32,
and the sample size is 1000. The autismi score represents a child’s
placement on the 100 point autism spectrum disorder scale and ironi is
the number of iron molecules per billion in the child’s blood. If the
autismi score is greater than 20, the child is deemed to be in the
“moderate autism” range, and if it is greater than 50, the child is deemed
to be in the “severe autism” range. The ironi variable ranges from 1 to 6
in this sample (so the lowest observed score represents 1 part per billion).

1 What do the results allow us to conclude about the impact of
exposure to iron on the rate of autism? I mean “interpret the slope
and intercept.”

2 Conduct a “null hypothesis test” for the estimated slope. That means
go through the “four steps” outlined previously in this lecture.
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Practice Problems

Problems ...

3 Construct a “confidence interval” for the estimate of the slope and
write a brief discussion of what the results indicate to you.

4 Create a plot representing the predicted score on the autism scale for
iron exposure rates from 1 to 10.

5 What meaning does the estimated intercept have in this case?
Where does it appear in the plot you created?

6 You don’t have all of the information you need to construct the “hour
glass” shaped confidence and prediction intervals for that plot. But,
if I told you the mean of iron exposure is 3, then you can sketch the
general shape of those intervals. So draw them in and label them (its
vital to know which one is outside the other).

7 Refer to your sketch of the confidence interval. Suppose one family
lives in a house with lead paint equal to 3, while another has a score
of 6. For which family are we most confident about our estimate

âutismi ? Explain.
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Practice Problems

Problems ...

8 Suppose we measured iron value for another family at 10.0. What
would the linear model lead us to predict about their prospects for
autism (moderate or severe)? Note there are 2 problems here. One is
that the value of ironi is far from the mean. Another is that our
observations range from 0 to 6, and so in a sense 10 is “out of the
range” of our experience. .

9 Suppose you just found out that your research assistant does not
understand numbers. He uses the word “billion” when he really means
“million”. What changes will you need to make in your handling of
this data and the result?
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