▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Categorical Predictors 1

Paul E. Johnson¹²

¹Department of Political Science

²Center for Research Methods and Data Analysis, University of Kansas

2014

2/64

Introduction

1 Basics

- Dichotomy
- Multichotomy (Polychotomy?)
- Simplify the Coding

2 Coding Schemes

- G-1 is Over-rated
- You Want G Parameters? You Got It!
- Same True With G Categories

3 Effects Coding

- Basics: Before I get too carried away
- Categorical Coding: Which Dummy is Right for you?
- Differences among approaches are Superficial

C	Categorical	

Outline

1 Basics

Dichotomy

- Multichotomy (Polychotomy?)
- Simplify the Coding

2 Coding Schemes

- G-1 is Over-rated
- Vou Want G Parameters? You Got It!
- Same True With G Categories

3 Effects Coding

- Basics

L Dichotomy

Let's Talk About Sex

- Sex is coded "M" for male or "F" for female
- "manually" create two dummy variables, "femd" and "maled"
- These are numeric, 0 or 1 (or maybe -1 and 1).
- In SAS (or Stata), one then fits a model using "femd" or "maled" as a predictor.

id	constant	sex	femd	maled
1	1	М	0	1
2	1	F	1	0
3	1	F	1	0
4	1	М	0	1
:			÷	

Im (y \sim sex)

fits

- (implicitly) asks for an intercept, plus
- an "intercept shift" parameter for a contrast variable for males it calls "sexM".
- R automatically creates a "contrast" variable, a 0, 1 "dummy" variable for male

L Dichotomy

Example: statusquo support in the 1988 Chile Data

$$library(car) \mod 1 \ll library(car)$$

 $mod1 \ll lm(statusquo \sim sex, data=Chile)$
 $summary(mod1)$

	M1		
	Estimate (S.E.		
(Intercept)	0.066*	(0.027)	
sexM	-0.134***	(0.039)	
N	2683		
RMSE	0.998		
R^2	0.004		

 $*p \le 0.05 ** p \le 0.01 *** p \le 0.001$

Sex Contrast Default and Interpretation

R's design matrix that looks like this:

$$\begin{array}{c} constant & sexM \\ 1 & 1 \\ X = & 1 & 0 \\ 1 & 0 \\ \vdots \end{array} \tag{1}$$

- Why "M"? Female becomes "baseline" (in the intercept) because it is alphabetically first (can customize that)
- Same effect as user-created "maled" variable.
- fitted intercept represents the effect of "being human" (or "being in the data set")
- b̂₁sexM; the "difference" effect that distinguishes males from other humans
- Model's predicted value is $\widehat{statusquo}_i = \hat{b}_0 + \hat{b}_1 sexM$, so for Females predict \hat{b}_0 and for males predict $\hat{b}_0 + \hat{b}_1$.

Regression Equivalent to a "t-test for means"

The "t test for means" calculates the averages within groups and calculates a t value for the difference.

by(Chile\$statusquo, Chile\$sex, mean, na.rm = TRUE)

```
Chile$sex: F
[1] 0.06570627
```

```
Chile$sex: M
[1] -0.06835453
```

t.test (statusquo \sim sex , var.equal=TRUE, data=Chile

```
Categorical 1
```

Basics

L Dichotomy

Regression Equivalent to a "t-test for means" ...

```
Two Sample t-test
data: statusquo by sex
t = 3.4779, df = 2681, p-value = 0.0005135
alternative hypothesis: true difference in means is
    not equal to 0
95 percent confidence interval:
    0.05847624 0.20964537
sample estimates:
mean in group F mean in group M
        0.06570627 -0.06835453
```

Note the Regression intercept and slope re-produce means as predicted values.

Outline

1 Basics

Dichotomy

Multichotomy (Polychotomy?)

Simplify the Coding

2 Coding Schemes

- G-1 is Over-rated
- Vou Want G Parameters? You Got It!
- Same True With G Categories

3 Effects Coding

Multichotomy (Polychotomy?)

Occupation in the wages data set

As provided, wages has occupation coded as a numeric variable.

1	2	3	4	5	6
Management	Sales	Clerical	Service	Professional	Other

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

└─ Multichotomy (Polychotomy?)

See Why it is Wrong to treat that as Numeric, Right?

$mod1 <- lm(wage \sim occupation, data=dat)$

	M1		
	Estimate (S.E.)		
(Intercept)	9.656***	(0.600)	
occupation	-0.152	(0.134)	
Ν	534		
RMSE	5.138		
R^2	0.002		

 $*p \le 0.05 ** p \le 0.01 *** p \le 0.001$

└─ Multichotomy (Polychotomy?)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Recode, Treat Occupation as A Categorical Variable

- Create a new "factor" variable occupationf, that assigns labels to the categories.
- When there are 6 occupational categories, the usual approach creates 5 "dummy variables"
- In R, those 5 dummy variables are created automatically, called "treatment contrasts"
- "first" level of factor (or designated level) is excluded, and rest of levels are "dummied up"

└─ Multichotomy (Polychotomy?)

What is R Doing with "occupationf"?

- R's system of "factor" variables is intended to make this "automatic". Regression procedures create "contrasts" "on the fly".
- The factor "occupationf" is converted thus

	Sales	Clerical	Service	Professional	Other
Management	0	0	0	0	0
Sales	1	0	0	0	0
Clerical	0	1	0	0	0
Service	0	0	1	0	0
Professional	0	0	0	1	0
Other	0	0	0	0	1

So the fitted model for 6 categories is

$$\widehat{wages}_{i} = \hat{b}_{0} + \hat{b}_{1}Sales_{i} + \hat{b}_{2}Clerical_{i} + \hat{b}_{3}Service_{i} + \hat{b}_{4}Professional_{i} + \hat{b}_{5}Other_{i}$$
(2)

Maybe I should make this easier to remember

$$\widehat{wages}_{i} = \hat{b}_{0} + \hat{b}_{Sales}Sales_{i} + \hat{b}_{Clerical}Clerical_{i} + \hat{b}_{Service}Service_{i} + \hat{b}_{Prof}Professional_{i} + \hat{b}_{Other}Other_{i}$$

Multichotomy (Polychotomy?)

Fitted Regression Model with Categorical Predictor

	M1	
	Estimate	(S.E.)
(Intercept)	12.704***	(0.630)
occupationfSales	-5.111***	(0.986)
occupationfClerical	-5.281***	(0.789)
occupationfService	-6.167***	(0.813)
occupationfProfessional	-0.757	(0.778)
occupationfOther	-4.278***	(0.733)
N	534	
RMSE	4.675	
R^2	0.180	
adj R ²	0.173	

 $\begin{array}{r} *p \leq 0.05 ** p \leq 0.01 *** p \leq 0.001 \\ \mbox{Management is the "baseline". Calculate Predicted Values:} \\ \hat{y}_{Management} = \hat{b}_0 = 12.704 \qquad \hat{y}_{Sales} = \hat{b}_0 + \hat{b}_{Sales} = 12.704 - 5.11 = 7.59 \\ \hat{y}_{Service} = 12.704 - 6.167 = 6.537 \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Multichotomy (Polychotomy?)

Interpret that Termplot

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Contrasts:

- The default treats the "lowest" score-the first "level"-as a "baseline" category.
 - Meaning: There is no "dummy" variable for that. It is "in" the intercept.
- All other categories are compared against that one.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Does the occupationf "Belong" in the Model

- Obviously Yes: "occupationf" makes a difference-some categories matter
- Formally test with F test, where null is that none of the differences are non-zero.

$$H_0: \hat{b}_{Sales} = \hat{b}_{Clerical} = \hat{b}_{Service} = \hat{b}_{Professional} = \hat{b}_{Other} = 0$$
 (3)

Compare the fitted model against a model that has only the interceptThat's the F test that is reported with most regression models.

summary(mod2)

Basics

└─ Multichotomy (Polychotomy?)

Does the occupationf "Belong" in the Model ...

```
Call
lm(formula = wage \sim occupationf, data = dat)
Residuals.
   Min 1Q Median 3Q
                                 Max
-11.704 -3.041 -1.037 2.296 31.796
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      12 7040
                                  0.6304 20.154 < 2e-16 ***
occupationfSales
                     -5.1114
                                  0.9861 -5.183 3.11e-07 ***
occupationfClerical -5.2814
                                  0.7891 -6.693 5.59e-11 ***
                   -6.1665 0.8128 -7.587 1.49e-13 ***
occupationfService
occupationfProfessional -0.7566
                                  0.7781 -0.972
                                                  0.331
occupationfOther
                -4 2775
                                  0 7331 -5 835 9 40e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.675 on 528 degrees of freedom
Multiple R^2: 0.1803, Adjusted R^2: 0.1725
F-statistic: 23.22 on 5 and 528 DF, p-value: < 2.2e-16
```

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Does the occupationf "Belong" in the Model

 R's anova function provides a conventional "analysis of variance table".

```
anova(mod2, test="F")
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

└─ Simplify the Coding

Outline

1 Basics

- Dichotomy
- Multichotomy (Polychotomy?)
- Simplify the Coding

2 Coding Schemes

- G-1 is Over-rated
- Vou Want G Parameters? You Got It!
- Same True With G Categories

3 Effects Coding

Basics

└─ Simplify the Coding

But Do We Really Need All Those Parameters?

- Glance at the estimated slope coefficients.
- I suspect the middle 3 categories have "about the same" effect

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Simplify the Coding

Hypothesis Testing Procedure

- F test
- H₀ : b_{sales} = b_{service} = b_{clerical}
- Estimate "full" or "unrestricted" model with all of the category dummies included
- Estimate "partial" or "restricted" model with restriction imposed.
- Compare the fit, F test indicates whether estimates \hat{b}_{sales} , $\hat{b}_{service}$, $\hat{b}_{clerical}$, are "statistically significantly different" from one another.
- Slang: is "predictive power" lost by restriction?

Categorical 1 Basics

Simplify the Coding

Test
$$\hat{b}_{Sales} = \hat{b}_{Clerical} = \hat{b}_{Service}$$

- Testing the restriction that the wage effect for three groups is achieved by recoding occupationf variable
- All "Sales" "Clerical" and "Service" observations re-coded 1 on new category "sales/clerical/service"

	M1	
	Estimate	(S.E.)
(Intercept)	12.704***	(0.630)
occupationf2sales/clerk/serv	-5.589***	(0.705)
occupationf2Professional	-0.757	(0.778)
occupationf2Other	-4.278***	(0.733)
N	534	
RMSE	4.675	
R^2	0.177	
adj R ²	0.172	
< 0.0F < 0.01	< 0.001	

 $p \le 0.05 p \le 0.01 p \le 0.01 p \le 0.001$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

<u>Simplify</u> the Coding

And the F test result is (drumroll please)

```
anova(mod3, mod2, test="F")
```

```
Analysis of Variance Table
Model 1: wage ~ occupationf2
Model 2: wage ~ occupationf
Res.Df RSS Df Sum of Sq F Pr(>F)
1 530 11584
2 528 11539 2 45.529 1.0417 0.3536
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Simplify the Coding

What if I merge "Management" and "Professional"?

- Appears to me $\hat{y}_{Professional}$ and $\hat{y}_{Management}$ are not all that different.
- Suppose $H_o: b_{Professional} = 0$ and $b_{sales} = b_{service} = b_{clerical}$
- Then we create an even simpler variable, which leads to 2 "dummy" variables

	sales/clerk/serv	Other	
manag/prof	0	0	
sales/clerk/serv	1	0	
Other	0	1	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Basics

└─ Simplify the Coding

And the Regression on that Simpler Set of Contrasts is

	M1	<u>_</u>
	Estimate	(S.E.)
(Intercept)	12.207***	(0.370)
occupationf2sales/clerk/serv	-5.092***	(0.487)
occupationf2Other	-3.781***	(0.526)
N	534	
RMSE	4.675	
R^2	0.176	
adj R ²	0.172	
*p < 0.05** p < 0.01	L*** <i>p</i> < 0.001	_

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

```
Categorical 1
Basics
Simplify the Coding
```

And The F Test says

- Compare the "full" fitted model with all 5 category differences estimated
- With the restricted model

anova(mod4, mod2, test="F")

```
Analysis of Variance Table

Model 1: wage ~ occupationf2

Model 2: wage ~ occupationf

Res.Df RSS Df Sum of Sq F Pr(>F)

1 531 11605

2 528 11539 3 66.19 1.0096 0.3881
```

Conclusion: Does not appear the model with 3 categories (intercept + 2 group contrasts) has a worse statistical fit.

Outline

1 Basics

- Dichotomy
- Multichotomy (Polychotomy?)
- Simplify the Coding

2 Coding Schemes

- G-1 is Over-rated
- Vou Want G Parameters? You Got It!
- Same True With G Categories

3 Effects Coding

What To Do with a G-Category Nominal Variable?

- If there are G categories,
- Texts usually say "regression can provide parameter estimates for G-1 categories"
- Strinctly Speaking, that's wrong.
 - It is only true if you include an Intercept in your regression
 - Drop the intercept, you can have G category estimates!

Lets Talk About Sex (again!)

 Recall, the data has a categorical "sex" (M or F) and we can create "dummy" variables for females and males.

id	constant	sex	femd	maled
1	1	М	0	1
2	1	F	1	0
3	1	F	1	0
4	1	М	0	1
:				

You agree, don't you, that:

- We get essentially the same model if we fit a dummy variable for "female" or for "male", right?
- $\hat{y}_i = \hat{b}_0 + \hat{b}_1 \cdot femd_i$ treats "male" as baseline and \hat{b}_1 is the difference for females
- ŷ_i = b̂₀ + b̂₁ ⋅ maled_i treats "female" as baseline and b̂₁ is the difference for males

- ロ ト - 4 回 ト - 4 □

Outline

1 Basics

- Dichotomy
- Multichotomy (Polychotomy?)
- Simplify the Coding

2 Coding Schemes

- G-1 is Over-rated
- Vou Want G Parameters? You Got It!
- Same True With G Categories

3 Effects Coding

Drop the Intercept? Intriguing!

- \blacksquare Drop the intercept? G categories -> G parameter estimates
- Im(y ~ -1 + sex) : fits no intercept, estimates parameters for both males and females

$$\begin{array}{ccc} sexF & sexM \\ 0 & 1 \\ 1 & 0 \end{array}$$
(4)

And that is "essentially the same model" as either of the others.

Problem comes back to Multicollinearity

See why you can't estimate this:

 $lm(y \sim femd + maled)$

 R automatically inserts an "intercept" coefficient for you, so this is really

constant	femd	maled
1	0	1
1	1	0
1	1	0
1	0	1

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

lm(y~1+femd+maled)

- Leading to the design matrix on right: perfect collinearity between constant, femd and maled
 - Your options:
 - include a constant and either femd or maled
 - remove the constant and estimate femd and maled

Better Check that with the Chile Data

Traditional model, sexM

chile1M <- lm(statusquo ~ sex, data=Chile)</pre>

Traditional model, sexF

Chile\$sex <- relevel(Chile\$sex, ref="M") chile1F <- lm(statusquo ~ sex, data=Chile)

No Intercept Model

chile1NI <- $lm(statusquo \sim -1 + sex, data=Chile)$

3 Fits Side By Side

-	М	F	No Int.
	Estimate	Estimate	Estimate
	(S.E.)	(S.E.)	(S.E.)
(Intercept)	0.066*	-0.068*	
	(0.027)	(0.028)	
sexM	-0.134***		-0.068*
	(0.039)		(0.028)
sexF		0.134***	0.066*
		(0.039)	(0.027)
Ν	2683	2683	2683
RMSE	0.998	0.998	0.998
R^2	0.004	0.004	0.004
adj R ²	0.004	0.004	0.004

 $*p \le 0.05 ** p \le 0.01 *** p \le 0.001$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Coding Schemes

└─ You Want G Parameters? You Got It!

Vital: The Predicted Values Are IDENTICAL!

I mean Predictions are Completely IDENTICAL! Check the first few cases

head(predict(chile1F))

1	2	3	4	
	5	6	j	
-0.06835453	-0.06835453	0.06570627	0.06570627	0
.06570627	0.06570627			

head(predict(chile1NI))

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ④

Outline

1 Basics

- Dichotomy
- Multichotomy (Polychotomy?)
- Simplify the Coding

2 Coding Schemes

- G-1 is Over-rated
- Vou Want G Parameters? You Got It!
- Same True With G Categories

3 Effects Coding

Coding Schemes

└─ Same True With G Categories

So, if a Categorical IV has 5 "levels" (as R would call them)

- We can estimate 4 parameters for levels and 1 for intercept
- Or we can suppress intercept and estimate 5 parameters for 5 levels

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Coding Schemes

└─ Same True With G Categories

Treatment Contrasts=="dummy" codes

Colloquial: Dummy Variable Coding

R calls this "treatment contrasts"

id	Religion	Rel.Cath	Rel.Prot	Rel.Musl	Rel.Hindu	Rel.Other
1	Cath	1	0	0	0	0
2	Prot	0	1	0	0	0
3	Musl	0	0	1	0	0
4	Hindu	0	0	0	1	0
5	Other	0	0	0	0	1
6	:					

Regression with Treatment Contrasts

• $\hat{y}_i \sim \hat{b}_0 + \hat{b}_1 \text{Rel.Prot}_i + \hat{b}_2 \text{Rel.Musl}_i + \hat{b}_3 \text{Rel.Hindu}_i + \hat{b}_4 \text{Rel.Other}_i$

"Catholic" is "left out?" Not really

- Predicted value for members of
 - Catholic is \hat{b}_0
 - Protestant is $\hat{b}_0 + \hat{b}_1$
 - Muslim is $\hat{b}_0 + \hat{b}_2$
 - Hindu is $\hat{b}_0 + \hat{b}_3$
 - Other is $\hat{b}_0 + \hat{b}_4$
- Interpret individual coefficients
 - \hat{b}_1 : difference in predicted value for Protestant (as opposed to Catholic).
 - \hat{b}_2 : difference in predicted value for Muslim (as compared against Catholic)

Any Group Can Serve as the Baseline

- Can make "Hindu" the baseline group.
- All estimates treat Hindu as "baseline" and other estimates are differences in prediction against Hindu category
- Model predictions and fit indices are still IDENTICAL to other "Catholic baseline" model.
- If there are no other predictors in the model, the $\hat{b}'_j s$ are simply related to the observed group means (since predicted value is "mean" of y for category members).

Remember \hat{y} is the same, no matter how you code these Predictor Contrasts

- Changing "dummy codes" or "baseline group" alters the \hat{b} estimates
- It does not alter the essential meaning of the model
- Like saying "I am average in height" and "my height is the average plus 0" or "my height is 36 inches plus one-half of the average"

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Effects Coding (Unweighted)

- Terminology is "new to me" in Cohen, et al.
- Re-code the religion variable like so (for "omitted" category, put -1 all the way across)

id	Religion	Rel.Cath	Rel.Prot	Rel.Musl	Rel.Hindu	Rel.Other
1	Cath	-1	-1	-1	-1	-1
2	Prot	0	1	0	0	0
3	Musl	0	0	1	0	0
4	Hindu	0	0	0	1	0
5	Other	0	0	0	0	1
6	-					

- Called "sum-to-zero" contrasts in other contexts.
- We will fit a regression that does not include *Rel.Cath* $\hat{y}_i \sim \hat{b}_0 + \hat{b}_1 Rel.Prot_i + \hat{b}_2 Rel.Musl_i + \hat{b}_3 Rel.Hindu_i + \hat{b}_4 Rel.Other_i$
- Still get \hat{b} 's as comparisons, but now comparing against a different baseline.

Design Matrix

But "Cath" is omitted from the fitted report

47 / 64

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Where does the Intercept get pushed to?

Answer: Intercept=mean of group means on y

$$\hat{b}_0 = \frac{1}{5} \{ \bar{Y}_1 + \bar{Y}_2 + \bar{Y}_3 + \bar{Y}_4 + \bar{Y}_5 \}$$
(5)

- Called "unweighted effects coding" because the means of the groups are averaged, no matter how many observations there are in each group.
- In order to believe that, I had to run some examples.

Chile Regions: First get the means

The mean values of "statusquo" for the regions are

	region	Х
1	С	-0.02983546
2	Μ	0.28677120
3	N	0.13556488
4	S	0.16496487
5	SA	-0.17955745
	1 2 3 4 5	region 1 C 2 M 3 N 4 S 5 SA

Now calculate the "mean of the means" (no weights)

[1] 0.07558161

0.076 is a "magic number". Watch out for it later

Suppress the Intercept: Estimate 5 Params for 5 Regions

 $modr1 <- lm(statusquo \sim -1 + region, data=Chile)$ outreg(modr1, tight=FALSE, showAlC=F)

	Ν	11
	Estimate	(S.E.)
regionC	-0.030	(0.040)
regionM	0.287**	(0.099)
regionN	0.136*	(0.055)
regionS	0.165***	(0.037)
regionSA	-0.180***	(0.032)
Ν	2683	
RMSE	0.989	
R^2	0.024	
adj R ²	0.022	

 $*p \le 0.05 ** p \le 0.01 *** p \le 0.001$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Include the Intercept, Estimate (default) Treatment Contrasts

modr2 <- lm(statusquo ~ region, data=Chile, x=T,v=T) outreg(modr2, tight=FALSE, showAIC=F) M1 Estimate (S.E.) (Intercept) -0.030 (0.040)regionM 0.317** (0.107)regionN 0.165* (0.068)regionS 0.195*** (0.055)regionSA -0.150** (0.052)Ν 2683 RMSE 0.989 R^2 0.024 adj R^2 0.023

 $*p \le 0.05 ** p \le 0.01 *** p \le 0.001$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Those Default Contrasts Were

contrasts (Chile\$region)

	Μ	Ν	S	SA
С	0	0	0	0
М	1	0	0	0
N	0	1	0	0
S	0	0	1	0
SA	0	0	0	1

Ask R to use "sum-to-zero" contrasts (aka Unweighted Effects)

```
options(contrasts=c("contr.sum", "contr.poly"))
contrasts(Chile$region)
```

```
 \begin{bmatrix} 1, 1 \end{bmatrix} \begin{bmatrix} 2, 2 \end{bmatrix} \begin{bmatrix} 3, 3 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix} \\ C & 1 & 0 & 0 & 0 \\ M & 0 & 1 & 0 & 0 \\ N & 0 & 0 & 1 & 0 \\ S & 0 & 0 & 0 & 1 \\ SA & -1 & -1 & -1 & -1 \\ \end{bmatrix}
```

Note, the default makes the "last" category, SA, the reference category. Will have to fix that later.

Fitted model with Effects Contrasts

	M1		
	Estimate	(S.E.)	
(Intercept)	0.076**	(0.026)	
region1	-0.105**	(0.041)	
region2	0.211**	(0.081)	
region3	0.060	(0.050)	
region4	0.089*	(0.039)	
N	2683		
RMSE	0.989		
R^2	0.024		
adj R ²	0.023		

 $*p \le 0.05 ** p \le 0.01 *** p \le 0.001$

• Unfortunately, we lose the region labels here, but they are 1=C, 2=M, 3=N, 4=S

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

I Had Trouble figuring this Out

- Some patience required :)
- Note the Effects Coding intercept is 0.076, same as "mean of category means"
- Calculate the difference between the observed means and 0.076

region	х	diff
. C	-0.02983546	-0.10541707
2 M	0.28677120	0.21118959
S N	0.13556488	0.05998327
S S	0.16496487	0.08938326
SA SA	-0.17955745	-0.25513905
	region C M N S S S S A	region x C -0.02983546 M 0.28677120 N 0.13556488 S 0.16496487 SA -0.17955745

Note those differences exactly reproduce the \hat{b} estimates from the unweighted effects model.

I wish C were the Omitted Category

- Create a new factor "region2" in which levels are ordered (M, N, S, SA, C)
- That forces values for cases in C to -1 for all contrasts

Re-fit with "C" as the reference

	M1		
	Estimate	(S.E.)	
(Intercept)	0.076**	(0.026)	
region21	0.211**	(0.081)	
region22	0.060	(0.050)	
region23	0.089*	(0.039)	
region24	-0.255***	(0.036)	
N	2683		
RMSE	0.989		
R^2	0.024		
adj R ²	0.023		

 $*p \le 0.05 ** p \le 0.01 *** p \le 0.001$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Interpretation benefit to the \hat{b} 's

- One can scan down the parameter estimates to see if one category is above the unweighted mean
- Unclear to me why one would want to do that, but one can, if one wants to

But they are all Fundamentally the same

No Intercep	ot	Treatment		Effects	
	M1		M1		M1
	Estimate		Estimate		Estimate
	(S.E.)		(S.E.)		(S.E.)
regionC	-0.030	(Intercept)	-0.030	(Intercept)	0.076**
Ū.	(0.040)		(0.040)		(0.026)
regionM	0.287**	regionM	0.317**	region21	0.211**
U	(0.099)		(0.107)		(0.081)
regionN	0.136*	regionN	0.165*	region22	0.060
U	(0.055)		(0.068)		(0.050)
regionS	0.165* ^{**}	regionS	0.195***	region23	0.089*
U	(0.037)		(0.055)		(0.039)
regionSA	-0.180***	regionSA	-0.150**	region24	-0.255***
U	(0.032)		(0.052)		(0.036)
N	2683	N	2683	N	2683
RMSE	0.989	RMSE	0.989	RMSE	0.989
R^2	0.024	R^2	0.024	R^2	0.024
adj R ²	0.022	_adj R ²	0.023	adj R ²	0.023
* <i>p</i> ≤ 0.05	<i>▶ µ</i> ≤ 0.01 <i>▶</i>	≤ 0£0010.05 **	$p \leq 0.01 *** p$	≤ ₽₽ £10.05**	$p \leq 0.01 *** p$

Predicted Values for all Rows are Identical. Same, Equivalent, Interchangeable

Note predicted values for all regions are same

	region	NoInt	Treatment	Effects	
1	С	-0.02983546	-0.02983546	-0.02983546	
2	М	0.28677120	0.28677120	0.28677120	
3	N	0.13556488	0.13556488	0.13556488	
4	S	0.16496487	0.16496487	0.16496487	
5	SA	-0.17955745	-0.17955745	-0.17955745	

 R's "all.equal" verifies that the predictions for each row in data are same.

[1] TRUE

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ④ < ④

The Standard Errors of the \hat{b} Only Appear to Differ

- The standard errors are different, but
- That's only because they are estimating different things!
- Std.Err.(b) varies because each model reports an estimate of a different value
- The No Intercept model estimates a "total effect" value for each region
- The Treatment Contrast model estimates
 - one "total effect" for baseline
 - difference for each region against baseline
- Effects Contrasts estimate
 - one unweighted mean
 - differences for each region against that

Consider Region S

- No Intercept model $\hat{b}_S = 0.165$, $Std.Err(\hat{b}_S) = 0.037$
- Treatment Contrasts, $\hat{b}_S = 0.195$, $Std.Err(\hat{b}_s) = 0.055$
- Effects Contrasts, $\hat{b}_S = 0.089$, $Std.Err.(\hat{b}_S) = 0.039$
- From Treatment, can re-construct estimate for "total S region effect"

$$\hat{b}_0 + \hat{b}_S$$
 with Std.Err. $(\sqrt{Var(\hat{b}_0) + Var(\hat{b}_S) + 2Cov(\hat{b}_0, \hat{b}_S)})$ (6)

- Inserting values from the Covariance of the \hat{b} from Treatment gives 0.037
- Do same with Effects Contrasts, get standard error of 0.037

My "Take Away" Message

- Regression is a "vehicle" with which to calculate predicted values
- Many equivalent "design matrices" can be used to calculate same predicted values
- Comfort with one method or its estimates b's drives the selection of one's approach. There is no "real" methodological difference between the two.
- Often choose approach so that "free t-tests" with regression output are testing the most meaningful questions.

·		
(ste	morical	
	gonca	

Effects Coding

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●