Categorical Predictors 1

Paul E. Johnson ${ }^{1}{ }^{2}$
${ }^{1}$ Department of Political Science
${ }^{2}$ Center for Research Methods and Data Analysis, University of Kansas

2014

Introduction

1 Basics

- Dichotomy
- Multichotomy (Polychotomy?)
- Simplify the Coding

2 Coding Schemes

- G-1 is Over-rated
- You Want G Parameters? You Got It!
- Same True With G Categories

3 Effects Coding

- Basics: Before I get too carried away
- Categorical Coding: Which Dummy is Right for you?
- Differences among approaches are Superficial

Outline

1 Basics

- Dichotomy
- Multichotomy (Polychotomy?)
- Simplify the Coding

2 Coding Schemes

- G-1 is Over-rated
- You Want G Parameters? You Got It!
- Same True With G Categories

3 Effects Coding

Let's Talk About Sex

- Sex is coded " M " for male or " F " for female
- "manually" create two dummy variables, "femd" and "maled"
- These are numeric, 0 or 1 (or maybe -1 and 1).

id	constant	sex	femd	maled
1	1	M	0	1
2	1	F	1	0
3	1	F	1	0
4	1	M	0	1
\vdots			\vdots	

- In SAS (or Stata), one then fits a model using "femd" or "maled" as a predictor.

What will R do if...

- Im $(y \sim \operatorname{sex})$
fits
- (implicitly) asks for an intercept, plus
- an "intercept shift" parameter for a contrast variable for males it calls "sexM".
- R automatically creates a "contrast" variable, a 0,1 "dummy" variable for male

Example: statusquo support in the 1988 Chile Data

```
library(car)
mod1 <- Im(statusquo ~ sex, data=Chile)
summary (mod1)
```

M1

	Estimate	(S.E.)
(Intercept)	0.066^{*}	(0.027)
sexM	$-0.134^{* * *}$	(0.039)
N	2683	
RMSE	0.998	
R^{2}	0.004	
$* p \leq 0.05 * *$	$p \leq 0.01 * * * p \leq 0.001$	

Sex Contrast Default and Interpretation

- R's design matrix that looks like this:

$$
X=\begin{array}{cc}
\text { constant } & \text { sex } M \tag{1}\\
1 & 1 \\
1 & 0 \\
1 & 0
\end{array}
$$

■ Why "M"? Female becomes "baseline" (in the intercept) because it is alphabetically first (can customize that)
■ Same effect as user-created "maled" variable.

- fitted intercept represents the effect of "being human" (or "being in the data set")
- $\hat{b}_{1} \operatorname{sex} M$; the "difference" effect that distinguishes males from other humans
- Model's predicted value is statusquo ${ }_{i}=\hat{b}_{0}+\hat{b}_{1} \operatorname{sex} M$, so for Females predict \hat{b}_{0} and for males predict $\hat{b}_{0}+\hat{b}_{1}$.

Regression Equivalent to a "t-test for means"

The " t test for means" calculates the averages within groups and calculates a t value for the difference.

```
by(Chile$statusquo, Chile$sex, mean, na.rm = TRUE)
```

```
Chile$sex: F
[1] 0.06570627
```

Chile\$sex: M
[1] -0.06835453
t.test (statusquo \sim sex, var.equal=TRUE, data=Chile
)

Regression Equivalent to a "t-test for means" ...

```
Two Sample t-test
data: statusquo by sex
t = 3.4779, df = 2681, p-value = 0.0005135
alternative hypothesis: true difference in means is
    not equal to 0
95 percent confidence interval:
    0.05847624 0.20964537
sample estimates:
mean in group F mean in group M
    0.06570627 -0.06835453
```

Note the Regression intercept and slope re-produce means as predicted values.
-Multichotomy (Polychotomy?)

Outline

1 Basics

- Dichotomy
- Multichotomy (Polychotomy?)
- Simplify the Coding

2 Coding Schemes

- G-1 is Over-rated
- You Want G Parameters? You Got It!
- Same True With G Categories

3 Effects Coding

Occupation in the wages data set

- As provided, wages has occupation coded as a numeric variable.
- | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Management | Sales | Clerical | Service | Professional | Other |

See Why it is Wrong to treat that as Numeric, Right?

$$
\bmod 1<-\operatorname{Im}(\text { wage } \sim \text { occupation, data=dat) }
$$

	M1	
	Estimate	$($ S.E. $)$
(Intercept)	$9.656^{* * *}$	(0.600)
occupation	-0.152	(0.134)
N	534	
RMSE	5.138	
R^{2}	0.002	
$* p \leq 0.05 * * p \leq 0.01 * * * p \leq 0.001$		

Interpret that Termplot

Recode, Treat Occupation as A Categorical Variable

- Create a new "factor" variable occupationf, that assigns labels to the categories.
- When there are 6 occupational categories, the usual approach creates 5 "dummy variables"
- In R, those 5 dummy variables are created automatically, called "treatment contrasts"
- "first" level of factor (or designated level) is excluded, and rest of levels are "dummied up"

What is R Doing with "occupationf'?

■ R's system of "factor" variables is intended to make this "automatic". Regression procedures create "contrasts" "on the fly".
■ The factor "occupationf" is converted thus

	Sales	Clerical	Service	Professional	Other
Management	0	0	0	0	0
Sales	1	0	0	0	0
Clerical	0	1	0	0	0
Service	0	0	1	0	0
Professional	0	0	0	1	0
Other	0	0	0	0	1

- So the fitted model for 6 categories is

$$
\begin{equation*}
{\widehat{\text { wages }_{i}}=\hat{b}_{0}+\hat{b}_{1} \text { Sales }_{i}+\hat{b}_{2} \text { Clerical }_{i}+\hat{b}_{3} \text { Service }_{i}+\hat{b}_{4} \text { Professional }_{i}+\hat{b}_{5} \text { Other }_{i}, \text { }}_{\text {and }} \tag{2}
\end{equation*}
$$

- Maybe I should make this easier to remember

$$
\begin{aligned}
& \widehat{\text { wages }}_{i}=\hat{b}_{0}+\hat{b}_{\text {Sales }^{\prime}} \text { Sales }_{i}+\hat{b}_{\text {Clerical }} \text { Clerical }_{i} \\
& +\hat{b}_{\text {Service }} \text { Service }_{i}+\hat{b}_{\text {Prof }} \text { Professional }_{i}+\hat{b}_{\text {Other }} \text { Other }_{i}
\end{aligned}
$$

Fitted Regression Model with Categorical Predictor

	M1	
	Estimate	(S.E.)
(Intercept)	$12.704^{* * *}$	(0.630)
occupationfSales	$-5.111^{* * *}$	(0.986)
occupationfClerical	$-5.281^{* * *}$	(0.789)
occupationfService	$-6.167^{* * *}$	(0.813)
occupationfProfessional	-0.757	(0.778)
occupationfOther	$-4.278^{* * *}$	(0.733)
N	534	
RMSE	4.675	
R^{2}	0.180	
adj R^{2}	0.173	

$$
* p \leq 0.05 * * p \leq 0.01 * * * p \leq 0.001
$$

Management is the "baseline". Calculate Predicted Values:
$\hat{y}_{\text {Management }}=\hat{b}_{0}=12.704 \quad \hat{y}_{\text {Sales }}=\hat{b}_{0}+\hat{b}_{\text {Sales }}=12.704-5.11=7.59$
$\hat{y}_{\text {Service }}=12.704-6.167=6.537$

Interpret that Termplot

Contrasts:

■ The default treats the "lowest" score-the first "level"-as a "baseline" category.

- Meaning: There is no "dummy" variable for that. It is "in" the intercept.
- All other categories are compared against that one.

Does the occupationf "Belong" in the Model

■ Obviously Yes: "occupationf" makes a difference-some categories matter

- Formally test with F test, where null is that none of the differences are non-zero.

$$
\begin{equation*}
H_{0}: \hat{b}_{\text {Sales }}=\hat{b}_{\text {Clerical }}=\hat{b}_{\text {Service }}=\hat{b}_{\text {Professional }}=\hat{b}_{\text {Other }}=0 \tag{3}
\end{equation*}
$$

- Compare the fitted model against a model that has only the intercept
- That's the F test that is reported with most regression models.

```
summary (mod2)
```


Does the occupationf "Belong" in the Model ...

```
Call:
Im(formula = wage ~ occupationf, data = dat)
Residuals:
    Min 1Q Median 3Q Max
-11.704 -3.041 -1.037 2.296 31.796
Coefficients:
(Intercept)
occupationfSales
occupationfClerical
occupationfService
occupationfProfessional
occupationfOther
\begin{tabular}{rrrrrr} 
Estimate & Std. Error & t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) & \\
12.7040 & 0.6304 & 20.154 & \(<2 \mathrm{e}-16\) & \(* * *\) \\
-5.1114 & 0.9861 & -5.183 & \(3.11 \mathrm{e}-07\) & \(* * *\) \\
-5.2814 & 0.7891 & -6.693 & \(5.59 \mathrm{e}-11\) & \(* * *\) \\
-6.1665 & 0.8128 & -7.587 & \(1.49 \mathrm{e}-13\) & \(* * *\) \\
-0.7566 & 0.7781 & -0.972 & 0.331 & \\
-4.2775 & 0.7331 & -5.835 & \(9.40 \mathrm{e}-09\) & \(* * *\)
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.675 on 528 degrees of freedom
Multiple R R
F-statistic: 23.22 on 5 and 528 DF, p-value: < 2.2e-16
```


Does the occupationf "Belong" in the Model

- R's anova function provides a conventional "analysis of variance table".

```
anova(mod2, test="F")
```

```
Analysis of Variance Table
Response: wage
    Df Sum Sq Mean Sq F value Pr(>F)
occupationf 
Residuals 528 11539.0 21.85
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 ' ' 1
```


Outline

1 Basics

- Dichotomy
- Multichotomy (Polychotomy?)
- Simplify the Coding

2 Coding Schemes

- G-1 is Over-rated
- You Want G Parameters? You Got It!
- Same True With G Categories

3 Effects Coding

But Do We Really Need All Those Parameters?

- Glance at the estimated slope coefficients.

■ I suspect the middle 3 categories have "about the same" effect

Hypothesis Testing Procedure

■ F test

- $H_{0}: b_{\text {sales }}=b_{\text {service }}=b_{\text {clerical }}$

■ Estimate "full" or "unrestricted" model with all of the category dummies included

- Estimate "partial" or "restricted" model with restriction imposed.
- Compare the fit, F test indicates whether estimates $\hat{b}_{\text {sales }}, \hat{b}_{\text {service }}$, $\hat{b}_{\text {clerical }}$, are "statistically significantly different" from one another.
- Slang: is "predictive power" lost by restriction?

Test $\hat{b}_{\text {Sales }}=\hat{b}_{\text {Clerical }}=\hat{b}_{\text {Service }}$

- Testing the restriction that the wage effect for three groups is achieved by recoding occupationf variable
■ All "Sales" "Clerical" and "Service" observations re-coded 1 on new category "sales/clerical/service"

	M1	
	Estimate	$($ S.E. $)$
(Intercept)	$12.704^{* * *}$	(0.630)
occupationf2sales/clerk/serv	$-5.589^{* * *}$	(0.705)
occupationf2Professional	-0.757	(0.778)
occupationf2Other	$-4.278^{* * *}$	(0.733)
N	534	
RMSE	4.675	
R^{2}	0.177	
$\operatorname{adj} R^{2}$	0.172	
$\quad * p \leq 0.05 * * p \leq 0.01 * * p \leq 0.001$		

And the F test result is (drumroll please)

$$
\begin{aligned}
& \text { anova (mod3, mod2, test="F") } \\
& \left.\begin{array}{|llllll}
\text { Analysis of Variance Table } \\
\text { Model } & 1: & \text { wage } \sim \text { occupationf2 } \\
\text { Model } & 2: & \text { wage } \sim \text { occupationf } \\
\text { Res.Df } & \text { RSS } & \text { Df Sum of Sq } \\
1 & 530 & 11584 & & & \\
2 & 528 & 11539 & 2 & 45.529 & 1.0417
\end{array}\right) 0.3536
\end{aligned}
$$

What if I merge "Management" and "Professional"?

- Appears to me $\hat{y}_{\text {Professional }}$ and $\hat{y}_{\text {Management }}$ are not all that different.
- Suppose $H_{0}: b_{\text {Professional }}=0$ and $b_{\text {sales }}=b_{\text {service }}=b_{\text {clerical }}$
- Then we create an even simpler variable, which leads to 2 "dummy" variables

	sales/clerk/serv	Other
manag/prof	0	0
sales/clerk/serv	1	0
Other	0	1

And the Regression on that Simpler Set of Contrasts is

	M1	
	Estimate	(S.E.)
(Intercept)	$12.207^{* * *}$	(0.370)
occupationf2sales/clerk/serv	$-5.092^{* * *}$	(0.487)
occupationf2Other	$-3.781^{* * *}$	(0.526)
N	534	
RMSE	4.675	
R^{2}	0.176	
adj R^{2}	0.172	
$\quad * p \leq 0.05 * * p \leq 0.01 * * * p \leq 0.001$		

And The F Test says

- Compare the "full" fitted model with all 5 category differences estimated
- With the restricted model

```
anova( mod4, mod2, test="F")
```

```
Analysis of Variance Table
Model 1: wage ~ occupationf2
Model 2: wage ~ occupationf
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 531 11605
2 528 11539 3 66.19 1.0096 0.3881
```

Conclusion: Does not appear the model with 3 categories (intercept +2 group contrasts) has a worse statistical fit.

Outline

1 Basics

- Dichotomy
- Multichotomy (Polychotomy?)
- Simplify the Coding

2 Coding Schemes
■ G-1 is Over-rated

- You Want G Parameters? You Got It!
- Same True With G Categories

3 Effects Coding

What To Do with a G-Category Nominal Variable?

- If there are G categories,
- Texts usually say "regression can provide parameter estimates for G-1 categories"
- Strinctly Speaking, that's wrong.
- It is only true if you include an Intercept in your regression

■ Drop the intercept, you can have G category estimates!

Lets Talk About Sex (again!)

■ Recall, the data has a categorical "sex" (M or F) and we can create "dummy" variables for females and males.

id	constant	sex	femd	maled
1	1	M	0	1
2	1	F	1	0
3	1	F	1	0
4	1	M	0	1
\vdots			\vdots	

■ You agree, don't you, that:
■ We get essentially the same model if we fit a dummy variable for "female" or for "male", right?

- $\hat{y}_{i}=\hat{b}_{0}+\hat{b}_{1} \cdot$ femd $_{i}$ treats "male" as baseline and \hat{b}_{1} is the difference for females
- $\hat{y}_{i}=\hat{b}_{0}+\hat{b}_{1} \cdot$ maled $_{i}$ treats "female" as baseline and \hat{b}_{1} is the difference for males

Outline

1 Basics

- Dichotomy
- Multichotomy (Polychotomy?)
- Simplify the Coding

2 Coding Schemes

- G-1 is Over-rated

■ You Want G Parameters? You Got It!

- Same True With G Categories

3 Effects Coding

Drop the Intercept? Intriguing!

- Drop the intercept? G categories -> G parameter estimates

■ Im(y ~ $-1+$ sex) : fits no intercept, estimates parameters for both males and females

sexF	$\operatorname{sex} M$
0	1
1	0

- And that is "essentially the same model" as either of the others.

Problem comes back to Multicollinearity

- See why you can't estimate this:

Im ($\mathrm{y} \sim \mathrm{femd}+$ maled $)$

- R automatically inserts an "intercept" coefficient for you, so

constant	femd	maled
1	0	1
1	1	0
1	1	0
1	0	1

Im ($\mathrm{y} \sim 1+$ femd + maled $)$
■ Leading to the design matrix on right: perfect collinearity between constant, femd and maled

- Your options:
- include a constant and either femd or maled

■ remove the constant and estimate femd and maled

Better Check that with the Chile Data

- Traditional model, sexM

$$
\text { chile } 1 \mathrm{M}<-\operatorname{lm}(\text { statusquo } \sim \text { sex, data=Chile })
$$

- Traditional model, sexF

$$
\begin{aligned}
& \text { Chile\$sex <- relevel(Chile\$sex, ref="M") } \\
& \text { chile1F <-Im(statusquo } \sim \text { sex, data=Chile })
\end{aligned}
$$

- No Intercept Model

$$
\text { chile1NI <- Im(statusquo } \sim-1+\text { sex, data=Chile })
$$

3 Fits Side By Side

	M Estimate (S.E.)	F Estimate (S.E.)	No Int. Estimate (S.E.)
(Intercept)	$\begin{aligned} & \hline \hline 0.066^{*} \\ & (0.027) \end{aligned}$	$\begin{aligned} & \hline \hline-0.068^{*} \\ & (0.028) \end{aligned}$	
sexM	$\begin{aligned} & -0.134^{* * *} \\ & (0.039) \end{aligned}$.	$\begin{aligned} & -0.068^{*} \\ & (0.028) \end{aligned}$
sexF	(0.039)	$\begin{aligned} & 0.134 * * * \\ & (0.039) \end{aligned}$	$\begin{aligned} & 0.066^{*} \\ & (0.027) \end{aligned}$
N	2683	2683	2683
RMSE	0.998	0.998	0.998
R^{2}	0.004	0.004	0.004
$\operatorname{adj} R^{2}$	0.004	0.004	0.004

L You Want G Parameters? You Got It!

Vital: The Predicted Values Are IDENTICAL!

chile1F <- Im(statusquo ~sex, data=Chile)

$$
\begin{aligned}
& \text { chile1NI <- Im(statusquo } \sim-1 \\
& \quad+\text { sex, data=Chile })
\end{aligned}
$$

I mean Predictions are Completely IDENTICAL! Check the

 first few cases```
head(predict(chile1F))
```

| 1 | 2 | 3 | 4 |  |
| :---: | :---: | :---: | :---: | :---: |
| -0.06835453 | -0.06835453 | 0.06570627 | 0.06570627 | 0 |
| .06570627 | 0.06570627 |  |  |  |

head(predict(chile1NI))

| 1 | 2 | 3 | 4 |  |
| :---: | :---: | :---: | :---: | :---: |
| -0.06835453 | -0.06835453 | 0.06570627 | 0.06570627 | 0 |
| .06570627 | 0.06570627 |  |  |  |

## Outline

1 Basics

- Dichotomy
- Multichotomy (Polychotomy?)
- Simplify the Coding

2 Coding Schemes

- G-1 is Over-rated
- You Want G Parameters? You Got It!
- Same True With G Categories

3 Effects Coding

## So, if a Categorical IV has 5 "levels" (as R would call them)

- We can estimate 4 parameters for levels and 1 for intercept
- Or we can suppress intercept and estimate 5 parameters for 5 levels


## Treatment Contrasts=="dummy" codes

- Colloquial: Dummy Variable Coding
- R calls this "treatment contrasts"

| id | Religion | Rel.Cath | Rel.Prot | Rel.Musl | Rel.Hindu | Rel.Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Cath | 1 | 0 | 0 | 0 | 0 |
| 2 | Prot | 0 | 1 | 0 | 0 | 0 |
| 3 | Musl | 0 | 0 | 1 | 0 | 0 |
| 4 | Hindu | 0 | 0 | 0 | 1 | 0 |
| 5 | Other | 0 | 0 | 0 | 0 | 1 |
| 6 | $\vdots$ |  |  |  |  |  |

## Regression with Treatment Contrasts

- $\hat{y}_{i} \sim \hat{b}_{0}+\hat{b}_{1}$ Rel.Prot $_{i}+\hat{b}_{2}$ ReI.Musl $_{i}+\hat{b}_{3}$ Rel. $^{\text {Hindu }}{ }_{i}+\hat{b}_{4}$ Rel. $^{\text {Other }}{ }_{i}$

■ "Catholic" is "left out?" Not really

- Predicted value for members of
- Catholic is $\hat{b}_{0}$
- Protestant is $\hat{b}_{0}+\hat{b}_{1}$
- Muslim is $\hat{b}_{0}+\hat{b}_{2}$
- Hindu is $\hat{b}_{0}+\hat{b}_{3}$
- Other is $\hat{b}_{0}+\hat{b}_{4}$
- Interpret individual coefficients
- $\hat{b}_{1}$ : difference in predicted value for Protestant (as opposed to Catholic).
- $\hat{b}_{2}$ : difference in predicted value for Muslim (as compared against Catholic)


## Any Group Can Serve as the Baseline

- Can make "Hindu" the baseline group.
- All estimates treat Hindu as "baseline" and other estimates are differences in prediction against Hindu category
- Model predictions and fit indices are still IDENTICAL to other "Catholic baseline" model.
- If there are no other predictors in the model, the $\hat{b}_{j}^{\prime} s$ are simply related to the observed group means (since predicted value is "mean" of $y$ for category members).


## Remember $\hat{y}$ is the same, no matter how you code these Predictor Contrasts

- Changing "dummy codes" or "baseline group" alters the $\hat{b}$ estimates
- It does not alter the essential meaning of the model

■ Like saying "I am average in height" and "my height is the average plus 0 " or "my height is 36 inches plus one-half of the average"

## Effects Coding (Unweighted)

- Terminology is "new to me" in Cohen, et al.

■ Re-code the religion variable like so (for "omitted" category, put -1 all the way across)

| id | Religion | Rel.Cath | Rel.Prot | Rel.Musl | Rel.Hindu | Rel.Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Cath | -1 | -1 | -1 | -1 | -1 |
| 2 | Prot | 0 | 1 | 0 | 0 | 0 |
| 3 | Musl | 0 | 0 | 1 | 0 | 0 |
| 4 | Hindu | 0 | 0 | 0 | 1 | 0 |
| 5 | Other | 0 | 0 | 0 | 0 | 1 |
| 6 | $\vdots$ |  |  |  |  |  |

- Called "sum-to-zero" contrasts in other contexts.
- We will fit a regression that does not include Rel.Cath $\hat{y}_{i} \sim \hat{b}_{0}+\hat{b}_{1}$ Rel. Prot $_{i}+\hat{b}_{2}$ Rel.Musl $_{i}+\hat{b}_{3}$ Rel $^{\prime}$ Hindu $_{i}+\hat{b}_{4}$ Rel $^{\text {.Other }}{ }_{i}$
- Still get $\hat{b}$ 's as comparisons, but now comparing against a different baseline.


## Design Matrix

The "design matrix":
The "design matrix":

| Const | Cath | P | M | H | Oth |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | -1 | -1 | -1 | -1 |
| 1 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 | 1 |
| $\vdots$ |  |  |  |  |  |
| T |  |  |  |  |  |

- a 1 for its "own" group
- Except Catholics, who get -1

But "Cath" is omitted from
the fitted report

## Where does the Intercept get pushed to?

- Answer: Intercept=mean of group means on $y$

$$
\begin{equation*}
\hat{b}_{0}=\frac{1}{5}\left\{\bar{Y}_{1}+\bar{Y}_{2}+\bar{Y}_{3}+\bar{Y}_{4}+\bar{Y}_{5}\right\} \tag{5}
\end{equation*}
$$

- Called "unweighted effects coding" because the means of the groups are averaged, no matter how many observations there are in each group.
- In order to believe that, I had to run some examples.


## Chile Regions: First get the means

- The mean values of "statusquo" for the regions are

\[

\]

$$
3
$$

■ Now calculate the "mean of the means" (no weights)
[1] 0.07558161
0.076 is a "magic number". Watch out for it later

## Suppress the Intercept: Estimate 5 Params for 5 Regions

```
modr1 <- Im(statusquo ~ -1 + region, data=Chile)
outreg(modr1, tight=FALSE, showAIC=F)
```

M1

|  | Estimate | $($ S.E. $)$ |
| :--- | :--- | :--- |
| regionC | -0.030 | $(0.040)$ |
| regionM | $0.287^{* *}$ | $(0.099)$ |
| regionN | $0.136^{*}$ | $(0.055)$ |
| regionS | $0.165^{* * *}$ | $(0.037)$ |
| regionSA | $-0.180^{* * *}$ | $(0.032)$ |
| N | 2683 |  |
| RMSE | 0.989 |  |
| $R^{2}$ | 0.024 |  |
| $\operatorname{adj} R^{2}$ | 0.022 |  |
| $* p \leq 0.05 * * p \leq 0.01 * * * p \leq 0.001$ |  |  |

## Include the Intercept, Estimate (default) Treatment Contrasts

```
modr2 <- Im (statusquo ~region, data=Chile, \(x=T\),
 \(y=T\))
outreg(modr2, tight=FALSE, showAIC=F)
```

M1

|  | Estimate | $($ S.E. $)$ |
| :--- | :--- | :--- |
| (Intercept) | -0.030 | $(0.040)$ |
| regionM | $0.317^{* *}$ | $(0.107)$ |
| regionN | $0.165^{*}$ | $(0.068)$ |
| regionS | $0.195^{* * *}$ | $(0.055)$ |
| regionSA | $-0.150^{* *}$ | $(0.052)$ |
| N | 2683 |  |
| RMSE | 0.989 |  |
| $R^{2}$ | 0.024 |  |
| adj $R^{2}$ | 0.023 |  |
| $* p \leq 0.05 * * p \leq 0.01 * * * p \leq 0.001$ |  |  |

## Those Default Contrasts Were

```
contrasts(Chile$region)
```

|  | $M$ | $N$ | $S$ | SA |
| :--- | :--- | :--- | :--- | ---: |
| C | 0 | 0 | 0 | 0 |
| M | 1 | 0 | 0 | 0 |
| N | 0 | 1 | 0 | 0 |
| S | 0 | 0 | 1 | 0 |
| SA | 0 | 0 | 0 | 1 |

## Ask R to use "sum-to-zero" contrasts (aka Unweighted Effects)

```
options(contrasts=c("contr.sum", "contr.poly"))
contrasts(Chile$region)
```

|  | $[, 1]$ | $[, 2]$ | $[, 3]$ | $[, 4]$ |
| :--- | ---: | ---: | ---: | ---: |
| C | 1 | 0 | 0 | 0 |
| M | 0 | 1 | 0 | 0 |
| N | 0 | 0 | 1 | 0 |
| S | 0 | 0 | 0 | 1 |
| SA | -1 | -1 | -1 | -1 |

- Note, the default makes the "last" category, SA, the reference category. Will have to fix that later.


## Fitted model with Effects Contrasts

|  | M1 |  |
| :--- | :--- | :--- |
|  | Estimate | (S.E.) |
| (Intercept) | $0.076^{* *}$ | $(0.026)$ |
| region1 | $-0.105^{* *}$ | $(0.041)$ |
| region2 | $0.211^{* *}$ | $(0.081)$ |
| region3 | 0.060 | $(0.050)$ |
| region4 | $0.089^{*}$ | $(0.039)$ |
| N | 2683 |  |
| RMSE | 0.989 |  |
| $R^{2}$ | 0.024 |  |
| adj $R^{2}$ | 0.023 |  |
| $* p \leq 0.05 * * p \leq 0.01 * * * p \leq 0.001$ |  |  |

- Unfortunately, we lose the region labels here, but they are $1=\mathrm{C}$, $2=\mathrm{M}, 3=\mathrm{N}, 4=\mathrm{S}$


## I Had Trouble figuring this Out

- Some patience required :)
- Note the Effects Coding intercept is 0.076 , same as "mean of category means"
- Calculate the difference between the observed means and 0.076

|  | region | $\times$ | diff |
| ---: | ---: | ---: | ---: |
| 1 | $C$ | -0.02983546 | -0.10541707 |
| 2 | $M$ | 0.28677120 | 0.21118959 |
| 3 | N | 0.13556488 | 0.05998327 |
| 4 | S | 0.16496487 | 0.08938326 |
| 5 | SA | -0.17955745 | -0.25513905 |

Note those differences exactly reproduce the $\hat{b}$ estimates from the unweighted effects model.

## I wish C were the Omitted Category

- Create a new factor "region2" in which levels are ordered (M, N, S, SA, C)
- That forces values for cases in C to -1 for all contrasts

|  | $[, 1]$ | $[, 2]$ | $[, 3]$ | $[, 4]$ |
| :--- | ---: | ---: | ---: | ---: |
| M | 1 | 0 | 0 | 0 |
| N | 0 | 1 | 0 | 0 |
| S | 0 | 0 | 1 | 0 |
| SA | 0 | 0 | 0 | 1 |
| C | -1 | -1 | -1 | -1 |

## Re-fit with "C" as the reference

|  | M1 |  |
| :--- | :--- | :--- |
|  | Estimate | $($ S.E. $)$ |
| (Intercept) | $0.076^{* *}$ | $(0.026)$ |
| region21 | $0.211^{* *}$ | $(0.081)$ |
| region22 | 0.060 | $(0.050)$ |
| region23 | $0.089^{*}$ | $(0.039)$ |
| region24 | $-0.255^{* * *}$ | $(0.036)$ |
| N | 2683 |  |
| RMSE | 0.989 |  |
| $R^{2}$ | 0.024 |  |
| adj $R^{2}$ | 0.023 |  |
| $* p \leq 0.05 * * p \leq 0.01 * * p \leq 0.001$ |  |  |

## Interpretation benefit to the $\hat{b}$ 's

- One can scan down the parameter estimates to see if one category is above the unweighted mean
- Unclear to me why one would want to do that, but one can, if one wants to


## But they are all Fundamentally the same

| No Intercept |  | Treatment |  | Effects |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | M1 |  | M1 |  | M1 |
|  | $\begin{aligned} & \text { Estimate } \\ & \text { (S.E.) } \\ & \hline \hline \end{aligned}$ |  | $\begin{aligned} & \text { Estimate } \\ & \text { (S.E.) } \end{aligned}$ |  | $\begin{aligned} & \text { Estimate } \\ & \text { (S.E.) } \end{aligned}$ |
| regionC | -0.030 | (Intercept) | -0.030 | (Intercept) | 0.076** |
|  | (0.040) |  | (0.040) |  | (0.026) |
| regionM | 0.287** | regionM | 0.317** | region21 | 0.211** |
|  | (0.099) |  | (0.107) |  | (0.081) |
| regionN | 0.136* | regionN | 0.165* | region22 | 0.060 |
|  | (0.055) |  | (0.068) |  | (0.050) |
| regionS | 0.165*** | regionS | 0.195*** | region23 | 0.089* |
|  | (0.037) |  | (0.055) |  | (0.039) |
| regionSA | -0.180*** | regionSA | -0.150** | region24 | -0.255*** |
|  | (0.032) |  | (0.052) |  | (0.036) |
| N | 2683 | N | 2683 | N | 2683 |
| RMSE | 0.989 | RMSE | 0.989 | RMSE | 0.989 |
| $R^{2}$ | 0.024 | $R^{2}$ | 0.024 | $R^{2}$ | 0.024 |
| adj $R^{2}$ | 0.022 | adj $R^{2}$ | 0.023 | adj $R^{2}$ | 0.023 |
| $\leq 0.05$ | $p \leq 0.01$ | 0forr $0.05 *$ | $p \leq 0.01 *$ | < 9poot 0.05 | $p \leq 0.01$ ** |

## Predicted Values for all Rows are Identical. Same, Equivalent, Interchangeable

- Note predicted values for all regions are same

|  | region | Nolnt | Treatment | Effects |
| ---: | ---: | ---: | ---: | ---: |
| 1 | C | -0.02983546 | -0.02983546 | -0.029835446 |
| 2 | $M$ | 0.28677120 | 0.28677120 | 0.28677120 |
| 3 | N | 0.13556488 | 0.13556488 | 0.13556488 |
| 4 | S | 0.16496487 | 0.16496487 | 0.16496487 |
| 5 | SA | -0.17955745 | -0.17955745 | -0.17955745 |

■ R's "all.equal" verifies that the predictions for each row in data are same.
all.equal(predict(modr1), predict(modr2), predict( modr3))
[1] TRUE

## The Standard Errors of the $\hat{b}$ Only Appear to Differ

- The standard errors are different, but
- That's only because they are estimating different things!
- Std.Err. ( $\hat{b}$ ) varies because each model reports an estimate of a different value
- The No Intercept model estimates a "total effect" value for each region
- The Treatment Contrast model estimates

■ one "total effect" for baseline

- difference for each region against baseline
- Effects Contrasts estimate

■ one unweighted mean

- differences for each region against that


## Consider Region S

- No Intercept model $\hat{b}_{S}=0.165$, Std. $\operatorname{Err}\left(\hat{b}_{S}\right)=0.037$
- Treatment Contrasts, $\hat{b}_{S}=0.195, \operatorname{Std} . \operatorname{Err}\left(\hat{b}_{s}\right)=0.055$
- Effects Contrasts, $\hat{b}_{S}=0.089$, Std.Err. $\left(\hat{b}_{S}\right)=0.039$

■ From Treatment, can re-construct estimate for "total S region effect"

$$
\begin{equation*}
\hat{b}_{0}+\hat{b}_{S} \text { with Std.Err. }\left(\sqrt{\operatorname{Var}\left(\hat{b}_{0}\right)+\operatorname{Var}\left(\hat{b}_{S}\right)+2 \operatorname{Cov}\left(\hat{b}_{0}, \hat{b}_{S}\right)}\right) \tag{6}
\end{equation*}
$$

- Inserting values from the Covariance of the $\hat{b}$ from Treatment gives 0.037

■ Do same with Effects Contrasts, get standard error of 0.037

## My 'Take Away" Message

- Regression is a "vehicle" with which to calculate predicted values
- Many equivalent "design matrices" can be used to calculate same predicted values
- Comfort with one method or its estimates b's drives the selection of one's approach. There is no "real" methodological difference between the two.
- Often choose approach so that "free t-tests" with regression output are testing the most meaningful questions.

