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Introduction

Basics
m Dichotomy
m Multichotomy (Polychotomy?)
m Simplify the Coding

Coding Schemes
m G-1 is Over-rated
m You Want G Parameters? You Got It!
m Same True With G Categories

Effects Coding
m Basics: Before | get too carried away

m Categorical Coding: Which Dummy is Right for you?

m Differences among approaches are Superficial
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Let's Talk About Sex

m Sex is coded “M" for male or “F" for ’ id ‘ constant ‘ Sex ‘ femd ‘ maled ‘

female 1 1 M 0 1
" " 2 1 F 1 0
® “manually” create two dummy
variables, “femd” and “maled” 3 1 F 1 0
. 4 1 M 0 1
m These are numeric, 0 or 1 (or
maybe -1 and 1).

m In SAS (or Stata), one then fits a
model using “femd” or “maled” as a
predictor.
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What will R do if...

B Im (y ~ sex)
fits
m (implicitly) asks for an intercept, plus
m an “intercept shift” parameter for a contrast variable for males it calls
“sexM".

m R automatically creates a “contrast” variable, a 0, 1 “"dummy” variable
for male
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Example: statusquo support in the 1988 Chile Data

library (car)
modl <— Im(statusquo ~ sex, data=Chile)
summary (mod1)

M1
Estimate  (S.E.)

(Intercept) 0.066* (0.027)

sexM -0.134***  (0.039)
N 2683
RMSE 0.998
R? 0.004

*p < 0.05% p < 0.01+xxp < 0.001
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Sex Contrast Default and Interpretation

m R’s design matrix that looks like this:

constant sexM

1 1
X = 1 0 1
! 0 (1)

m Why “M"? Female becomes “baseline” (in the intercept) because it is
alphabetically first (can customize that)
m Same effect as user-created “maled” variable.

m fitted intercept represents the effect of “being human” (or “being in
the data set”)

] BlsexM; the “difference” effect that distinguishes males from other
humans

= Model’s predicted value is st@/o; = bo + bysexM, so for Females
predict by and for males predict by + b;.
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Regression Equivalent to a "t-test for means”

The “t test for means” calculates the averages within groups and
calculates a t value for the difference.

by (Chile$statusquo, Chile$sex, mean, na.rm = TRUE)

Chile$sex: F
[1] 0.06570627

Chile$sex: M
[1] —0.06835453

t.test (statusquo ~ sex, var.equal=TRUE, data=Chile

)
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Regression Equivalent to a "t-test for means’ ...

Two Sample t—test

data: statusquo by sex

t = 3.4779, df = 2681, p—value = 0.0005135

alternative hypothesis: true difference in means is
not equal to O

95 percent confidence interval:

0.05847624 0.20964537

sample estimates:

mean in group F mean in group M
0.06570627 —0.06835453

Note the Regression intercept and slope re-produce means as predicted
values.
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Occupation in the wages data set

m As provided, wages has occupation coded as a numeric variable.
| 1 | 2 | 38 [ 4 [ 5 | 6 |
| Management | Sales | Clerical | Service | Professional | Other |
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See Why it is Wrong to treat that as Numeric, Right?

modl <— Im(wage ~ occupation, data=dat)

M1
Estimate (S.E.)

(Intercept)  9.656***  (0.600)
occupation  -0.152 (0.134)

N 534
RMSE 5.138
R? 0.002

*p < 0.05%¢ p < 0.0Lxekp < 0.001
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Interpret that Termplot

20 30
|

Partial for occupation
10
|

occupation
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Recode, Treat Occupation as A Categorical Variable

m Create a new “factor” variable occupationf, that assigns labels to the
categories.

m When there are 6 occupational categories, the usual approach
creates 5 “dummy variables”

® In R, those 5 dummy variables are created automatically, called
“treatment contrasts”

m “first” level of factor (or designated level) is excluded, and rest of
levels are “dummied up”
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What is R Doing with "occupationf’?

m R's system of “factor” variables is intended to make this “automatic”.
Regression procedures create “contrasts” “on the fly".
m The factor “occupationf” is converted thus

Sales Clerical Service Professional Other
Management 0 0 0 0
Sales 1 0 0 0 0
Clerical 0 1 0 0 0
Service 0 0 1 0 0
Professional 0 0 0 1 0
Other 0 0 0 0 1

m So the fitted model for 6 categories is

wages; = bo-+by Sales;+ by Clerical;+bs Service;+ by Professional, +bs Other;

(2)

m Maybe | should make this easier to remember

wages; = by + bsajesSales; + bcierical Clerical;

+bservice Service; + bpyor Professional, + bogner Other;
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Fitted Regression Model with Categorical Predictor

M1
Estimate  (S.E.)

(Intercept) 12.704***  (0.630)
occupationfSales -5.111%*%*  (0.986)
occupationfClerical -5.281***  (0.789)
occupationfService -6.167***  (0.813)
occupationfProfessional  -0.757 (0.778)
occupationfOther -4.278***  (0.733)
N 534

RMSE 4.675

R? 0.180

adj R? 0.173

*p < 0.05% p < 0.01%x¢p < 0.001
Management i§ the “baseline”. Calculat§ PreAdicted Values:
IManagement = bo = 12.704  ¥sajes = bo + bsates = 12.704 — 5.11 = 7.59
Vservice = 12.704 — 6.167 = 6.537
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Interpret that Termplot

20

Partial for occupationf
10
|

Management Clerical ~Service Other

occupationf



Categorical 1
—Basics
L Multichotomy (Polychotomy?)

Contrasts:

m The default treats the “lowest” score—the first “level™—as a “baseline”
category.

m Meaning: There is no “"dummy” variable for that. It is “in” the
intercept.

m All other categories are compared against that one.
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Does the occupationf "Belong” in the Model

m Obviously Yes: “occupationf” makes a difference-some categories
matter

m Formally test with F test, where null is that none of the differences
are non-zero.

HO . bSaIes = bC/erica/ = bService = bProfessional = bOther =0 (3)

m Compare the fitted model against a model that has only the intercept

m That's the F test that is reported with most regression models.

summary (mod2)
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Does the occupationf "Belong” in t

Call:
Im(formula = wage ~ occupationf, data = dat)

Residuals:
Min 1Q Median 3Q Max
—11.704 —3.041 —1.037 2.296 31.796

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 12.7040 0.6304 20.154 < 2e—16 #***
occupationfSales —5.1114 0.9861 —5.183 3.11e—07 **x
occupationfClerical —5.2814 0.7891 —6.693 5.59e—11 xx*x
occupationfService —6.1665 0.8128 —7.587 1.49e—13 xx*x
occupationfProfessional —0.7566 0.7781 —0.972 0.331
occupationfOther —4.2775 0.7331 —5.835 9.40e—09 **x
Signif. codes: 0 'xxx' 0.001 'sxx' 0.01 'x' 0.05 '.' 0.1 ' '1

Residual standard error: 4.675 on 528 degrees of freedom
Multiple R?*: 0.1803, Adjusted R?>: 0.1725
F—statistic: 23.22 on 5 and 528 DF, p-—value: < 2.2e—16
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Does the occupationf "Belong” in the Model

m R's anova function provides a conventional “analysis of variance
table”.

anova(mod2, test="F")

Analysis of Variance Table

Response: wage

Df Sum Sq Mean Sq F value Pr(>F)
occupationf 5 2537.7 507.54 23.224 < 2.2e—16 x*x*
Residuals 528 11539.0 21.85

Signif. codes: 0

#%%x' 0.001 's#x' 0.01 '+' 0.05 '.' 0.1 ' ' 1
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But Do We Really Need All Those Parameters?

m Glance at the estimated slope coefficients.
m | suspect the middle 3 categories have “about the same” effect
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Hypothesis Testing Procedure

F test

HO : bsales - bservice = bclerical
m Estimate “full” or “unrestricted” model with all of the category
dummies included

Estimate “partial” or “restricted” model with restriction imposed.

Compare the fit, F test indicates whether estimates 13531657 Bse,v,-ce,
belerical, are “statistically significantly different” from one another.

Slang: is “predictive power” lost by restriction?
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Test bSa/es — bCIerica/ — bService

m Testing the restriction that the wage effect for three groups is
achieved by recoding occupationf variable

m All “Sales” “Clerical” and “Service” observations re-coded 1 on new
category “sales/clerical /service”

M1

Estimate  (S.E.)
(Intercept) 12.704***  (0.630)
occupationf2sales/clerk/serv  -5.589***  (0.705)
occupationf2Professional -0.757 (0.778)
occupationf20ther -4.278*%*%*  (0.733)
N 534
RMSE 4.675
R? 0.177
adj R? 0.172

*p < 0.05%k p < 0.01%exp < 0.001
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And the F test result is (drumroll please)

anova(mod3, mod2, test="F")

Analysis of Variance Table

Model 1: wage ~ occupationf2
Model 2: wage ~ occupationf
Res.Df ~ RSS Df Sum of Sq F Pr(>F)
1 530 11584
2 528 11539 2 45.529 1.0417 0.3536




Categorical 1
—Basics
LSimpIify the Coding

What if | merge "Management” and "Professional?

m Appears to me Yprofessional AN YManagement are not all that different.
L SUPPOSG Ho :bprofessional = 0 and bsajes = bservice = belerical

m Then we create an even simpler variable, which leads to 2 “dummy”

variables
sales/clerk/serv Other
manag/prof 0 0
sales/clerk/serv 1 0
Other 0 1
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And the Regression on that Simpler Set of Contrasts is

M1
Estimate  (S.E.)

(Intercept) 12.207***  (0.370)
occupationf2sales/clerk/serv  -5.092*¥**  (0.487)
occupationf20ther -3.781*%*%*  (0.526)
N 534

RMSE 4.675

R? 0.176

adj R? 0.172

*p < 0.05%k p < 0.01%exp < 0.001
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And The F Test says

m Compare the “full” fitted model with all 5 category differences
estimated

m With the restricted model

anova( mod4, mod2, test="F")

Analysis of Variance Table

Model 1: wage ~ occupationf2
Model 2: wage ~ occupationf

Res.Df  RSS Df Sum of Sq F Pr(>F)
1 531 11605
2 528 11539 3 66.19 1.0096 0.3881

Conclusion: Does not appear the model with 3 categories (intercept + 2
group contrasts) has a worse statistical fit.
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G-1 is Over-rated

What To Do with a G-Category Nominal Variable?

m If there are G categories,

m Texts usually say “regression can provide parameter estimates for G-1
categories”

m Strinctly Speaking, that's wrong.

m It is only true if you include an Intercept in your regression
m Drop the intercept, you can have G category estimates!
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Lets Talk About Sex (again!)

m Recall, the data has a categorical “sex” (M or F) and we can create
“dummy” variables for females and males.

’ id \ constant \ sex \ femd \ maled ‘
1 1 M 0 1
2 1 F 1 0
3 1 F 1 0
4 1 M 0 1

m You agree, don't you, that:

m We get essentially the same model if we fit a dummy variable for
“female” or for “male”, right?

my= Bo + by - femd; treats “male” as baseline and by is the difference
for females

m Y= Bo + by - maled; treats “female” as baseline and byis the
difference for males
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You Want G Parameters? You Got It!

Drop the Intercept? Intriguing!

m Drop the intercept? G categories -> G parameter estimates

m Im(y 7 -1 + sex) : fits no intercept, estimates parameters for both

males and females
sexF  sexM

0 1 (4)
1 0

m And that is “essentially the same model” as either of the others.
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Problem comes back to Multicollinearity

| constant | femd [ maled |
1 0 1

m See why you can't estimate this:

Im (y~femd+maled)

m R automatically inserts an
“intercept” coefficient for you, so
this is really

1 1 0
1 1 0
1 0 1

Im (y~1+femd+maled)

m Leading to the design matrix on
right: perfect collinearity between
constant, femd and maled

m Your options:

m include a constant and either femd or maled
m remove the constant and estimate femd and maled
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Better Check that with the Chile Data

m Traditional model, sexM
chilelM <— Im(statusquo ~ sex, data=Chile)
m Traditional model, sexF

Chile$sex <— relevel (Chile$sex, ref="M")
chilelF <— Im(statusquo ~ sex, data=Chile)

m No Intercept Model

chilelINl <— Im(statusquo ~ —1 + sex, data=Chile)
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3 Fits Side By Side

M F No Int.

Estimate Estimate  Estimate

(S.E) (S.E) (S.E)
(Intercept) 0.066* -0.068*

(0.027) (0.028)
sexM -0.134%** -0.068*

(0.039) (0.028)
sexF . 0.134***  0.066*

(0.039) (0.027)

N 2683 2683 2683
RMSE 0.998 0.998 0.998
R? 0.004 0.004 0.004
adj R? 0.004 0.004 0.004

#p < 0.05%« p < 0.01%0xp < 0.001
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Vital: The Predicted Values Are IDENTICAL!

chilelF <— Im(statusquo ~ sex, chilelN|I <— Im(statusquo ~ —1
data=Chile) + sex, data=Chile)
= ) ] )
o o
& &
& &
=] =]
S o : o —_—
E E
3 3
T T T T
M F M F
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| mean Predictions are Completely IDENTICAL! Check the
first few cases

head (predict (chilelF))

1 2 3 4
5 6
—0.06835453 —0.06835453 0.06570627 0.06570627 O
.06570627 0.06570627

head (predict (chilelNI))

1 2 3 4
5 6
—0.06835453 —0.06835453 0.06570627 0.06570627 O
.06570627 0.06570627
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So, if a Categorical IV has 5 "levels” (as R would call them)

m We can estimate 4 parameters for levels and 1 for intercept
m Or we can suppress intercept and estimate 5 parameters for 5 levels
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Treatment Contrasts=="dummy" codes

m Colloquial: Dummy Variable Coding
m R calls this “treatment contrasts”
’ id \ Religion \ Rel.Cath \ Rel.Prot \ Rel.Musl \ Rel.Hindu \ Rel.Other ‘

1 Cath 1 0 0 0 0
2 Prot 0 1 0 0 0
3 Musl 0 0 1 0 0
4 Hindu 0 0 0 1 0
5 Other 0 0 0 0 1
6 ;
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Regression with Treatment Contrasts

m §; ~ by + by Rel.Prot; + byRel.Musl; + bsRel.Hindu; + by Rel.Other;
m “Catholic” is “left out?” Not really
m Predicted value for members of

Catholic is bo
Protestant is Bo + i)l
Muslim is by + b
Hindu is by + bs
Other is Bo + B4

m Interpret individual coefficients

m by : difference in predicted value for Protestant (as opposed to
Catbholic).

m b, : difference in predicted value for Muslim (as compared against
Catholic)
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Any Group Can Serve as the Baseline

m Can make “Hindu” the baseline group.

m All estimates treat Hindu as “baseline” and other estimates are
differences in prediction against Hindu category

m Model predictions and fit indices are still IDENTICAL to other
“Catholic baseline” model.

m If there are no other predictors in the model, the BJ/-S are simply
related to the observed group means (since predicted value is “mean’
of y for category members).
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Remember y is the same, no matter how you code these
Predictor Contrasts

m Changing “dummy codes” or “baseline group” alters the b estimates
m It does not alter the essential meaning of the model

m Like saying “l am average in height” and “my height is the average
plus 0" or “my height is 36 inches plus one-half of the average”
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Effects Coding (Unweighted)

m Terminology is “new to me” in Cohen, et al.
m Re-code the religion variable like so (for “omitted” category, put -1
all the way across)

’ id \ Religion \ Rel.Cath \ Rel.Prot \ Rel.Musl \ Rel.Hindu \ Rel.Other ‘

1 Cath -1 -1 -1 -1 -1
2 Prot 0 1 0 0 0
3 Musl 0 0 1 0 0
4 Hindu 0 0 0 1 0
5 Other 0 0 0 0 1
6 .

m Called “sum-to-zero" contrasts in other contexts.
m We will fit a regression that does not include Rel.Cath
Vi ~ bg + by Rel.Prot; + by Rel.Musl; + bz Rel.Hindu; + by Rel.Other;
m Still get b's as comparisons, but now comparing against a different
baseline.
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Design Matrix

The “design matrix™:
[Const [Cath [P M[H]O

m a 1 for its “own" group

Every “row” gets
th ]
1

. -1 e m Except Catholics, who get —1

i 8 é (1) 8 8FThe —1 basically “pushes” the

1 0 ool 1l o estimated intercept

1 0 ololo 1™ [The other coefficients adjust
accordingly to produce same
predicted values.

But “Cath” is omitted from
the fitted report
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Where does the Intercept get pushed to?

m Answer: Intercept=mean of group means on y

~ 1 - — - _ _
bo=g{Vit+ Yot Vst Yo+ Vs} (5)

m Called "unweighted effects coding” because the means of the groups
are averaged, no matter how many observations there are in each
group.

m In order to believe that, | had to run some examples.
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Chile Regions: First get the means

m The mean values of “statusquo” for the regions are

region X
C —0.02983546
M 0.28677120
N 0.13556488
S 0.16496487
SA —0.17955745

s wnN =

m Now calculate the “mean of the means” (no weights)

[1] 0.07558161

0.076 is a “magic number”. Watch out for it later
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Suppress the Intercept: Estimate 5 Params for 5 Regions

modrl <— Im( statusquo ~ —1 + region, data=Chile)
outreg (modrl, tight=FALSE, showAIC=F)

M1
Estimate

(
regionC ~ -0.030 ( )
regionM  0.287** ( )
regionN  0.136* (0.055)

(0.037)
(0.032)

regionS 0.165%**

regionSA  -0.180***  (0.032
N 2683
RMSE 0.989
R? 0.024

adj R? 0.022
*p < 0.05%¢ p < 0.0Lxekp < 0.001
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Include the Intercept, Estimate (default) Treatment
Contrasts

modr2 <— Im( statusquo ~ region, data=Chile, x=T,

y=T)
outreg(modr2, tight=FALSE, showAIC=F)
M1

Estimate (S.E.)

(Intercept) -0.030 (0.040)

regionM  0.317%%  (0.107)

regionN 0.165* (0.068)

regionS 0.195***  (0.055)

regionSA  -0.150**  (0.052)

N 2683

RMSE 0.989

R? 0.024

adj R2 0.023

xp < 0.05%x p < 0.01+xxp < 0.001
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Those Default Contrasts Were

contrasts(Chile$region)

S

<0
cocooro
corooZ
orRrooown
—rooooX»

nwn =2
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Ask R to use "sum-to-zero” contrasts (aka Unweighted
Effects)

options(contrasts=c(”contr.sum”, "contr.poly”))
contrasts(Chile$region)

(1] [.2] [.3] [.4]
C 1 0 0 0
M 0 1 0 0
N 0 0 1 0
S 0 0 0 1
SA —1 —1 —1 —1

m Note, the default makes the “last” category, SA, the reference
category. Will have to fix that later.
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Fitted model with Effects Contrasts

M1
Estimate (S.E.)
(Intercept) 0.076**  (0.026)
regionl -0.105*%*  (0.041)
region2 0.211**  (0.081)
region3 0.060 (0.050)
region4 0.089* (0.039)
N 2683
RMSE 0.989
R? 0.024
adj R2 0.023

*p < 0.05%x p < 0.01+xxp < 0.001

m Unfortunately, we lose the region labels here, but they are 1=C,
2=M, 3=N, 4=S
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| Had Trouble figuring this Out

m Some patience required :)

m Note the Effects Coding intercept is 0.076, same as “mean of
category means”

m Calculate the difference between the observed means and 0.076

region X diff
C —0.02983546 —0.10541707

M 0.28677120 0.21118959

N 0.13556488 0.05998327

S 0.16496487 0.08938326

SA —0.17955745 —0.25513905

s wnN

Note those differences exactly reproduce the b estimates from the
unweighted effects model.
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| wish C were the Omitted Category

m Create a new factor “region2” in which levels are ordered (M, N, S,
SA, Q)

m That forces values for cases in C to -1 for all contrasts

[.1] [.2] [.3] [.4]
1 0 0 0
0o 1 0 o0
o 0 1 0
A0 0 0 1
-1 -1 -1 -1

NuvLun=z2
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Re-fit with "C"” as the reference

M1
Estimate  (S.E.)

(Intercept) 0.076** (0.026

)
region21 0.211%* (0.081)
region22 0.060 (0.050)
)
)

region23 0.089* (0.039
region24 -0.255***  (0.036

N 2683
RMSE 0.989
R2 0.024
adj R? 0.023

xp < 0.05%x p < 0.01+xxp < 0.001
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Interpretation benefit to the b's

m One can scan down the parameter estimates to see if one category is
above the unweighted mean

m Unclear to me why one would want to do that, but one can, if one
wants to
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But they are all Fundamentally the same

No Intercept Treatment Effects

M1 M1 M1
Estimate Estimate Estimate
(S.E) (S.E.) (S.E.)

regionC -0.030 (Tntercept) -0.030 (Intercept)  0.076**
(0.040) (0.040) (0.026)

regionM  0.287** regionM 0.317** region21 0.211%*
(0.099) (0.107) (0.081)

regionN 0.136* regionN 0.165* region22 0.060
(0.055) (0.068) (0.050)

regionS 0.165%*** regionS 0.195%** region23 0.089*
(0.037) (0.055) (0.039)

regionSA  -0.180%** regionSA -0.150** region24 -0.255%**
(0.032) (0.052) (0.036)

N 2683 N 2683 N 2683

RMSE 0.989 RMSE 0.989 RMSE 0.989

R? 0.024 R? 0.024 R? 0.024

adj R? 0.022 adj R? 0.023 adj R? 0.023

*p < 0.05%k p < 0.01swep < OGL0-05%+ p < 0.01kp < @61 0.054x p <.0.014kxp
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Predicted Values for all Rows are ldentical. Same,
Equivalent, Interchangeable

m Note predicted values for all regions are same

region Nolnt Treatment Effects
C —0.02983546 —0.02983546 —0.02983546

M 0.28677120 0.28677120 0.28677120

N 0.13556488 0.13556488 0.13556488

S 0.16496487 0.16496487 0.16496487

SA —0.17955745 —0.17955745 —0.17955745

s wwN

m R's “all.equal” verifies that the predictions for each row in data are
same.

all.equal (predict(modrl), predict(modr2), predict(
modr3))

[1] TRUE |
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The Standard Errors of the b Only Appear to Differ

m The standard errors are different, but
m That's only because they are estimating different things!

m Std.Err.(b) varies because each model reports an estimate of a
different value

m The No Intercept model estimates a “total effect” value for each
region

m The Treatment Contrast model estimates

m one “total effect” for baseline
m difference for each region against baseline

m Effects Contrasts estimate

m one unweighted mean
m differences for each region against that
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Consider Region S

No Intercept model bs = 0.165, Std.Err(bs) = 0.037

Treatment Contrasts, bs = 0.195, Std.Err(bs) = 0.055

Effects Contrasts, bs = 0.089, Std.Err.(bs) = 0.039

From Treatment, can re-construct estimate for “total S region effect”

o + bs with Std.Err.(\/ Var(bo) + Var(bs) + 2Cov(bo, bs))  (6)

m Inserting values from the Covariance of the b from Treatment gives
0.037

m Do same with Effects Contrasts, get standard error of 0.037
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My "Take Away" Message

m Regression is a “vehicle” with which to calculate predicted values

m Many equivalent “design matrices” can be used to calculate same
predicted values

m Comfort with one method or its estimates b's drives the selection of
one's approach. There is no “real” methodological difference between
the two.

m Often choose approach so that “free t-tests” with regression output
are testing the most meaningful questions.
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