▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Elementary Regression 1

Paul E. Johnson 1 - 2

¹Department of Political Science

²Psychology

2020

2 / 83

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Elementary OLS

- 1 Introduction: Key Terms
- 2 People Always Ask Me...
- **3** The Underlying Theory
- **4** Estimate β 's
- **5** $\widehat{\sigma_e^2}$: Mean Square Error
- 6 Correlation and R^2
 - The R²
 - Correlations
 - Understand r from a Regression Point of View
- **7** Show My Work: Derivation of $\hat{\beta}_0$ and $\hat{\beta}_1$

Outline

1 Introduction: Key Terms

- 2 People Always Ask Me...
- 3 The Underlying Theory
- 4 Estimate β 's
- **5** $\widehat{\sigma_e^2}$: Mean Square Error
- **6** Correlation and R^2
 - The R²
 - Correlations
 - Understand r from a Regression Point of View
- 7 Show My Work: Derivation of $\hat{\beta}_0$ and $\hat{\beta}_1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Data Set: Columns of Same Length

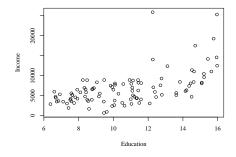
row number	respondent id	income	educ	gender
1	243223	4352.5	6	М
2	151512	6525.1	21	F
3	515131	4345.5	13	М
4	166122	3421.4	12	F
:				

- Variables are "columns" in a data frame
- Rows are called "observations" or "cases" or "respondents" or "subjects"
- Talk about row "i" if you mean to say something that applies for each row

Design Matrix

- Regression is, inherently, a procedure for estimating effects of numeric predictors
- The data frame (in R, the "model frame") has to be converted from data as we see it into a thing that has only numeric columns.
- Categorical predictors are converted into "indicator" variables (dummy variables, usually coded {0,1} or {-1,1}

row number	respondent id	income	educ	gender
1	243223	4352.5	6	1
2	151512	6525.1	21	0



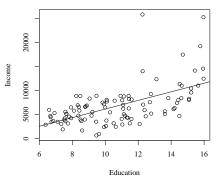
The "Prestige" dataset in the R package "car" by John Fox

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Dependent, Independent

- DV: Dependent Variable: The thing we are predicting
 - The "output" variable, generally we call it y_i
 - In this case "income_i".
 - Synonyms: "endogenous variable" "outcome variable"
- IV: Independent Variable
 - The "input" variable, generally call it x_i,
 - In this case "education_i".
 - Synonyms: "exogenous variable" "predictor" "covariate"
- Regression allows several input variables, but for now we consider only one.

Line of Best Fit



- This is the Straight Line that "best fits" the data
- Best fit = minimizes a criterion, here the "sum of squared errors"
- "Predicted value" synonym for "fitted value" or "conditional expected value"
 - For any value of *education*, we predict an outcome on the line
- Later, we will use diagnostics to test suitability of this model

Typical Computer Printout Summarizing a Fitted Regression

```
Call:
Im(formula = income \sim education, data = Prestige)
Residuals:
   Min 10 Median 30 Max
-5493.2 -2433.8 -41.9 1491.5 17713.1
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -2853.6 1407.0 -2.028 0.0452 *
                      127.0 7.075 2.08e-10 ***
education
           898 8
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3483 on 100 degrees of freedom
Multiple R^2: 0.3336, Adjusted R^2: 0.3269
F-statistic: 50.06 on 1 and 100 DF, p-value: 2.079e-10
```

Make a Professionally Acceptable Regression Table

	M1	
	Estimate	(S.E.)
(Intercept)	-2853.586*	(1407.039)
education	898.813***	(127.035)
N	102	
RMSE	3483.378	
R^2	0.334	

 $p \le 0.05 p \le 0.01 p \le 0.001 p \le 0.001$

When we are finished, you will understand all of these details.

In R, after "Im", run follow-up functions

There are many (at least 30) "methods" that can be used to explore that fitted model.

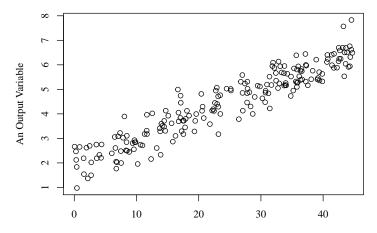
- Im: creates the regression model "incedmod1"
- summary: main regression table
- anova: asks for sum of squares information
- vcov: asks for the variance/covariance matrix of $\hat{\beta}$'s
- confint: confidence intervals for intercept and slope
- plot: creates diagnostic displays
- termplot: plots the predictive line
- many methods in the "car" package
- rockchalk plotting and diagnostic routines

Outline

- 1 Introduction: Key Terms
- 2 People Always Ask Me...
- 3 The Underlying Theory
- 4 Estimate β 's
- **5** $\widehat{\sigma_e^2}$: Mean Square Error
- 6 Correlation and R^2
 - The R²
 - Correlations
 - Understand r from a Regression Point of View
- 7 Show My Work: Derivation of $\hat{\beta}_0$ and $\hat{\beta}_1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1. Can I Run Regression on This?

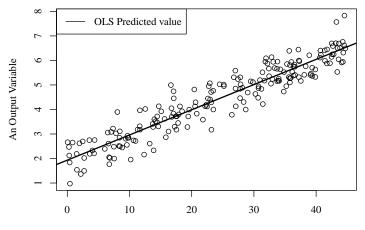


One Mysterious Predictor

(日)

э

1. As we say in Francais, Oui!



One Mysterious Predictor

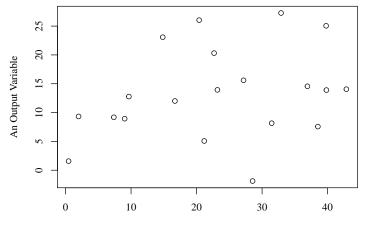
(日)

э

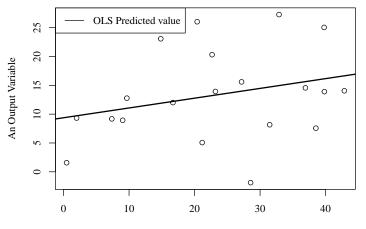
2 numeric variables, passes the "inter-occular trauma test"

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

2. Can I Run Regression on This?



One Mysterious Predictor

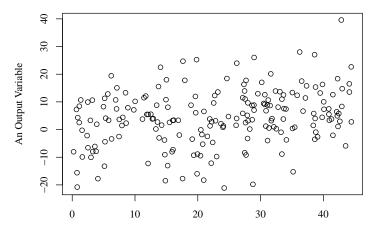


One Mysterious Predictor

The "straight line" prediction is not wrong. But not precise, either.

€ 990

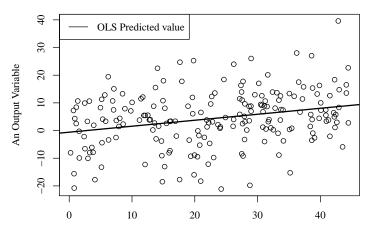
3. Can I Run Regression on This?



One Mysterious Predictor

・ ロ ト ・ 一戸 ト ・ 三 ト ・

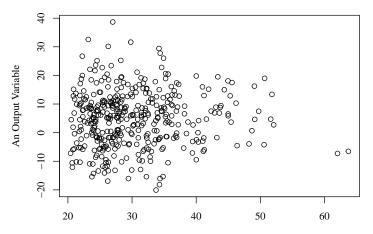
3



One Mysterious Predictor

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

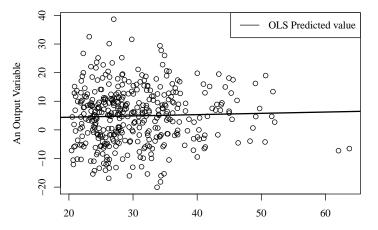
4. Can I Run Regression on This?



One Mysterious Predictor

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

4. OK, I Don't Mind a Bit

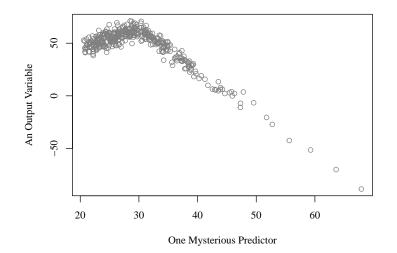


One Mysterious Predictor

I don't know of any reason why you expect the predictor to be "evenly distributed" or "normal" or whatnot

Regression 1 People Always Ask Me. .

5. Can I Run Regression on This?

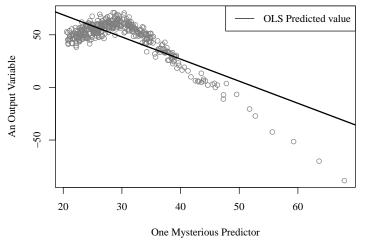


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

・ロト ・四ト ・ヨト ・ヨト

- 3

5. No. Are You Joking?



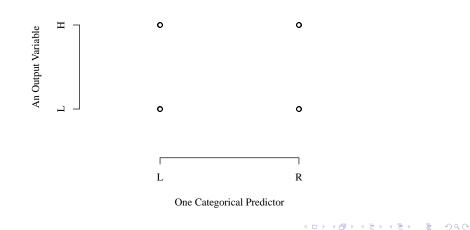
Straight line does not suit this data

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

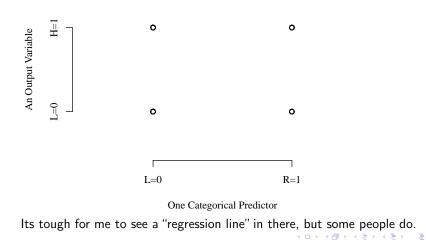
What's the point so far?

- We don't assume much about the predictor
- We do assume a LOT about the outcome variable
 - it is supposed to be scattered "equally likely" above and below the line

6. Can I Run Regression on This?

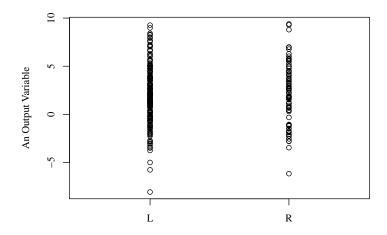


6. Maybe, But You'd Really Have to Stretch



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

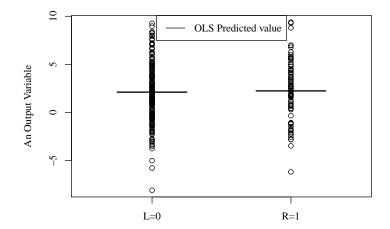
7. Can I Run Regression on This?



One Categorical Predictor

Regression 1 People Always Ask Me. . .

7. Probably, if you recode the predictor as $\{0,1\}$

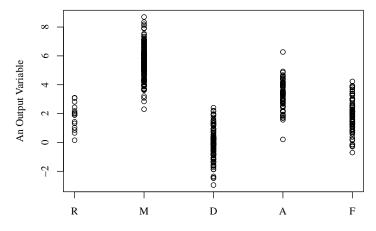


The appropriate graph has "steps", rather than a line. Predictions for discrete points.

3

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

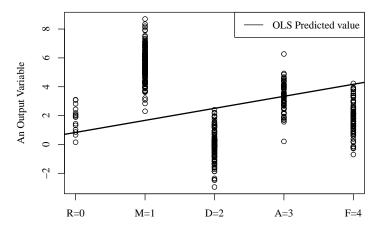
8. Can I Run Regression on This?



One Ordinal Predictor

Regression 1 People Always Ask Me. . .

8. As Yoda says, "Mistaken, This Appears"



One Mysterious Predictor

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Outline

- 1 Introduction: Key Terms
- 2 People Always Ask Me...
- 3 The Underlying Theory
- 4 Estimate β 's
- **5** $\widehat{\sigma_e^2}$: Mean Square Error
- **6** Correlation and R^2
 - The R²
 - Correlations
 - Understand r from a Regression Point of View
- 7 Show My Work: Derivation of $\hat{\beta}_0$ and $\hat{\beta}_1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assumption 1: Linear Relationship

■ For each "case" *i*, the following is true:

$$y_i = \beta_0 + \beta_1 x_i + e_i \tag{1}$$

• The parameters are β_0 , β_1 , and σ_e

- \blacksquare β_0 is the "constant" or "y intercept".
- β_1 is the slope of the line.
- σ_e is the standard deviation of a "random effect," e_i , that is uniquely drawn for each observation.
- The subscript *i* means x_i and y_i are individual specific. Note no *i* on β 's or σ_e
- In the past, my notes used the letter b for coefficients, not β, mostly because b was easier to type in MS Word. Now I use LATEX, I don't have that problem anymore. But I have not updated all of my notes about everything.

Random and Deterministic Parts

- The deterministic part is the "true line" β₀ + β₁x_i
- The stochastic (random part)
 "throws" observed scores up and down

0_home_pauljohn_SVN_SVN-guides_stat_R

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Separate Deterministic and Stochastic Parts

ž

Suppose
$$\beta_0 = 3$$
 and $\beta_1 = 1.3$.

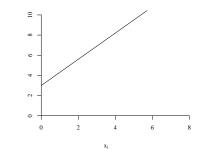
The "true relationship":

$$y_i = 3 + 1.3 \cdot x_i + e_i$$

The deterministic part:

$$3 + 1.3 \cdot x_i$$

■ The stochastic part is *e_i*.

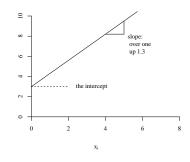


・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

3

Refresher: Linear Equation

- $3 + 1.3 \cdot x_i$
- The slope: 1.3 is the "rise over run"
 - For each 1 unit increase in [★] x_i, the outcome increases by 1.3.
- The intercept: 3
 - When x_i = 0, the outcome will be 3.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

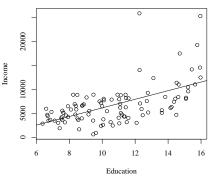
The Fitted Line in the Income Equation

(2)

- Note the difference between the theory and the estimate
- Theory: $income_i = \beta_0 + \beta_1 education_i + e_i$
- Estimated line:

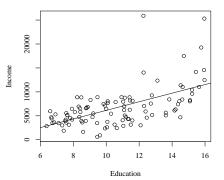
 $\widehat{\textit{income}_i} = -2853.585 + 898.813 \cdot \textit{education}_i$

 There is no "error term" in the equation for the predicted line. That's because we assume E[e_i] = 0.



The Fitted Line in the Income Equation

- A 1 unit increase in *education*; "is associated with"(causes?) a 898.8 increase in *income*;
- The subscript *i* is important. It helps us remember the assumption that the same relationship applies for all cases, $i \in \{1, ..., N\}$
- The regression model also summarizes the "scatter" above and below, which is our next topic.



36 / 83

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Assumption 2: A "Well Behaved Error Term"

- We don't have to say e_i is Normal(0, σ_e²). But we could. Some people do.
- Well behaved means "symmetric" and "homogeneous", which is not as strong as assuming Normal
 - Assumption 2A: e_i is "on average" 0: $E[e_i] = 0$
 - Assumption 2B: all observations are drawn from the same distribution with a constant variance, \(\sigma_e^2\) (a.k.a "homoskedasticity")

$$Var[e_i] = E[e_i^2] = \sigma_e^2$$

 Violations of these assumptions lead to re-specification and advanced model-fitting techniques (nonlinear models, weighted least squares, random effects models)

Assumption 2A: $E[e_i] = 0$

The error term has an average value of 0:

$$E(e_i) = 0 \tag{3}$$

• Thus $E[y_i|x_i] = E[\beta_0 + \beta_1 x_i + e_i] = \beta_0 + \beta_1 x_i + 0$

You can guess where this leads, right?

- If we had reasonable estimates $\hat{\beta}_0$ and $\hat{\beta}_1$, the predicted value $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ is a reasonable estimate of the expected value, given x_i .
- In other words, it is not ridiculous to use predicted (or fitted) value $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ as an estimated value for y_i

Assumption 2B: Homoskedasticity

- The error term's variance is constant, i.e, the same for all cases *i* $Variance[e_i] = \sigma_e^2$ (4)
- I.e., σ_e^2 is the same for all cases. It is not subscripted by *i*.
 - Every case's "random effect" comes from a distribution with the same amount of uncertainty in it.
- This assumption is vital in our understanding of uncertainty, or variance, in the estimates.

Sidenote. Explain $E[e_i^2] = \sigma_e^2$

- The Variance of the error term equals the expected value of e_i^2 .
- Many stats book will define "homogeneous variance" as:

$$E[e_i^2] = \sigma_e^2$$

rather than the more obvious

$$Var[e_i] = \sigma_e^2 \tag{5}$$

While disconcerting, we can show these are the SAME definitions. Start with the definition of variance

$$V(e_i) = \sigma_e^2 = E[(e_i - E[e_i])^2]$$

• Recall
$$E(e_i) = 0$$
, so
 $V[e_i] = E[(e_i - 0)^2] = E[e_i^2]$

In Maximum Likelihood Analysis, A Stronger Assumption Would be Required

- In ML (including the generalized linear model), we would assume a specific distribution for e_i, which amounts to saying that we can state the distribution of y_i given x_i and the β's.
- We would usually say y_i , depends on "linear predictor" $(\beta_0 + \beta_1 x_i)$.
- For example, given x_i , y_i is Normal, i.e., drawn from $N(\beta_0 + \beta_1 x_i, \sigma_e^2)$
- Until the end of this class, we don't need to make that assumption, but you can if you like it!
- When you get to GLM, you can assume that y_i is Poisson, Gamma, or whatever you like.

- **I** calculate estimates of β_0 and β_1 (which we will call $\hat{\beta}_0$ and $\hat{\beta}_1$)
- **2** evaluate our uncertainty about the $\hat{\beta}$'s by calculating standard errors of the $\hat{\beta}$.
- 3 estimate the variance of e_i , $\widehat{\sigma_e^2}$
- 4 conduct some "diagnostics" to find out if we might fit a better model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

- 1 Introduction: Key Terms
- 2 People Always Ask Me...
- 3 The Underlying Theory
- **4** Estimate β 's
- **5** $\widehat{\sigma_e^2}$: Mean Square Error
- **6** Correlation and R^2
 - The R²
 - Correlations
 - Understand r from a Regression Point of View
- 7 Show My Work: Derivation of $\hat{\beta}_0$ and $\hat{\beta}_1$

Treat $\hat{\beta}_0$ and $\hat{\beta}_1$ as unknowns.

This week, we only use a "straight line" predicted value formula.

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_i \tag{6}$$

- The observed variables x_i and y_i are now treated as "known values",
- The parameter estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ become variables that we adjust to find the best prediction.

Regression 1 Estimate β 's

OLS: The Sum of Squares as a Criterion

Predicted:
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Residual: Difference between observed y_i and predicted \hat{y}_i .

• $S(\hat{\beta}_0, \hat{\beta}_1)$: Sum of Squared Residuals depends on $\hat{\beta}_0, \hat{\beta}_1$

$$\begin{aligned}
5(\hat{\beta}_0, \hat{\beta}_1) &= \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \\
&= \sum_{i=1}^{N} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2 \\
&= \sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2
\end{aligned}$$
(7)

- \blacksquare OLS Criterion: minimize the sum of squared residuals by adjusting $\hat{\beta}_0$ and $\hat{\beta}_1$
- Notation alert: Often also called "sum of squared errors", but better to be clear: we never know "true errors", we only know "residuals".
 So I'm trying to remember to call it sum of squared residuals.

Estimation process is outlined in the Appendix

- The sum of squared residuals is an objective function that we minimize by adjusting β₀ and β₁
- Because the sum of squares is a "U" shaped function, we can visualize the solution.

1_home_pauljohn_SVN_SVN-guides_stat_R	ee

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Regression 1 Estimate β 's

The Solutions are the "OLS Estimators"

- We'd ordinarily use matrix algebra to solve this problem, but I don't want to go into matrices at this point.
- Thus I write out the solution in "scalar" format, using ordinary summations and such.

$$\hat{\beta}_{1}^{OLS} = \frac{\sum_{i=1}^{N} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}$$
(8)

- \bar{x} and \bar{y} are sample means.
 - Note
 - numerator terms: product of x deviations and y deviations about their means
 - denominator terms: x deviations squared.
 - If you have "mean centered data", this simplifies to

$$\hat{\beta}_1^{OLS} = \frac{\sum x_i y_i}{\sum x_i^2} \tag{9}$$

The Solutions are the "OLS Estimators" ...

- And the intercept estimate: $\hat{\beta}_0^{OLS} = \bar{y} \hat{\beta}_1^{OLS} \bar{x}$
- If you were paying attention when we studied Variance and Covariance, you notice the formula for β̂ is Cov(x, y)/Var(x). Interesting co-incidence, there.

Gauss Markov Theorem: OLS is B.L.U.E.

- $\hat{\beta}^{OLS} \text{ is an Unbiased estimator, it is "on average" correct:} E[\hat{\beta}^{OLS}] = \beta$
- $\hat{\beta}^{OLS}$ is Consistent, as $N \to \infty$, $\hat{\beta}^{OLS}$. $\to \beta$. (the probability that the gap $|\hat{\beta}^{OLS} \beta|$ is bigger than any small number shrinks toward 0 as $N \to \infty$).
- $\hat{\beta}^{OLS}$ is Efficient: No linear unbiased estimating formulae has lower variance than $\hat{\beta}^{OLS}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1 Introduction: Key Terms
- 2 People Always Ask Me...
- **3** The Underlying Theory
- 4 Estimate β 's
- **5** $\widehat{\sigma_e^2}$: Mean Square Error
- 6 Correlation and R^2
 - The R²
 - Correlations
 - Understand r from a Regression Point of View
- 7 Show My Work: Derivation of $\hat{\beta}_0$ and $\hat{\beta}_1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Define residual, as opposed to "error"

- \bullet e_i is an "error term", it is unmeasured, unknown.
 - Its "true mean" (expected value) is assumed to be 0
 - Its "true variance" is σ_e^2 , also unknown.

• \hat{e}_i is the "residual", $y_i - \hat{y}_i$. It serves as an estimate of the error term.

MSE=Mean Square Error

- Predict \hat{y}_i from the best fitting model
- The commonly-called MSE (Mean Squared Error) is the mean of squared residuals.

$$MSE = \frac{\sum (y_i - \hat{y}_i)^2}{N - 2} = \frac{\sum \hat{e}_i^2}{N - 2}$$
(10)

• MSE = unbiased estimator of σ_e^2 (because of N - 2 in denominator). Unbiased means

$$E[MSE] = \sigma_e^2 \tag{11}$$

• Other notation for MSE: $\widehat{\sigma_e^2}, \widehat{Var[e_i]}, s_e^2$

RMSE=Root Mean Squared Error

- RMSE (root MSE) is the SAS name for the square root of the MSE.
- $\hat{\sigma}_e$: The square root of MSE serves as an estimate of the standard deviation of the error term.
- Other names for root MSE:
 - standard error of the estimate (in SPSS)
 - Residual standard error (in R)
 - std.err.(e).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

- 1 Introduction: Key Terms
- 2 People Always Ask Me...
- **3** The Underlying Theory
- 4 Estimate β 's
- **5** $\widehat{\sigma_e^2}$: Mean Square Error
- **6** Correlation and R^2
 - The R²
 - Correlations
 - Understand r from a Regression Point of View

7 Show My Work: Derivation of $\hat{\beta}_0$ and $\hat{\beta}_1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

R^2 . The Coefficient of Determination

- R^2 is the "coefficient of determination"
- R^2 has a minimum of 0 and a maximum of 1.
- R² mostly about "how big" the error variance is compared to the variance of x and y.

Regression 1 Correlation and R² $\Box_{\text{The } R^2}$

The "Proportion of Variance Explained"

- Some people write that the R² represents the proportion of variance in y explained by x. Where do they get that?
- The Total Sum of Squares: $TSS = \sum (y_i \bar{y})^2$
- The Error Sum of Squares: $ESS = \sum (y_i \hat{y}_i)^2$
- Regression Sum of Squares
 - $\blacksquare RSS = TSS ESS$
 - $RSS = \sum (\hat{y}_i \bar{y}_i)^2$

"Proportion of Variance" (cont)

Notice

TSS = RSS + ESS

Divide all terms by TSS and we see that the two "proportions" of variance add up to one

$$1 = \frac{RSS}{TSS} + \frac{ESS}{TSS}$$

That's

1 = part accounted for by regression + part accounted for by error (12)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

"Proportion of Variance"(cont)

Let the "coefficient of determination" be

$$R^2 = \frac{RSS}{TSS}$$

which is the same as

$$1-\frac{ESS}{TSS}$$

- Put that in words: R² is the proportion of variance left over after we take out the part contributed by random error term.
- Calculate the 'anova' table for a regression model, you'll see for yourself.

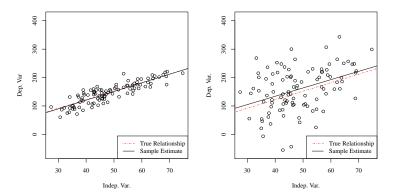
How Important is R^2

- Experienced statisticians may have rules of thumb about R². For example, R² should be bigger than 0.2 before a model is worth reporting.
- For various reasons (next slides), I think that's silly.
- Sometimes practitioners think a low R² is a general warning sign that "something is wrong."
- That's also mistaken: it might be there's not powerful predictive relationship to be found. We shouldn't torture the data.
- R² is partly dependent on the error term's variance, and we will see later that big variance -> wide confidence intervals. I often do wish error variance were smaller.

Regression 1 Correlation and R² The R²

Don't Over-Emphasize R^2

A slope is a slope is a slope, no matter how big the error variance might be. The same b's underlie both, but R² = 0.70 on left and 0.15 on right:



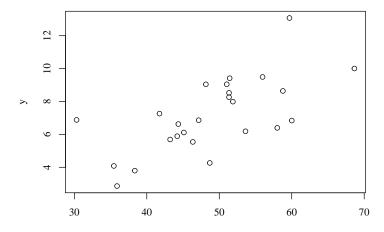
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

R^2 continued

- The R^2 reflects 3 factors that melt together
 - The range of x
 - The size of the slope coefficient
 - The standard deviation of the error term.
- Any of those 3 culprits can make the R^2 shrink.
- Does not necessarily imply that some better regression model exists—it may just be that the process under study has inherent uncertainty.
- Careful: Wrong to compare R² across models with different data. (Both Var[x_i] and Var[e_i] can change across data sets.)

Regression 1 Correlation and R² L Correlations

A Scatterplot: How Strongly Are These Variables Related?

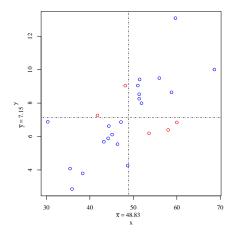


х

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 ののの

Correlations

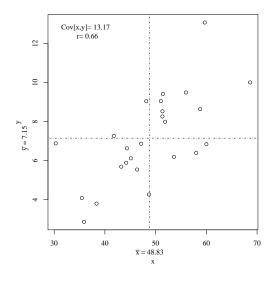
Covariance: Consider the Quadrants



- Covariance: For each point, calculate (x_i x̄)(y_i ȳ)
- Covariance: add those up, divide by N.
- blue points have positive products
- red points have negative products

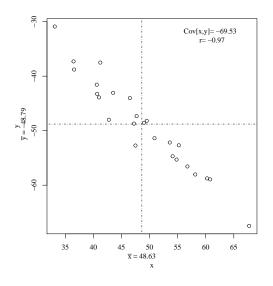
・ロト ・ 同ト ・ ヨト ・ ヨト

э



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Is this relationship stronger?



・ロト・西ト・山田・山田・山口・

Correlation=scaled covariance

- Question: How do you know if Cov[x, y] is "big" or "medium" or "small"
- Karl Pearson's Answer: form a correlation coefficient by scaling the covariance

$$r = \frac{\widehat{Cov[x, y]}}{\widehat{Std.Dev}.[x] \cdot \widehat{Std.Dev}.[y]}$$
(13)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $r \in [-1,1]$. That's all I know for sure about Pearson's r.

Understand r from a Regression Point of View

If there is One Input

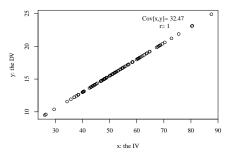
- The Pearson's r squared equals the R^2 in a one-predictor regression.
- Since we already argued that R² has a "proportion of variance accounted for" interpretation, that means Pearson's r squared has same meaning.
- The r_{yx} (and R^2) balance Covariance against the variance of x and y.

Understand r from a Regression Point of View

Simulate Data For Regression

This has no "random error term" ($e_i = 0$)

- $\beta_1 = 0.25$
- $x_i \sim N(50, 100), i = \{1, 2, \dots 100\}$
- $y_i = \beta_0 + \beta_1 x_i$



There's no "error term"

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

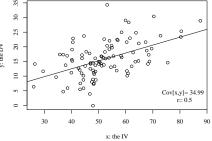
Regression 1

Correlation and R²

Understand r from a Regression Point of View

Add Some Error to y_i to adjust σ_e (and hence R^2)

Sama ($\beta_0 = 3, \ \beta_1 = 0.25, \ x_i$	% -
	$p_0 = 3, p_1 = 0.23, x_i$	- 30
$\bullet y_i = \beta_0$	$+\beta_1 x_i + e_i$	- 1
• $e_i \sim N$	(0,5 ²)	v: the DV
	M1	
	Estimate (S.E.)	
(Intercept)	1.743 (2.524)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
x	0.269*** (0.047)	30 40
N	100	
RMSE	5.375	Std. Deviation
R^2	0.248	
* <i>p</i> < 0.05*	p < 0.01 + p < 0.001	



of error term is 5

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト э Regression 1

└─ Correlation and R²

Understand r from a Regression Point of View

Tune Up Std.Dev.(e) -> Shrink the Correlation

Same β	$\beta_0=$ 3, $\beta_1=$	0.25, <i>x_i</i>	ç,o	٦
• $y_i = \beta_0$ • $e_i \sim N($	$+\beta_1 x_i + e_i$			
	M1 Estimate	(S.E.)	φ φ </td <td></td>	
(Intercept) ×	0.487 0.289**	(5.047) (0.095)	$ \begin{array}{c} $	90
N RMSE <i>R</i> ²	100 10.749 0.087		s: the IV Std. Deviation of error term is 10	
* <i>p</i> ≤ 0.05*	$p \leq 0.01$	≈ <i>p</i> ≤ 0.001		

Understand r from a Regression Point of View

A Massive Std.Dev.(e) Makes R² Even Smaller

 Same β y_i = β₀ e_i ~ N 	$+\beta_1 x_i + e_i$	i	γ: the DV 0 50
	M1 Estimate	(S.E.)	[±] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(Intercept)	-9.567	(25.237)	
x	0.444	(0.474)	1 1 1 1 1 1 30 40 50 60 70 80 9
Ν	100		x: the IV
RMSE	53.745		Std. Deviation of error term is 50
R^2	0.009		
$*p \leq 0.05$	$p \leq 0.01$	<i>⊳</i> ** <i>p</i> ≤ 0.001	

71/83

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Understand r from a Regression Point of View

Leave Std.Dev.(e) Large, but Raise b_1

■ Same β ■ Make β		$\sim \textit{N}(0, 50^2)$	200 250 300			0	°0	0		0
	M1			-	80	ິິ	ی ^ہ ہو ج	0 0	00	
	Estimate	(S.E.)	y: the DV 100 150	•	00000	ૺ૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00 00	0	
(Intercept)	-9.567	(25.237)	50	0		ိန္မိ	ଁ ଚି			
x	2.194***	(0.474)	- 0		°° 0	0		C	ov[x,y]= 28 r= 0.42	
N	100		- ب ²	1	- 1	0	-			\neg
RMSE	53.745			30	40	50	60	70	80	90
R^2	0.179					X:	the IV			
	$p \le 0.01*$	** <i>p</i> ≤ 0.001	Std. $\beta_1 =$		tion	of err	or ter	m is	50,	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Understand r from a Regression Point of View

Make b_1 Even Larger

Same \u00e4	eta_0 , eta_1 , x		8 -
• $y_i = \beta_0$	$\beta_0 + \beta_1 x_i + e_i$		8 8
■ <i>e_i</i> ~ <i>N</i>	(0,50 ²)		• • • • • • • • • • • • • • • • • • •
	M1		ن بابند کې د مې
	Estimate	(S.E.)	
(Intercept)	-9.567	(25.237)	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$
х	10.194***	(0.474)	
N	100		x: the IV
RMSE	53.745		Std. Deviation of error term is 50 and
R^2	0.825		$\beta_1 = 10$
* <i>p</i> ≤ 0.05	** <i>p</i> ≤ 0.01**	* <i>p</i> ≤ 0.001	, -

73 / 83

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Understand *r* from a Regression Point of View

What are you Supposed to Conclude?

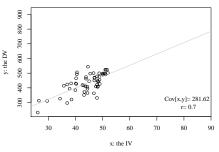
- The slope and the error variance are "balancing" each other.
- If the error variance is large, we need a steep slope to compensate and keep R² in the same vicinity.
- We can also fiddle with R^2 by adjusting the range of x (shown next).

Understand *r* from a Regression Point of View

A Restricted x Range Makes r Smaller

- Chopped off the top half of the x_i observations
- Wow. The effect of x on y is the same, $\beta_1 = 10$
- Smaller Var(x)→ Smaller R² ("design" implication)

	M1			
	Estimate	(S.E.)		
(Intercept)	91.217	(48.138)		
x2	7.709***	(1.080)		
N	56			
RMSE	48.419			
R^2	0.485			
*p < 0.05 ** p < 0.01 *** p < 0.001				



Std. Deviation of error term is 50 and $\beta_1=10$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Understand *r* from a Regression Point of View

- Correlation depends on several components, Var(x_i), b₁, and Var(e_i).
- The "correlation coefficient" is not a "parameter." It is a description or a 'weighted summary' of the effect of parameters on the data.
- Goldberger (1991, p.177) puts it the following way: "Nothing in the CR (Classical Regression) model requires that R² be high. Hence, a high R² is not evidence in favor of the model, and a low R² is not evidence against it."
- Nevertheless, R^2 can be a persuasive tool because many people think a model is "wrong" if the R^2 does not meet some subjective standard.

Outline

- 1 Introduction: Key Terms
- 2 People Always Ask Me...
- **3** The Underlying Theory
- 4 Estimate β 's
- 5 $\widehat{\sigma_e^2}$: Mean Square Error
- 6 Correlation and R^2
 - The R^2
 - Correlations
 - Understand r from a Regression Point of View

7 Show My Work: Derivation of $\hat{\beta}_0$ and $\hat{\beta}_1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

SMW: Use Calculus to Minimize $S(\hat{\beta}_0, \hat{\beta}_1)$

- Must find the minimum S, which is shaped like a bowl
- Find combination of (β̂₀ β̂₁) where the function is "flat", at bottom of bowl
- First Order Conditions:

$$rac{\partial S(\hat{eta}_0,\hat{eta}_1)}{\partial \hat{eta}_0}=0$$
 (14)

and

$$\frac{\partial S(\hat{\beta}_0, \hat{\beta}_1)}{\partial \hat{\beta}_1} = 0 \qquad (15)$$

Sketch something here:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

SMW: First Order Condition for $\hat{\beta}_0$:

$$\frac{\partial S(\hat{\beta}_0, \hat{\beta}_1)}{\partial \hat{\beta}_0} = -2 \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 \cdot x_i) = 0$$
$$= \sum y_i - \sum \hat{\beta}_0 - \sum \hat{\beta}_1 \cdot x_i = 0$$
$$= \sum y_i - N \cdot \hat{\beta}_0 - \hat{\beta}_1 \cdot \sum x_i = 0$$
(16)

SMW: First Order Condition for $\hat{\beta}_1$:

$$\frac{\partial S(\hat{\beta}_0, \hat{\beta}_1)}{\partial \hat{\beta}_1} = -2\sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 \cdot x_i)x_i = 0$$
$$= \sum y_i - \sum \hat{\beta}_0 \cdot x_i - \sum \hat{\beta}_1 \cdot x_i^2 = 0$$
(17)

Equations 16 and 17 can be re-arranged as the so-called "normal equations".

$$\sum y_i = N\hat{\beta}_0 + \left(\sum x_i\right)\hat{\beta}_1$$

and

$$\sum x_i y_i = \left(\sum x_i\right) \hat{\beta}_0 + \left(\sum x_i^2\right) \hat{\beta}_1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

SMW: Note that is a LINEAR Matrix Equation

$$\begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix} = \begin{bmatrix} N & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix}$$
(18)

Refer to the coefficient estimates as $\hat{\beta}$:

$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

SMW: The Solution

The "sum of squares minimizing" estimate vector is

$$\hat{\beta}^{OLS} = (X^T X)^{-1} X^T y \tag{19}$$

• Definition: X is predictor "design matrix", $X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_{N-1} \\ 1 & x_N \end{bmatrix}$

• And
$$y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_{N-1} \\ y_N \end{bmatrix}$$