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L Introduction: Key Terms

Data Set: Columns of Same Length

row number | respondent id [ income | educ | gender |

1 243223 4352.5 6 M
2 151512 6525.1 21 F
3 515131 4345.5 13 M
4 166122 3421.4 12 F

m Variables are “columns” in a data frame

m Rows are called “observations” or “cases” or “respondents” or
“subjects”

each row
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L Introduction: Key Terms

Design Matrix

m Regression is, inherently, a procedure for estimating effects of
numeric predictors

m The data frame (in R, the “model frame") has to be converted from
data as we see it into a thing that has only numeric columns.

m Categorical predictors are converted into “indicator” variables
(dummy variables, usually coded {0,1} or {-1,1}

| row number | respondent id | income | educ | gender |

1 243223 4352.5 6 1
2 151512 6525.1 21 0
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L Introduction: Key Terms

Scatterplot: One Input, One Output
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The “Prestige” dataset in the R package “car” by John Fox
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Dependent, Independent

m DV: Dependent Variable: The thing we are predicting

m The “output” variable, generally we call it y;
m In this case “income;".

"o

m Synonyms: “endogenous variable” “outcome variable”

m IV: Independent Variable

m The “input” variable, generally call it x;,
m In this case “education;” .

"o "o

m Synonyms: “exogenous variable” “predictor” “covariate”

m Regression allows several input variables, but for now we consider
only one.
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L Introduction: Key Terms

Line of Best Fit

5 m This is the Straight Line that "best
fits” the data

20000
|

° m Best fit = minimizes a criterion,
here the “sum of squared errors”

Income

m “Predicted value" synonym for
“fitted value” or “conditional
expected value”

5000 10000

m For any value of education, we
predict an outcome on the line

0
|

m Later, we will use diagnostics to
test suitability of this model

Education
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L Introduction: Key Terms

Typical Computer Printout Summarizing a Fitted
Regression

Call:
Im(formula =

Residuals:
Min
—5493.2

1Q Median
—2433.8 —41.9

Coefficients:
Estimate Std.
—2853.6
898.8

(Intercept)
education

TR

Signif. codes: 0
Residual standard
Multiple R?:
F—statistic:

error:

50.06

income ~ education ,

0.001 'sx!

0.3336, Adjusted R?:
on 1 and 100 DF,

data = Prestige)

3Q Max
1491.5 17713.1

Error t value Pr(>|t])
1407.0 —2.028 0.0452 =*
127 .0 7.075 2.08e—10 *xx*
0.01 '+' 0.05 '.' 0.1
3483 on 100 degrees of freedom
0.3269

p—value: 2.079e—10

1
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L Introduction: Key Terms

Make a Professionally Acceptable Regression Table

M1
Estimate (S.E)

(Intercept) -2853.586*  (1407.039)
education ~ 898.813***  ( 127.035)

N 102
RMSE 3483.378
R? 0.334

xp < 0.05%¢ p < 0.0Lxekp < 0.001
m When we are finished, you will understand all of these details.



Regression 1
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In R, after "Im", run follow-up functions

There are many (at least 30) “methods”

that can be used to explore that fitted
model.

incedmodl <— Im(income~education ,
data=Prestige)

summary (incedmodl)

anova(incedmodl, test="F")

vecov (incedmodl)

confint (incedmodl)

plot (incedmodl)

termplot (incedmodl ,

se=T, partial=T)

Im: creates the regression model
“incedmod1”

summary: main regression table

anova: asks for sum of squares
information

vcov: asks for the
variance/covariance matrix of S's

confint: confidence intervals for
intercept and slope

plot: creates diagnostic displays
termplot: plots the predictive line
many methods in the “car” package

rockchalk plotting and diagnostic
routines
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People Always Ask Me. ..
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L people Always Ask Me. . .

1. As we say in Francais, Oui!

D
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—— OLS Predicted valug

An Output Variable

I I I I I
0 10 20 30 40

One Mysterious Predictor

2 numeric variables, passes the “inter-occular trauma test”
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2. Can | Run Regression on This?
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L people Always Ask Me. . .

2. Sure, Why Not?
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One Mysterious Predictor

The “straight line" prediction is not wrong. But not precise, either.
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3. Can | Run Regression on This?
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3. En Espanol, Si!
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L people Always Ask Me. . .

4. OK, | Don't Mind a Bit

40

—— OLS Predicted valu

20 30
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An Output Variable
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| don't know of any reason why you expect the predictor to be “evenly
distributed” or “normal” or whatnot
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5. Can | Run Regression on This?

An Output Variable

20 30 40 50 60

One Mysterious Predictor
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L people Always Ask Me. . .

5. No. Are You Joking?

—— OLS Predicted valu

An Output Variable
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One Mysterious Predictor

Straight line does not suit this data
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L people Always Ask Me. . .

What's the point so far?

m We don't assume much about the predictor

m We do assume a LOT about the outcome variable
m it is supposed to be scattered “equally likely” above and below the line
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6. Can | Run Regression on This?
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6. Maybe, But You'd Really Have to Stretch
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One Categorical Predictor

Its tough for me to see a “regression line" in there, but some people do.
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7. Can | Run Regression on This?
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7. Probably, if you recode the predictor as {0,1}
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One Categorical Predictor

The appropriate graph has “steps”, rather than a line. Predictions for
discrete points.
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8. Can | Run Regression on This?
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L people Always Ask Me. . .

8. As Yoda says, “Mistaken, This Appears”

—— OLS Predicted valu

An Output Variable

I I
R=0 M=1 D=2 A=3 F=4

One Mysterious Predictor
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L The Underlying Theory

Assumption 1: Linear Relationship

m For each “case" /, the following is true:

¥i = Bo+ Pixi + & (1)

m The parameters are 3y, 51, and o,
m [ is the “constant” or "y intercept”.
m 31 is the slope of the line.
m 0. is the standard deviation of a “random effect,” e;, that is uniquely
drawn for each observation.

m The subscript i means x; and y; are individual specific. Note no i on
B's ofr o

m In the past, my notes used the letter b for coefficients, not 5, mostly
because b was easier to type in MS Word. Now | use IATEX, | don't
have that problem anymore. But | have not updated all of my notes
about everything.
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L The Underlying Theory

Random and Deterministic Parts

m The deterministic part
is the “true line”
Bo + Bixi

m The stochastic
(random part)
“throws" observed
scores up and down

0_home_pauljohn_SVN_SVN-guides_stat_R
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L The Underlying Theory

Separate Deterministic and Stochastic Parts

m Suppose By = 3 and 31 = 1.3. S -

m The “true relationship™ ©

vi=3+13-xi+ 6 = j:

m The deterministic part: ~ A
3+13-x o ’ j T !

m The stochastic part is €.
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L The Underlying Theory

Refresher: Linear Equation

m3+13-x S~
m The slope: 1.3 is the “rise ® sope:
” over one
over run o up13
m For each 1 unit increase in >
<
X;, the outcome increases ... the intercept
by 1.3. N
m The intercept: 3 ° ‘ ‘ ‘ ‘
0 2 4 6 8

m When x; = 0, the
outcome will be 3.
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L The Underlying Theory

The Fitted Line in the Income Equation

m Note the difference between the
theory and the estimate

m Theory:
income; = [y + Pieducation; + €;

20000
|

m Estimated line:

Income

income; = —2853.585+898.813-education;
(2)

5000 10000

0

m There is no “error term” in the
equation for the predicted line.
That's because we assume
E[e,-] =0.

Education
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L The Underlying Theory

The Fitted Line in the Income Equation

m A 1 unit increase in education; "is i ° o
associated with"( causes?) a 898.8
increase in income;

20000
|

m The subscript / is important. It
helps us remember the assumption
that the same relationship applies
for all cases, i € {1,..., N}

Income

5000 10000

m The regression model also
summarizes the “scatter” above and s 8 10 12 14 16
below, which is our next topic.

0

Education
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Assumption 2: A “Well Behaved Error Term”

m We don't have to say e; is Normal(0,02). But we could. Some
people do.

m Well behaved means “symmetric” and “homogeneous”, which is not
as strong as assuming Normal
m Assumption 2A: ¢ is “on average” 0: E[ej] =0
m Assumption 2B: all observations are drawn from the same

distribution with a constant variance, o2 (a.k.a "homoskedasticity)

Var[e]] = E[e]] = o2

m Violations of these assumptions lead to re-specification and
advanced model-fitting techniques (nonlinear models, weighted least
squares, random effects models)
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L The Underlying Theory

Assumption 2A: Efe]] =0

m The error term has an average value of 0:
E(e)=0 (3)

m Thus Efyj|x;] = E[Bo + B1xi + &] = o + Bixi + 0
m You can guess where this leads, right?

m If we had reasonable estimates ,BAO and Bl, the predicted value
Vi= /30 + /3’1)(,- is a reasonable estimate of the expected value, given
X;.

m In other words, it is not ridiculous to use predicted (or fitted) value
V= /30 + /3’1)(,- as an estimated value for y;
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L The Underlying Theory

Assumption 2B: Homoskedasticity

m The error term’s variance is constant, i.e, the same for all cases i

Variance[ej] = o2 (4)
m le, 02 is the same for all cases. It is not subscripted by i.
m Every case's “random effect” comes from a distribution with the same
amount of uncertainty in it.

m This assumption is vital in our understanding of uncertainty, or
variance, in the estimates.
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L The Underlying Theory

Sidenote. Explain E[e?] = o2

m The Variance of the error term equals the expected value of €?.

m Many stats book will define “homogeneous variance” as:
2 2
E[ei] = 0O¢
rather than the more obvious
Var[e]] = o2 (5)

m While disconcerting, we can show these are the SAME definitions.
Start with the definition of variance

V(e) = o2 = E(e; — Elei])’]

m Recall E(e;) =0, so
Vel = El(ei — 0)’] = E[¢7]
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L The Underlying Theory

In Maximum Likelihood Analysis, A Stronger Assumption
Would be Required

m In ML (including the generalized linear model), we would assume a
specific distribution for e;, which amounts to saying that we can
state the distribution of y; given x; and the §'s.

m We would usually say y;, depends on “linear predictor” (8o + S1x;).

m For example, given x;, y; is Normal, i.e., drawn from
N(Bo + B1xi, 02)

m Until the end of this class, we don't need to make that assumption,
but you can if you like it!

m When you get to GLM, you can assume that y; is Poisson, Gamma,
or whatever you like.
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L The Underlying Theory

Roadmap of Ahead

calculate estimates of 8y and 81 (which we will call o and ,31)
evaluate our uncertainty about the B's by calculating standard errors
of the /.

estimate the variance of e;, 62

conduct some “diagnostics” to find out if we might fit a better model.
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L Estimate B's

Outline

A Estimate 3's
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L Estimate B's

Treat By and [3; as unknowns.

m This week, we only use a “straight line” predicted value formula.
Yi=DBo+ b1 x (6)
m The observed variables x; and y; are now treated as “known values”,

m The parameter estimates BAO and Bl become variables that we adjust
to find the best prediction.
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L Estimate B's

OLS: The Sum of Squares as a Criterion

m Predicted: ¥; = 30 + le,-
[ ResAiduAaI: Difference between observed y; and predAicteAd Vi
m S5(Po, 51) :Sum of Squared Residuals depends on Sy, f;

N
S(Bo, Br) = Z(}/i - 9i)? ()
t:l\;l A )
= Y (i — (Bo+ )

i=1
N

= Z(YI — fo — Brxi)?
i=1

[ QLS Criterion: minimize the sum of squared residuals by adjusting
Bo and f31

m Notation alert: Often also called “sum of squared errors”, but better
to be clear: we never know “true errors”, we only know “residuals”.
So I'm trying to remember to call it sum of squared residuals.
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L Estimate B's

Estimation process is outlined in the Appendix

m The sum of squared residuals
is an objective function that
we minimize by adjusting BO
and Bl 1_home_pauljohn_SVN_SVN-guides_stat_Reg

m Because the sum of squares
is a “U” shaped function, we
can visualize the solution.
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L Estimate B's

The Solutions are the “OLS Estimators”

m We'd ordinarily use matrix algebra to solve this problem, but | don't
want to go into matrices at this point.

m Thus | write out the solution in “scalar” format, using ordinary
summations and such.

) SE L6~ Xy — )
B ©

X and y are sample means.

m Note

m numerator terms: product of x deviations and y deviations about
their means
m denominator terms: x deviations squared.

m If you have “mean centered data”, this simplifies to

A Z XiYi
S (9)
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L Estimate B's

The Solutions are the “OLS Estimators” ...

= And the intercept estimate: SO =y — fOLSk

m If you were paying attention when we studied Variance and
Covariance, you notice the formula for 5 is Cov(x,y)/Var(x).
Interesting co-incidence, there.
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L Estimate B's

Gauss Markov Theorem: OLS is B.L.U.E.

[ BOLS is an Unbiased estimator, it is “on average” correct:
E[5Ls] = 5

m 395 is Consistent, as N — oo, 3°°. — 3. (the probability that the
gap |39 — | is bigger than any small number shrinks toward 0 as
N — o0).

[ BOLS is Efficient: No linear unbiased estimating formulae has lower

variance than 3955,
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o2: Mean Square Error
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—52: Mean Square Error

Define residual, as opposed to “error”

m ¢ is an “error term”, it is unmeasured, unknown.
m Its “true mean” (expected value) is assumed to be 0
B Its “true variance” is o2, also unknown.

m & is the “residual”’, y; — y;. It serves as an estimate of the error term.
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MSE=Mean Square Error

m Predict §; from the best fitting model

m The commonly-called MSE (Mean Squared Error) is the mean of
squared residuals.

~\2 ~2
Yi — Vi €i
MSE:Z(NJ) :%72 (10)

m MSE = unbiased estimator of o2 (because of N — 2 in
denominator). Unbiased means
E[MSE] = o2 (11)

e

m Other notation for MSE: ;E,\EE], s2
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RMSE=Root Mean Squared Error

m RMSE (root MSE) is the SAS name for the square root of the MSE.

m §. : The square root of MSE serves as an estimate of the standard
deviation of the error term.

m Other names for root MSE:
m standard error of the estimate (in SPSS)
m Residual standard error (in R)
m std.err.(e).
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m Correlations
m Understand r from a Regression Point of View
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L Correlation and R2
L The r2

R2. The Coefficient of Determination

m R? is the “coefficient of determination”
m R? has a minimum of 0 and a maximum of 1.

m R? mostly about “how big" the error variance is compared to the
variance of x and y.
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L The r2

The “Proportion of Variance Explained”

Some people write that the R? represents the proportion of variance
in y explained by x. Where do they get that?

The Total Sum of Squares: TSS = Y (y; — y)?
The Error Sum of Squares: ESS = > (y; — i)?

Regression Sum of Squares
m RSS=TSS — ESS
| | RSS Z y, I
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L The r2

“Proportion of Variance"(cont)

m Notice
TSS = RSS + ESS

m Divide all terms by TSS and we see that the two “proportions” of
variance add up to one

| _ Rss  Ess
~ TS5 T TSs

m That's

1 = part accounted for by regression + part accounted for by error
(12)
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L The r2

“Proportion of Variance"(cont)

m Let the “coefficient of determination” be

> RSS
7SS
m which is the same as
[
| Ess
TSS

m Put that in words: R? is the proportion of variance left over after we
take out the part contributed by random error term.

m Calculate the 'anova’ table for a regression model, you'll see for
yourself.
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L The r2

How Important is R>

m Experienced statisticians may have rules of thumb about R?. For
example, R? should be bigger than 0.2 before a model is worth
reporting.

m For various reasons (next slides), | think that'’s silly.

m Sometimes practitioners think a low R? is a general warning sign
that “something is wrong."

m That's also mistaken: it might be there's not powerful predictive
relationship to be found. We shouldn't torture the data.

m R? is partly dependent on the error term’s variance, and we will see
later that big variance -> wide confidence intervals. | often do wish
error variance were smaller.
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L The r2

Don't Over-Emphasize R?

m A slope is a slope is a slope, no matter how big the error variance
might be. The same b's underlie both, but R2 = 0.70 on left and
0.15 on right:

300
I

s S
o o
a 8
° 8
o
© <
---- True Relationshig ° ---- True Relationshig
—— Sample Estimate| o —— Sample Estimate|
T T T T T T T T T T
30 40 50 60 70 30 40 50 60 70

Indep. Var. Indep. Var.
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R2continued

m The R? reflects 3 factors that melt together

m The range of x
m The size of the slope coefficient
m The standard deviation of the error term.

Any of those 3 culprits can make the R? shrink.

Does not necessarily imply that some better regression model
exists—it may just be that the process under study has inherent
uncertainty.

m Careful: Wrong to compare R? across models with different data.
(Both Var[x;] and Var[e;] can change across data sets.)
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Correlations

A Scatterplot: How Strongly Are These Variables Related?

o
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Correlations

Covariance: Consider the Quadrants

70

m Covariance: For each point,
calculate (x; — X)(y; — ¥)

m Covariance: add those up, divide by
N.

m blue points have positive products
m red points have negative products
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Correlations

How strong is this relationship?

Covlx,yl= 13.17 °
r=0.66
N
-~
2 - o
o o
o o
o o
o
> o — o
n
4
~ O e ]
" o o (e}
B> o
o o
© - o°
° o
< - o
o]
o]
T T T T 1
30 40 50 60 70
X =48.83
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Correlations

Is this relationship stronger?

o
&
Covl[x,y]= —69.53
r=-0.97
o
o
5
o
> o
o
S o
[ee]
g OB
e ;
D i o
o! °o0
%
o
o
o S
© -
[
o
T T T T T T T
35 40 45 50 55 60 65
X =48.63
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Correlations

Correlation=scaled covariance

m Question: How do you know if Cov[x,y] is “big" or “medium” or
“small”

m Karl Pearson’s Answer: form a correlation coefficient by scaling the
covariance
—_—
Cov[x,y]

r=—— e
Std.Dev.[x] - Std.Dev.[y]

m r € [—1,1] . That's all | know for sure about Pearson's r.

(13)
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Understand r from a Regression Point of View

If there is One Input

m The Pearson's r squared equals the R? in a one-predictor regression.

m Since we already argued that R? has a “proportion of variance
accounted for” interpretation, that means Pearson’s r squared has
same meaning.

m The ry, (and R?) balance Covariance against the variance of x and y.
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LUnderstand r from a Regression Point of View

Simulate Data For Regression

This has no “random error term” (¢; = 0)

; comear
mGp=3 . 8 P &’ )
m 5 =0.25 2 ) fgy""
m x ~ N(50,100), i = {1,2,...100}  ° >
my; = fBo+ Bixi g, +
w o ®» o o @

x: the IV

There's no “error term”
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Understand r from a Regression Point of View

Add Some Error to y; to adjust o (and hence R?)

m Same 5p=3, §; = 0.25, x; 8 5
my = o+ bixi+ e o o ° °
m e~ N(O,52) Z g
M1 i
Estimate (S.E) ? B
(Intercept) 1.743 (2.524) N o it
X 0269*** (0047) 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 90
N 100 x: the IV
RMSE 5.375 Std. Deviation of error term is 5
R2 0.248

*p < 0.05%k p < 0.01xexp < 0.001
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Understand r from a Regression Point of View

Tune Up Std.Dev.(e) -> Shrink the Correlation

m Same 5y =3, f; = 0.25, x;
my =0+ Pixi+e
m e ~ N(0,10%)

M1

Estimate (S.E)
(Intercept) 0.487 (5.047)
X 0.289%*  (0.095)
N 100
RMSE 10.749
R? 0.087

*p < 0.05%k p < 0.01xexp < 0.001
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< ° 0® 0 @po g © OOO
> g ° o %o%% 00 S
° k) O%’ o %O o
o (o)
- o
° 0® oo @
o o Cov[x,y]=37.51
T r=0.29
o
T T T T T T
30 40 50 60 70 80
x: the IV

Std. Deviation of error term is 10
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L Correlation and R2

Understand r from a Regression Point of View

A Massive Std.Dev.(e) Makes R? Even Smaller

m Same [, (1, x
By = G+ Pix + e
m e~ N(0,502)

M1

Estimate (S.E.)
(Intercept) -9.567 (25.237)
X 0.444 ( 0.474)
N 100
RMSE 53.745
R? 0.009

*p < 0.05%k p < 0.01xexp < 0.001

Q
o
Q
o -
- Q
Q o o °© ©
S <]
= ° °
o o
3 B8q° o 2% o8° & o
o ® o o oo °
< o © SO o ° °©
% o o o 0RO50®, ° %
o > %; [ele} 00
B el o o &
i o & 8 o
S 4 o Cov[x,y]= 57.67
[ r=0.09
o
T T T T T T
30 40 50 60 70 80

x: the IV

Std. Deviation of error term is 50
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L Correlation and R2

Understand r from a Regression Point of View

Leave Std.Dev.(e) Large, but Raise b

m Same fo, x, and ¢; ~ N(0,50?)
m Make (3; bigger

1 1
o

y: the DV

1
o

Cov[x,y]= 284.98

M1

Estimate (S.E)
(Intercept) -9.567 (25.237)
x 2.194%%% (1 0.474)
N 100
RMSE 53.745
R? 0.179

#p < 0.05%k p < 0.01xexp < 0.001

r=0.42

-50 0 50 100 150 200 250 300
1

1
o

T T T T T T
30 40 50 60 70 80 90

x: the IV

Std. Deviation of error term is 50,

Br1=2
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L Correlation and R2

Understand r from a Regression Point of View

Make b; Even Larger

m Same [y, 1, x g | 5
myi = fo+ fixi + € g1 oy
= ¢ ~ N(0,50?) 3 g R
M1 S g 8 Sogdoe Y
Estimate (S.E) g 0"532@3
S | o © 0 Cov[x,y]= 1323.9|
(Intercept) -9.567 (25.237) “ =091
X 10194*** ( 0'474) 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 90
N 100 x: the IV
RMSE 53.745 Std. Deviation of error term is 50 and
R2 0.825

*p < 0.05%k p < 0.01xexp < 0.001

B1 =10
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Understand r from a Regression Point of View

What are you Supposed to Conclude?

m The slope and the error variance are “balancing” each other.

m If the error variance is large, we need a steep slope to compensate
and keep R? in the same vicinity.

m We can also fiddle with R? by adjusting the range of x (shown next).



Regression 1
L Correlation and R?
Understand r from a Regression Point of View

A Restricted x Range Makes r Smaller

m Chopped off the top half of the x;
observations

m Wow. The effect of x on y is the
same, ;1 = 10

m Smaller Var(x)— Smaller R?
(“design” implication)

M1

Estimate (S.E)
(Intercept) 91.217 (48.138)
x2 7.709***  (11.080)
N 56
RMSE 48.419
R? 0.485

*p < 0.05%« p < 0.01xexp < 0.001

300 400 500 600 700 800 900
1

>
a
2
£ o
= = 8 0o, o
o 8,
0000 g
| A% % K
Joo ©40 o Cov[x,y]= 281.64
r=0.7
o
30 40 50 60 70 80 90
x: the IV

Std. Deviation of error term is 50 and
1 =10
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Understand r from a Regression Point of View

Section Summary

m Correlation depends on several components, Var(x;), b1, and
Var(e;).

m The “correlation coefficient” is not a “parameter.” It is a description
or a 'weighted summary’ of the effect of parameters on the data.

m Goldberger (1991, p.177) puts it the following way: “Nothing in the
CR (Classical Regression) model requires that R? be high. Hence, a
high R? is not evidence in favor of the model, and a low R? is not
evidence against it.”

m Nevertheless, R? can be a persuasive tool because many people think
a model is “wrong” if the R? does not meet some subjective standard.
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L—Show My Work: Derivation of B and 1

Outline

Show My Work: Derivation of [y and 3
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L—Show My Work: Derivation of B and 1

SMW: Use Calculus to Minimize 5(30,31)

m Must find the minimum S,
which is shaped like a bowl

m Find combination of (3, 51)
where the function is “flat”,
at bottom of bowl

m First Order Conditions:

dS(Bo, b1)

=0 (14
YN (14)

and

95 (o, F1)

> =0 (15
o, (15)

Sketch something here:



Regression 1
L—Show My Work: Derivation of B and 1

SMW: First Order Condition for /30:

85(607ﬂ1 o N
oh 2> (vi—Bo—Bri-x)=0

=d V=Y b= Bxi=0
IZ)/,'*N'BO*@'ZX:':O (16)



Regression 1
L—Show My Work: Derivation of B and 1

SMW: First Order Condition for /31:

35(50,51 B B
aﬁl Z BO 1 XI)XI =0

:ZYi_ZBO'Xi_ZﬁAl'X?ZO (17)



Regression 1
L—Show My Work: Derivation of B and 1

SMW: Normal Equations.

Equations 16 and 17 can be re-arranged as the so-called “normal
equations”.

> yi=NpBo+ (Z X;) g

and

ZX;}/,' = <ZX1) Bo + (ZX,Q) e



SMW: Note that is a LINEAR Matrix Equation

2 Yi _ N > ﬂ:o (18)
D XiYi Soxi P P
Refer to the coefficient estimates as /3 :

N
ﬁ‘[&]



Regression 1

L—Show My Work: Derivation of B and 1

SMW: The Solution

m The “sum of squares minimizing” estimate vector is

301_5 — (XTX)_IXTy (19)
1 X1
1 X2
m Definition: X is predictor “design matrix’, X = | :
1 xy-1
1 XN
i
Y2
m And y =
YN-1

YN
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