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Introduction: Key Terms

Data Set: Columns of Same Length

row number respondent id income educ gender

1 243223 4352.5 6 M
2 151512 6525.1 21 F
3 515131 4345.5 13 M
4 166122 3421.4 12 F
...

Variables are “columns” in a data frame

Rows are called “observations” or “cases” or “respondents” or
“subjects”

Talk about row “i” if you mean to say something that applies for
each row
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Introduction: Key Terms

Design Matrix

Regression is, inherently, a procedure for estimating effects of
numeric predictors

The data frame (in R, the “model frame”) has to be converted from
data as we see it into a thing that has only numeric columns.

Categorical predictors are converted into “indicator” variables
(dummy variables, usually coded {0,1} or {-1,1}

row number respondent id income educ gender

1 243223 4352.5 6 1
2 151512 6525.1 21 0
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Introduction: Key Terms

Scatterplot: One Input, One Output
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The “Prestige” dataset in the R package “car” by John Fox
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Introduction: Key Terms

Dependent, Independent

DV: Dependent Variable: The thing we are predicting

The “output” variable, generally we call it yi
In this case “incomei”.

Synonyms: “endogenous variable”“outcome variable”

IV: Independent Variable

The “input” variable, generally call it xi ,

In this case “educationi”.

Synonyms: “exogenous variable”“predictor”“covariate”

Regression allows several input variables, but for now we consider
only one.
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Introduction: Key Terms

Line of Best Fit
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This is the Straight Line that “best
fits” the data

Best fit = minimizes a criterion,
here the “sum of squared errors”

“Predicted value” synonym for
“fitted value” or “conditional
expected value”

For any value of education, we
predict an outcome on the line

Later, we will use diagnostics to
test suitability of this model
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Introduction: Key Terms

Typical Computer Printout Summarizing a Fitted
Regression

Ca l l :
lm ( fo rmu la = income ∼ educat i on , data = P r e s t i g e )

R e s i d u a l s :
Min 1Q Median 3Q Max

−5493.2 −2433.8 −41.9 1491 . 5 17713 . 1

C o e f f i c i e n t s :
Es t imate S td . E r r o r t v a l u e Pr (>| t | )

( I n t e r c e p t ) −2853.6 1407 . 0 −2.028 0 .0452 *

educa t i on 898 . 8 127 . 0 7 .075 2 .08e−10 ***

−−−
S i g n i f . codes : 0 ' *** ' 0 .001 ' ** ' 0 .01 ' * ' 0 .05 ' . ' 0 . 1 ' ' 1

Re s i d u a l s t anda rd e r r o r : 3483 on 100 deg r e e s o f f reedom
Mu l t i p l e R2 : 0 .3336 , Ad jus ted R2 : 0 .3269
F− s t a t i s t i c : 50 . 06 on 1 and 100 DF, p−value : 2 .079e−10
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Introduction: Key Terms

Make a Professionally Acceptable Regression Table

M1
Estimate (S.E.)

(Intercept) -2853.586* (1407.039)
education 898.813*** ( 127.035)
N 102
RMSE 3483.378
R2 0.334

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

When we are finished, you will understand all of these details.
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Introduction: Key Terms

In R, after ”lm”, run follow-up functions

There are many (at least 30) “methods”
that can be used to explore that fitted
model.

incedmod1 <− lm ( income∼educat i on ,
data=P r e s t i g e )

summary ( incedmod1 )
anova ( incedmod1 , t e s t=”F”)
vcov ( incedmod1 )
c o n f i n t ( incedmod1 )
p l o t ( incedmod1 )
t e rmp l o t ( incedmod1 , se=T, p a r t i a l=T)

lm: creates the regression model
“incedmod1”

summary: main regression table

anova: asks for sum of squares
information

vcov: asks for the
variance/covariance matrix of β̂’s

confint: confidence intervals for
intercept and slope

plot: creates diagnostic displays

termplot: plots the predictive line

many methods in the “car” package

rockchalk plotting and diagnostic
routines
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People Always Ask Me. . .

1. Can I Run Regression on This?

0 10 20 30 40

1
2

3
4

5
6

7
8

One Mysterious Predictor

A
n 

O
ut

pu
t V

ar
ia

bl
e



Regression 1 14 / 83

People Always Ask Me. . .

1. As we say in Francais, Oui!
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2 numeric variables, passes the “inter-occular trauma test”



Regression 1 15 / 83

People Always Ask Me. . .

2. Can I Run Regression on This?
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People Always Ask Me. . .

2. Sure, Why Not?
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The “straight line” prediction is not wrong. But not precise, either.
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People Always Ask Me. . .

3. Can I Run Regression on This?
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People Always Ask Me. . .

3. En Espanol, Si!
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People Always Ask Me. . .

4. Can I Run Regression on This?

20 30 40 50 60

−
20

−
10

0
10

20
30

40

One Mysterious Predictor

A
n 

O
ut

pu
t V

ar
ia

bl
e



Regression 1 20 / 83

People Always Ask Me. . .

4. OK, I Don’t Mind a Bit
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I don’t know of any reason why you expect the predictor to be “evenly
distributed” or “normal” or whatnot
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People Always Ask Me. . .

5. Can I Run Regression on This?
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People Always Ask Me. . .

5. No. Are You Joking?
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Straight line does not suit this data
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People Always Ask Me. . .

What’s the point so far?

We don’t assume much about the predictor

We do assume a LOT about the outcome variable

it is supposed to be scattered“equally likely”above and below the line
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People Always Ask Me. . .

6. Can I Run Regression on This?
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People Always Ask Me. . .

6. Maybe, But You’d Really Have to Stretch
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Its tough for me to see a “regression line” in there, but some people do.
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People Always Ask Me. . .

7. Can I Run Regression on This?
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People Always Ask Me. . .

7. Probably, if you recode the predictor as {0,1}
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The appropriate graph has “steps”, rather than a line. Predictions for
discrete points.
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People Always Ask Me. . .

8. Can I Run Regression on This?
−

2
0

2
4

6
8

One Ordinal Predictor

A
n 

O
ut

pu
t V

ar
ia

bl
e

R M D A F



Regression 1 29 / 83

People Always Ask Me. . .

8. As Yoda says, “Mistaken, This Appears”
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The Underlying Theory

Assumption 1: Linear Relationship

For each “case” i , the following is true:

yi = β0 + β1xi + ei (1)

The parameters are β0, β1, and σe
β0 is the “constant” or “y intercept”.
β1 is the slope of the line.
σe is the standard deviation of a “random effect,” ei , that is uniquely
drawn for each observation.

The subscript i means xi and yi are individual specific. Note no i on
β’s or σe

In the past, my notes used the letter b for coefficients, not β, mostly
because b was easier to type in MS Word. Now I use LATEX, I don’t
have that problem anymore. But I have not updated all of my notes
about everything.
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The Underlying Theory

Random and Deterministic Parts

The deterministic part
is the “true line”
β0 + β1xi

The stochastic
(random part)
“throws” observed
scores up and down 0_home_pauljohn_SVN_SVN-guides_stat_Regression_ElementaryOLS_importfigs_bivar1.pdf
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The Underlying Theory

Separate Deterministic and Stochastic Parts

Suppose β0 = 3 and β1 = 1.3.

The “true relationship”:

yi = 3 + 1.3 · xi + ei

The deterministic part:

3 + 1.3 · xi

The stochastic part is ei .
xi

y i
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The Underlying Theory

Refresher: Linear Equation

3 + 1.3 · xi
The slope: 1.3 is the “rise
over run”

For each 1 unit increase in
xi , the outcome increases
by 1.3.

The intercept: 3

When xi = 0, the
outcome will be 3. xi

y i
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The Underlying Theory

The Fitted Line in the Income Equation

Note the difference between the
theory and the estimate

Theory:
incomei = β0 + β1educationi + ei

Estimated line:

̂income i = −2853.585+898.813·educationi
(2)

There is no “error term” in the
equation for the predicted line.
That’s because we assume
E [ei ] = 0.
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The Underlying Theory

The Fitted Line in the Income Equation

A 1 unit increase in educationi “is
associated with”( causes?) a 898.8
increase in incomei

The subscript i is important. It
helps us remember the assumption
that the same relationship applies
for all cases, i ∈ {1, . . . ,N}
The regression model also
summarizes the “scatter” above and
below, which is our next topic.
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The Underlying Theory

Assumption 2: A “Well Behaved Error Term”

We don’t have to say ei is Normal(0, σ2
e ). But we could. Some

people do.

Well behaved means “symmetric” and “homogeneous”, which is not
as strong as assuming Normal

Assumption 2A: ei is “on average” 0: E [ei ] = 0
Assumption 2B: all observations are drawn from the same
distribution with a constant variance, σ2

e (a.k.a “homoskedasticity”)

Var [ei ] = E [e2i ] = σ2
e

Violations of these assumptions lead to re-specification and
advanced model-fitting techniques (nonlinear models, weighted least
squares, random effects models)
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The Underlying Theory

Assumption 2A: E [ei ] = 0

The error term has an average value of 0:

E (ei ) = 0 (3)

Thus E [yi |xi ] = E [β0 + β1xi + ei ] = β0 + β1xi + 0

You can guess where this leads, right?

If we had reasonable estimates β̂0 and β̂1, the predicted value
ŷi = β̂0 + β̂1xi is a reasonable estimate of the expected value, given
xi .
In other words, it is not ridiculous to use predicted (or fitted) value
ŷi = β̂0 + β̂1xi as an estimated value for yi
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The Underlying Theory

Assumption 2B: Homoskedasticity

The error term’s variance is constant, i.e, the same for all cases i

Variance[ei ] = σ2
e (4)

I.e., σ2
e is the same for all cases. It is not subscripted by i .

Every case’s “random effect” comes from a distribution with the same
amount of uncertainty in it.

This assumption is vital in our understanding of uncertainty, or
variance, in the estimates.
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The Underlying Theory

Sidenote. Explain E [e2
i ] = σ2

e

The Variance of the error term equals the expected value of e2i .

Many stats book will define “homogeneous variance” as:

E [e2i ] = σ2
e

rather than the more obvious

Var [ei ] = σ2
e (5)

While disconcerting, we can show these are the SAME definitions.
Start with the definition of variance

V (ei ) = σ2
e = E [(ei − E [ei ])

2]

Recall E (ei ) = 0, so

V [ei ] = E [(ei − 0)2] = E [e2i ]
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The Underlying Theory

In Maximum Likelihood Analysis, A Stronger Assumption
Would be Required

In ML (including the generalized linear model), we would assume a
specific distribution for ei , which amounts to saying that we can
state the distribution of yi given xi and the β’s.

We would usually say yi , depends on “linear predictor” (β0 + β1xi ).

For example, given xi , yi is Normal, i.e., drawn from
N(β0 + β1xi , σ

2
e )

Until the end of this class, we don’t need to make that assumption,
but you can if you like it!

When you get to GLM, you can assume that yi is Poisson, Gamma,
or whatever you like.
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The Underlying Theory

Roadmap of Ahead

1 calculate estimates of β0 and β1 (which we will call β̂0 and β̂1)

2 evaluate our uncertainty about the β̂’s by calculating standard errors
of the β̂.

3 estimate the variance of ei , σ̂2
e

4 conduct some“diagnostics”to find out if we might fit a better model.
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Estimate β’s
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Estimate β’s

Treat β̂0 and β̂1 as unknowns.

This week, we only use a “straight line” predicted value formula.

ŷi = β̂0 + β̂1 · xi (6)

The observed variables xi and yi are now treated as “known values”,

The parameter estimates β̂0 and β̂1 become variables that we adjust
to find the best prediction.
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Estimate β’s

OLS: The Sum of Squares as a Criterion

Predicted: ŷi = β̂0 + β̂1xi
Residual: Difference between observed yi and predicted ŷi .
S(β̂0, β̂1) :Sum of Squared Residuals depends on β̂0, β̂1

S(β̂0, β̂1) =
N∑
i=1

(yi − ŷi )
2 (7)

=
N∑
i=1

(yi − (β̂0 + β̂1xi ))2

=
N∑
i=1

(yi − β̂0 − β̂1xi )2

OLS Criterion: minimize the sum of squared residuals by adjusting
β̂0 and β̂1
Notation alert: Often also called “sum of squared errors”, but better
to be clear: we never know “true errors”, we only know “residuals”.
So I’m trying to remember to call it sum of squared residuals.
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Estimate β’s

Estimation process is outlined in the Appendix

The sum of squared residuals
is an objective function that
we minimize by adjusting β̂0
and β̂1

Because the sum of squares
is a “U” shaped function, we
can visualize the solution.

1_home_pauljohn_SVN_SVN-guides_stat_Regression_ElementaryOLS_importfigs_OLSdemo-3d.pdf
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Estimate β’s

The Solutions are the “OLS Estimators”

We’d ordinarily use matrix algebra to solve this problem, but I don’t
want to go into matrices at this point.

Thus I write out the solution in “scalar” format, using ordinary
summations and such.

β̂OLS
1 =

∑N
i=1(xi − x̄)(yi − ȳ)∑N

i=1(xi − x̄)2
(8)

x̄ and ȳ are sample means.

Note

numerator terms: product of x deviations and y deviations about
their means
denominator terms: x deviations squared.

If you have “mean centered data”, this simplifies to

β̂OLS
1 =

∑
xiyi∑
x2i

(9)
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Estimate β’s

The Solutions are the “OLS Estimators” ...

And the intercept estimate: β̂OLS
0 = ȳ − β̂OLS

1 x̄

If you were paying attention when we studied Variance and
Covariance, you notice the formula for β̂ is Cov(x , y)/Var(x).
Interesting co-incidence, there.
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Estimate β’s

Gauss Markov Theorem: OLS is B.L.U.E.

β̂OLS is an Unbiased estimator, it is “on average” correct:
E [β̂OLS ] = β

β̂OLS is Consistent, as N →∞, β̂OLS .→ β. (the probability that the
gap |β̂OLS − β| is bigger than any small number shrinks toward 0 as
N →∞).

β̂OLS is Efficient: No linear unbiased estimating formulae has lower
variance than β̂OLS .
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σ̂2e : Mean Square Error

Define residual, as opposed to “error”

ei is an “error term”, it is unmeasured, unknown.

Its “true mean” (expected value) is assumed to be 0
Its “true variance” is σ2

e , also unknown.

êi is the “residual”, yi − ŷi . It serves as an estimate of the error term.
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σ̂2e : Mean Square Error

MSE=Mean Square Error

Predict ŷi from the best fitting model

The commonly-called MSE (Mean Squared Error) is the mean of
squared residuals.

MSE =

∑
(yi − ŷi )

2

N − 2
=

∑
êi

2

N − 2
(10)

MSE = unbiased estimator of σ2
e (because of N − 2 in

denominator). Unbiased means

E [MSE ] = σ2
e (11)

Other notation for MSE: σ̂2
e ,V̂ar [ei ], s

2
e
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σ̂2e : Mean Square Error

RMSE=Root Mean Squared Error

RMSE (root MSE) is the SAS name for the square root of the MSE.

σ̂e : The square root of MSE serves as an estimate of the standard
deviation of the error term.

Other names for root MSE:

standard error of the estimate (in SPSS)
Residual standard error (in R)
std .err .(e).
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Correlation and R2

Outline
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Correlation and R2

The R2

R2. The Coefficient of Determination

R2 is the “coefficient of determination”

R2 has a minimum of 0 and a maximum of 1.

R2 mostly about “how big” the error variance is compared to the
variance of x and y .
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Correlation and R2

The R2

The “Proportion of Variance Explained”

Some people write that the R2 represents the proportion of variance
in y explained by x. Where do they get that?

The Total Sum of Squares: TSS =
∑

(yi − ȳ)2

The Error Sum of Squares: ESS =
∑

(yi − ŷi )
2

Regression Sum of Squares

RSS = TSS − ESS
RSS =

∑
(ŷi − ȳi )

2
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Correlation and R2

The R2

“Proportion of Variance”(cont)

Notice

TSS = RSS + ESS

Divide all terms by TSS and we see that the two “proportions” of
variance add up to one

1 =
RSS

TSS
+

ESS

TSS

That’s

1 = part accounted for by regression + part accounted for by error
(12)
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Correlation and R2

The R2

“Proportion of Variance”(cont)

Let the “coefficient of determination” be

R2 =
RSS

TSS

which is the same as

1− ESS

TSS

Put that in words: R2 is the proportion of variance left over after we
take out the part contributed by random error term.

Calculate the ’anova’ table for a regression model, you’ll see for
yourself.
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Correlation and R2

The R2

How Important is R2

Experienced statisticians may have rules of thumb about R2. For
example, R2 should be bigger than 0.2 before a model is worth
reporting.

For various reasons (next slides), I think that’s silly.

Sometimes practitioners think a low R2 is a general warning sign
that “something is wrong.”

That’s also mistaken: it might be there’s not powerful predictive
relationship to be found. We shouldn’t torture the data.

R2 is partly dependent on the error term’s variance, and we will see
later that big variance -> wide confidence intervals. I often do wish
error variance were smaller.
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Correlation and R2

The R2

Don’t Over-Emphasize R2

A slope is a slope is a slope, no matter how big the error variance
might be. The same b’s underlie both, but R2 = 0.70 on left and
0.15 on right:
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Correlation and R2

The R2

R2continued

The R2 reflects 3 factors that melt together

The range of x
The size of the slope coefficient
The standard deviation of the error term.

Any of those 3 culprits can make the R2 shrink.

Does not necessarily imply that some better regression model
exists–it may just be that the process under study has inherent
uncertainty.

Careful: Wrong to compare R2 across models with different data.
(Both Var [xi ] and Var [ei ] can change across data sets.)
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Correlation and R2

Correlations

A Scatterplot: How Strongly Are These Variables Related?
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Correlation and R2

Correlations

Covariance: Consider the Quadrants

30 40 50 60 70

4
6

8
10

12

x

y

x = 48.83

y
=

7.
15

Covariance: For each point,
calculate (xi − x̄)(yi − ȳ)

Covariance: add those up, divide by
N.

blue points have positive products

red points have negative products
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Correlation and R2

Correlations

How strong is this relationship?

30 40 50 60 70

4
6

8
10

12

x

y

x = 48.83

y
=

7.
15

Cov[x,y]= 13.17 
 r= 0.66
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Correlation and R2

Correlations

Is this relationship stronger?

35 40 45 50 55 60 65

−
60

−
50

−
40

−
30

x

y

x = 48.63

y
=

−
48

.7
9

Cov[x,y]= −69.53 
 r= −0.97
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Correlation and R2

Correlations

Correlation=scaled covariance

Question: How do you know if ̂Cov [x , y ] is “big” or “medium” or
“small”

Karl Pearson’s Answer: form a correlation coefficient by scaling the
covariance

r =
̂Cov [x , y ]

̂Std .Dev .[x ] · ̂Std .Dev .[y ]
(13)

r ∈ [−1, 1] . That’s all I know for sure about Pearson’s r.
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Correlation and R2

Understand r from a Regression Point of View

If there is One Input

The Pearson’s r squared equals the R2 in a one-predictor regression.

Since we already argued that R2 has a “proportion of variance
accounted for” interpretation, that means Pearson’s r squared has
same meaning.

The ryx (and R2) balance Covariance against the variance of x and y.
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Correlation and R2

Understand r from a Regression Point of View

Simulate Data For Regression

This has no“random error term”(ei = 0)

β0 = 3

β1 = 0.25

xi ∼ N(50, 100), i = {1, 2, . . . 100}
yi = β0 + β1xi

30 40 50 60 70 80 90
10

15
20

25

x: the IV

y:
 th

e 
D

V

Cov[x,y]= 32.47 
 r= 1

There’s no “error term”
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Correlation and R2

Understand r from a Regression Point of View

Add Some Error to yi to adjust σe (and hence R2)

Same β0=3, β1 = 0.25, xi

yi = β0 + β1xi + ei

ei ∼ N(0, 52)

M1
Estimate (S.E.)

(Intercept) 1.743 (2.524)
x 0.269*** (0.047)
N 100
RMSE 5.375
R2 0.248

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

30 40 50 60 70 80 90

0
5

10
15

20
25

30
35

x: the IV

y:
 th

e 
D

V

Cov[x,y]= 34.99 
 r= 0.5

Std. Deviation of error term is 5
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Correlation and R2

Understand r from a Regression Point of View

Tune Up Std.Dev.(e) -> Shrink the Correlation

Same β0 = 3, β1 = 0.25, xi

yi = β0 + β1xi + ei

ei ∼ N(0, 102)

M1
Estimate (S.E.)

(Intercept) 0.487 (5.047)
x 0.289** (0.095)
N 100
RMSE 10.749
R2 0.087

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

30 40 50 60 70 80 90

−
10

0
10

20
30

40
50

x: the IV

y:
 th

e 
D

V

Cov[x,y]= 37.51 
 r= 0.29

Std. Deviation of error term is 10
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Correlation and R2

Understand r from a Regression Point of View

A Massive Std.Dev.(e) Makes R2 Even Smaller

Same β0, β1, x

yi = β0 + β1xi + ei

ei ∼ N(0, 502)

M1
Estimate (S.E.)

(Intercept) -9.567 (25.237)
x 0.444 ( 0.474)
N 100
RMSE 53.745
R2 0.009

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

30 40 50 60 70 80 90

−
10

0
0

50
10

0
15

0
20

0
x: the IV

y:
 th

e 
D

V

Cov[x,y]= 57.67 
 r= 0.09

Std. Deviation of error term is 50
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Correlation and R2

Understand r from a Regression Point of View

Leave Std.Dev.(e) Large, but Raise b1

Same β0, x , and ei ∼ N(0, 502)

Make β1 bigger

M1
Estimate (S.E.)

(Intercept) -9.567 (25.237)
x 2.194*** ( 0.474)
N 100
RMSE 53.745
R2 0.179

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

30 40 50 60 70 80 90

−
50

0
50

10
0

15
0

20
0

25
0

30
0

x: the IV

y:
 th

e 
D

V

Cov[x,y]= 284.95 
 r= 0.42

Std. Deviation of error term is 50,
β1 = 2
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Correlation and R2

Understand r from a Regression Point of View

Make b1 Even Larger

Same β0, β1, x

yi = β0 + β1xi + ei

ei ∼ N(0, 502)

M1
Estimate (S.E.)

(Intercept) -9.567 (25.237)
x 10.194*** ( 0.474)
N 100
RMSE 53.745
R2 0.825

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

30 40 50 60 70 80 90

30
0

40
0

50
0

60
0

70
0

80
0

90
0

x: the IV

y:
 th

e 
D

V

Cov[x,y]= 1323.96 
 r= 0.91

Std. Deviation of error term is 50 and
β1 = 10
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Correlation and R2

Understand r from a Regression Point of View

What are you Supposed to Conclude?

The slope and the error variance are “balancing” each other.

If the error variance is large, we need a steep slope to compensate
and keep R2 in the same vicinity.

We can also fiddle with R2 by adjusting the range of x (shown next).
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Correlation and R2

Understand r from a Regression Point of View

A Restricted x Range Makes r Smaller

Chopped off the top half of the xi
observations

Wow. The effect of x on y is the
same, β1 = 10

Smaller Var(x)→ Smaller R2

(“design” implication)

M1
Estimate (S.E.)

(Intercept) 91.217 (48.138)
x2 7.709*** ( 1.080)
N 56
RMSE 48.419
R2 0.485

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

30 40 50 60 70 80 90

30
0

40
0

50
0

60
0

70
0

80
0

90
0

x: the IV
y:

 th
e 

D
V

Cov[x,y]= 281.62 
 r= 0.7

Std. Deviation of error term is 50 and
β1 = 10
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Correlation and R2

Understand r from a Regression Point of View

Section Summary

Correlation depends on several components, Var(xi ), b1, and
Var(ei ).

The “correlation coefficient” is not a “parameter.” It is a description
or a ’weighted summary’ of the effect of parameters on the data.

Goldberger (1991, p.177) puts it the following way: “Nothing in the
CR (Classical Regression) model requires that R2 be high. Hence, a
high R2 is not evidence in favor of the model, and a low R2 is not
evidence against it.”

Nevertheless, R2 can be a persuasive tool because many people think
a model is“wrong”if the R2 does not meet some subjective standard.
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Show My Work: Derivation of β̂0 and β̂1

Outline

1 Introduction: Key Terms

2 People Always Ask Me. . .

3 The Underlying Theory

4 Estimate β’s

5 σ̂2
e : Mean Square Error

6 Correlation and R2

The R2

Correlations
Understand r from a Regression Point of View

7 Show My Work: Derivation of β̂0 and β̂1
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Show My Work: Derivation of β̂0 and β̂1

SMW: Use Calculus to Minimize S(β̂0, β̂1)

Must find the minimum S ,
which is shaped like a bowl

Find combination of (β̂0 β̂1)
where the function is “flat”,
at bottom of bowl

First Order Conditions:

∂S(β̂0, β̂1)

∂β̂0
= 0 (14)

and

∂S(β̂0, β̂1)

∂β̂1
= 0 (15)

Sketch something here:
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Show My Work: Derivation of β̂0 and β̂1

SMW: First Order Condition for β̂0:

∂S(β̂0, β̂1)

∂β̂0
= −2

∑
(yi − β̂0 − β̂1 · xi ) = 0

=
∑

yi −
∑

β̂0 −
∑

β̂1 · xi = 0

=
∑

yi − N · β̂0 − β̂1 ·
∑

xi = 0 (16)
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Show My Work: Derivation of β̂0 and β̂1

SMW: First Order Condition for β̂1:

∂S(β̂0, β̂1)

∂β̂1
= −2

∑
(yi − β̂0 − β̂1 · xi )xi = 0

=
∑

yi −
∑

β̂0 · xi −
∑

β̂1 · x2i = 0 (17)
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Show My Work: Derivation of β̂0 and β̂1

SMW: Normal Equations.

Equations 16 and 17 can be re-arranged as the so-called “normal
equations”. ∑

yi = Nβ̂0 +
(∑

xi
)
β̂1

and ∑
xiyi =

(∑
xi
)
β̂0 +

(∑
x2i

)
β̂1
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Show My Work: Derivation of β̂0 and β̂1

SMW: Note that is a LINEAR Matrix Equation

[ ∑
yi∑
xiyi

]
=

[
N

∑
xi∑

xi
∑

x2i

] [
β̂0
β̂1

]
(18)

Refer to the coefficient estimates as β̂ :

β̂ =

[
β̂0
β̂1

]
,
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Show My Work: Derivation of β̂0 and β̂1

SMW: The Solution

The “sum of squares minimizing” estimate vector is

β̂OLS = (XTX )−1XT y (19)

Definition: X is predictor “design matrix”, X =


1 x1
1 x2
...

...
1 xN−1

1 xN



And y =


y1
y2
. . .
yN−1

yN


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