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The “ordinary” writings about difference equations are@amed about systems with constants
for input, usually. Or the inputs are simple, step functionsnpulse functions. We need to review
some of that, then concentrate on the claims/findings of HamiTime Series Analysis, Chapters
1&2.

1 Constant input

1.1 First order difference equation

Given the “ordinary” setup, we have:

Yt =Axy-1+B

B is constant input, A is a constant “multiplier”. This candmved easily, just begin & and
go over and over!

y1=AxYo+B

Y2 = A(Axyo+B) +B =A%, +AB+B

y3 = A(A%o+AB+B)+B=A%+A’B+AB+B

Could this possibly get more dull. I'm sick of it already. Hp$can see the pattern, can’t you?

vi = Alyg+ A"1B+ Al?B+ A3B+ ...AB+B 1)

vt = Alyo+BAUT T A2 LA L AT 2)
Recall the geometric series we discussed in class. In tlokédts that's what we have, and the
series can be solved explicitly as t
t—1 t—2 t—3 —_1-A
A~ 4+ A {FA +....A+1_ TR
So put that into equation 2 and you get

t

1-A

v =Ayo+B

or

t

1 A B
_at - _ at B\
Yo =AYo+Br— —Br— = Ao+ 7 [1-A]

or



¢ B B
yt—A[YO—m]'i‘m 3)
This is what is known as solution of the original difference equation. It is a solution be@aus
it gives a formula fony; that does not depend gf1 . You can look at this in any of these ways,
which ever gives you insight.
| often forget to emphasize that this solution is true onlx i 1 . But now I'm emphasizing

it. If A=1, thenitis impossible to divide anything 64 — A) . Instead, the solution ends up as:

vt =Alyo+BAT L A2 LA L AL =+ (t—1)«B (4)

This is a symptom of the time-series research problem of tiné foot.” There is a dramatic
change in the behavior of the dynamic syste i 1 .

1.2 Properties

It is evident in 3 that the path gf depends on the value of A. AssumiAg# 1, then:
If A>1,theny; “explodes”, getting bigger and bigger.
If 0 <A< 1, theny; gradually “moves toward’}2;

The value% is a vital value, it is the “equilibrium” level of the system.

If —1<A<O0, theny, , it goes toward%\ but it does not do it peacefully. Instead, it
“oscillates”. Oscillates means it alternates, going alawe below the equilibrium.

If A< —1, theny; “explodes”, and it oscillates tody:| gets bigger and bigger.

Draw some pictures of this!

A dynamical system is said to be stable if,tas> « , theny; remains bounded. It does not
“explode”. Either it tends to a constant value, as in the ARgse, or it oscillates within a limited
region.

1.3 Look at the “big picture”
Suppose | said to you that the equation
Yt =A-1+B
has a solution iA # 1, a general solution, like this:
Vi = Kq % At +ko

That is true, which means that when you are confronted weldifierence equation, then you
should think to youself: “aha! this a linear time system amete is som@ which determines the
dynamics of the system.” In the terms of the trade, the tensiknown as aoot.

The only problem is to find out what might be. Now, if you look at the previous section, you
easily know that

A=A



and

It does not seem so complicated to me.

If you read a big fat book on differential or difference edoas, you will see talk about a
general solution and a particular solution. The generd igders to solving the homogeneous
equation:

Ve —At-1=0

and then adding a particular solution for the other part efdhginal model, the “input” B.

1.4 The giant picture
Now, suppose you said your system had more lagged inputs, as i

Ve =AxY_1+Bxy »+C (5)

From looking at this, | can tell you that, for “most” values/oindB there is a general solution
with 2 “roots”, A1 andA, of the form

Yt = kiAf + ko) (6)

Now, you want to know the values @f and A, if you want to know if this system is stable.
Its not so easy to get those “roots” as it is in the previoug cast at least we understand our goal.
We want to know those roots.

Goldberg contends (p. 134) that these roots are found aothegos of the “auxiliary equa-
tion”, also sometimes known as tlobaracteristic equation To derive that, set C=0, so we
consider only the heart of the system:

Vi —A%—1—Byt—2=0

Because we get tired of fussing over minus signs, relabettedficients asa; = —A and
a = —B.

Ve tay-1+ay-2=0
Goldberg says it is “easy” to see there is at least one “téstien” like
Y= A"

Insert that “test solution” into 5 and you get:



MiasAt4axAt=2=0
Which you can rearrange (by dividing everythingdly? ) as

AMtad+a,=0 (7)

This is thecharacteristic equationfor the second order dynamic systeirhe possible solu-
tions are referred to ag andA, . If these two solutions are not the same, then the generaicol
| claimed in 6 is valid. That is the case of “distinct roots”.

Now, we want to know if the roots are:

real valued: smaller then 1 in absolute value, we want to knowdf/thre positive or negative
or
complex valued: the system oscillates, perhaps without bound!

Systems with complex roots make my head hurt, because thawel to remember whay—1
means. And sin() and cos() and modulus and other stuff | hate.
Worry about that another later.

1.5 The impossibly huge picture

Just remember this:

In general, if your discrete time system has M lags, then itdigion has M roots, and your
problem is to find out about their values.

It is important to find because:

1) You can check system “stability”

2) You can see dynamic properties (oscillation)

3) You can interpret the importance of inputs into the syst@artain values of the roots will
cause the system to respond strongly to new input. Othes camggt not.

The search for roots is what drives us to work on the so-caltetacteristic equation. It is
characteristic of the system’s underlying dynamics. Gaehneory like this:

Ve =AxY_1+Bxy_o+C

write the part with the y’s like so:

Ve —AxY_1—Bxy_2=0

And we know there will be a general solution which fits into &gan like 6. Of course, if you
have a really big difference equation, like:

Yt =AxYi-1+Bxy 2+Cx¥ 3+Dx*y4+E

then the homogeneous general part of this is
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Ve —AxYi_1—Bxy_2—Cx¥_3—Dxy_4=0

And if we know the general part of the solution is a set of cantk; andA; such that

Vi = kiAL + koAS + kaAl + kA b

Now, how in the world do we get the coefficients? We want thosést We must have them.

It turns out that there is a big fat theorem which says thatrdlo¢s are found as the solution
to the so-called “characteristic equation”. I've been cweid sometimes because | have seen this
written down two different ways. Sometimes it goes like this

AM—M3-_BA2-CA-D=0 (8)

Other times people get rid of the minus signs (the way | dichangecond order case) or they
convert the whole equation by dividing everything throughalmew variable = Al .

If you can solve that for tha ’s, then you have the roots, and you can analyze them to dieterm
the system’s behavior. There are different ways to solveifese magical numbers, and we will
get to that later in these notes, kinda.

Also note one more thing. A polynomial like the charactésisjuation can also be factored,
and it turns out the roots pop up in an obvious way:

A M3 —BA2—CA—D=(A—=A)(A —=2A2)(A —A3)(A —Ay) (9)

In Mickens’s bookDifference Equations, on p. 124, he states as a theorem that, as long as the
roots are distinct, then the solution to the homogeneotisrdifice equation with p lags takes the
general form:

Yt = C1A + CoAS + CaAg+ ...+ CpAp

1.6 Now, about that “unit circle” business.

In the first order equation, we know the “stability conditiemthat the coefficientA| < 1. In the
higher order equations, a similar equation applies forhadlindividualA; . If all the A; are real
numbers, then the stability requirement is just that eaehi®smaller than one, ¢Aj| < 1.

Unfortunately, sometimes, the root can be a complex nunHmerexample, in a second order
system, the characteristic equation is a quadratic equaditd since 9th grade or so we know the
famous formula to solve quadratic equations. The “roots” of

ax®+bx+c=0
are given by the formula
_ —btvb’—4ac
X= 2a

When | was in school, we said that a solution only existebPif- 4ac > 0. Back then, they
taught us “you can't take the square root of a negative nuiber



Well, we aren't in high school anymore! This is college. Yando it! We must solve all
these characteristic equations, no matter what the caefteei And that means figuring out what
it means if there is a square root of a negative number! Thdtst complex numbers are for. In
complex number theory (not my specialty, for sure), theretising i defined as the square root of
minus 1:

i— V1

and it turns out that we can take the square roat'bf — 4ac > 0 if we use that thing.
A complex number has two parts, a real part and an imaginaty @&enerally speaking, a
complex number looks like so:

N1+ Ny *i

Ny is the “real part” and the rest is the “complex part,” a nuntgeis a real number multiplied
by the square root of -1.

In the above example of the quadratic equation, supposé#izata=1 and ¢ =3. Then the root
is

2+v4-12 2++/-8 V—=1%V42 22

X=1+iv2

The real part is 1, the imaginary party& .

So, if you have a characteristic equation with complex rogptsi have some trouble ahead of
you, but not all that much. To understand all the detailsvbives sin(), cos(), and the pythagorean
theorem. You can study that on you own if you want, but the oedly vital thing is this.

Stability a complex root requires the foIIowing nf + ng

What'’s the idea behind this? K; is complex, then raising it to powers like? and A2 and
so forth may either cause the value to shrink to zero or it miggtead explode to infinity. The
condition for the value to shrink to zero is that the value lué todulus, of “length”, of the
complex number must be smaller than one. Look at Hamiltoid0®. The modulus is defined by
the pythagorean theorem, i.e.,

R=/n2+m

| don’t have the patience to explain the steps that it tak@sstify this claim.

If you took a Cartesian plan, a basic graph, you can find all/éhees ofn; andn, for which
the modulus is smaller than one. If you dres that, then youldvbave a circle centered at zero,
with a radius of one. Thisinit circle is the thing people are referring to when they say that a
system is stable if all the roots are inside the unit circle.

With real valued roots, inside the unit circle just meahs$ < 1, but with complex roots, it is a
little more complicated to understand.



2 What if the inputs are not constant?

Here’s where I've always gotten stuck in the past! The HamilChapters 1 & 2 cleared up a lot
of questions for me.

2.1 First-order difference equation

Think about theB in the first order difference equation for a minute. It is astant input. But
imagine that, instead of a constant B, at each time step weedjéerent number. Follow Hamilton
and use the variabls; to refer to the different numbers for inputs.

Who cares? Then the first order difference equation destdabeve in 1 on page 1 only needs
a little bit of adaptation. I like the letter A, but nobody eldoes, they all seem to like the Gregk
, SO | cave in and start using that. Let’s follow Hamilton anggose a first order system:

Ve = @Yt—1+W. (10)

Hamilton starts iterating this equation at t=0, supposiadgkhows the value at time -1 for y,
which he callsy_1 . So we have this:

Yo = @y-1+Wo

plug that in go geys , y2 , and so forth, until we have:

v =0y 1+ owo+ o w1+ 0 w4+ o+ W (11)

The key thing is that we are looking at the “inputg”as just a string of numbers. Instead of
adding B at every timestep, we are just addingagn The numberdwp, w1, Ws, ...,w;} are just
numbers, nothing special. Just numbers that get added.

2.1.1 Dynamic Multiplier

Well, maybe they are not just numbers. They are “inputs.”yTdre quantities we theorize about,
things that we think might affect y. Hamilton is often inteted in the iynamic multiplier ”, the
impact ony; caused by a change in one of the input values at one time.

In the above example 11, the first order model, it is painfabyious. The impact of a change
in w; depends on “how long ago” it was and also on these coefficignt you could somehow
“grab” the variableng and make it one unit larger, then it is apparent that the ahamg would
be @' . If you have to be skeptical about it, look at it like this. Adde unit towy and rewrite 11:

W =@My 1+ @ (Wo+ D)+ ¢ W+ 0 W ot o W (12)
Now if you subtract 11 from 12, you get:

W~y = @' (Wo+1) — ¢'wo

W -y = ¢ (13)



This shows the discrete change, the gap between the ongiaatly" .

To the “high powered” math types, its not very interestindotok just at the discrete change,
they want to look at derivatives or partial derivatives. Mayve need to talk in more detail about
that.

Hamilton uses partial derivatives to describe this effect.

ayt+j

_
v Q (14)

In other words, a change imat timet has an effecf time periods later that is equal g .

Please note that the interpretation of the coefficigmt this finding is strikingly similar to the
first section above (see equation 3). If the system is “stableaning|@| < 1, then the effect of
a change in w has a smaller and smaller effect as time goe$ ity $ystem is unstable, then the
effect of w gets bigger and bigger.

So, unlike the boring, old interpretation of difference agons, rather than just caring about
stability, we are not concerned about the “long lasting iotipaf a variable input into the system.

2.1.2 Effect of a permanent increase iny .

The claim in 14 shows the effect of a unit changeyrat any one time. We can use that insight to
wonder about the impact of a “permanent” changw inlf, beginning at some time t, the value of
W; is increased, and all following's are increased similarly, then the effect at t+] is the sunhef t
effects of all thew's:

1+ 0+ @+ +¢* +¢°+... ¢!

If you let j get really big, say, infinite, an@| < 1, then this impact in j periods after the change
is:
1-9¢

and when j is huge ang! tends toward 0, so as a result the impact of a permanent climnge
W IS
1
1-9¢
Do you see why its a rather silly question to measure the itnpiag change whewp is 1 or

greater? See why it is so vital that a dynamic system be ‘stablve are going to get anything
useful out of it?

(15)

2.2 Higher order difference equations

Add more lagged y’s, and a coefficiegt for each one:

Yt = @Yt—1+ @Yi—2+ ... + Go_1Vt—p—1+ GpYr—p + Wi (16)



If you follow along with Hamilton (p. 8-9), you start to seeslplan. Use whatever mathemat-
ical tool you can to find out the dynamic properties of the eystand, in particular, measure the
impact of changes in .

On p. 8, Hamilton introduces a way to convert a single equatiodel into a matrix equation.
That’s not done just because matrices are cool, but alsaibedhey have powers and there are
lots of results about them. His attention ends up focusinthemmatrixF, which is:

¢ @ @ Po-1 Pp ]|
1 0 0 : 0O O
0O 1 O 0O O
F= a7
0O 0 1 0O O
| 0O 0 0 : 1 0
You arrive at that matrix by writing the main equation you ererested in in the first row, and
then add a set of identities like
Yk = Yk (18)

where k={y-1,y-2,...,y-p}.

Look at the top of p. 9 in Hamilton. You see that if we repeatitBeation process, putting in
new inputs and calculating at each step, it is as though we are multiplying F by itseiesgedly.

We can talk details, but the big news is tha the impact of aghamw; ends up being filtered
through the matrix F anB2 andF2 and so forth.

3 What's that Eigenvalue thing all about?

Oh, please, not that. | took linear algebra in 1985. You ekpexto remember that? | didn’t like
it then, much. If | have to do it again, at least | want to knowaivfor!

3.1 Justification of awful pain and suffering

There are 2 reasons why the eigenvalue comes back at melbftersa years.

1. Eigenvalues of the matrix end up solving the characteristic equation 8. In fact, tgeri
valuesare the roots of the characteristic equation. (Hamilton praisin Proposition 1.1,

p. 10).

2. Eigenvalues of the matrik end up giving ingredients in the calculation % . The

dynamic multiplier is a linear sum of the eigenvalues, sdémmet like ciA; + CA, for a
second order system, and the coefficientaindc, have formula that include the roots as

well.



3.2 Actual pain and suffering

Suppose you have some square matrix. | don’t know why we cai’it F. The definition of an
eigenvalue goes like this. A numb@ris an eigenvalue if the determinajft —Al| =0 . The
determinant of a 2x2 matrix is so easy that calculating ikes falling out of bed. If the matrix is:

<)

Then o
a
H c d H_ad—cb
A determinant of a bigger matrix is more difficult to calc@atisually involves some high order
polynomials.

So if the matrix that you are trying to get a determinarfis Al , that means you are getting
the determinant of

A @ @ Go-1 @ ]
1 -A 0 0 0
0 1 -2 0 0
FoAl = (19)
0 0 1 0 0
0 0 0 : 1 -2 ]

Solving the determinanF — Al| usually means solving a polynomial in.

There can be up to as many different solutions—values -eés there are rows in this matrix.
And finding may not be easy. In fact, | don’t think there is agrahformula for solving these if
the order is more than 3.

Now here are 2 mathematical complications:

1. If all of the solutions are distinct, some of the mathepsatvorks out more easily.
2. If all of the solutions are real-valued, then we are moneiliar with interpreting the results.

Note Hamilton has a lot of effort expended to the case in wttieleigenvalues are distinct, versus
the case in which some are repeated. Note he also has a predffdyt devoted to working out
the details of the complex solution cases.

3.3 Characteristic. Schmarasteristic.

Now, as far as solving the characteristic equation goesjtist works like magic. You can adjust
the coefficientA to make|F —Al| =0, and all such numbers are the roots of the characteristic
equation. Now days, we even have computer smart enough tthirg for us :)
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3.4 Remember we wanted the dynamic multiplier?

As far as finding the dynamic multipliers, it is a little moremk.

Hamilton, on p. 11, uses a result from linear algebra for iwedrwith distinct eigenvalues.
The result is that

F=TAT!

for some matrix T and wher& is a matrix that collects up the eigenvalues, like so:

M O O
A=| 0 A O (20)
0 0 As

Now there is a stunning thing about this result. If you neechioulateA? is is just the squared
items fromA . If you needA3 | it is just the cubed elements Af. Its just as simple as pie!

Furthermore, if you calculaté? , it ends up being as simple @9\2T , and if you needF 3 it is
justTAST 1,

So, it is trivially easy to tell the values &t .

That means, whenever we need a number ffdmit is no trouble to get it.

The multiplier is, in general, a combination of the eigemesl. The impact of a changew
that will be felt after j periods is like so:

OYi+j
th
There’s a formula on p. 12 in Hamilton to use for the c coeffitse

So we know that the dynamic multiplier, which describes thpact of a unit change i is a
weighted combination of the eigenvalues.

= 1A} +CoAJ + .+ CpA) (21)

3.5 Didn’t you want the impact of a permanent change too?

But wait! it gets even better than that. We can use the eideasas a “safety check” to make one
more very important observation. Look back up at equatiarv¥® want a result like that, but for
equations with more lagged y’s.

The impact of a permanent changewnin a higher order equation can be seen as a direct
extension of 15. That is, assuming that ALL roots (eigens)uare inside the unit circle, it is
meaningful to make the exact same simplifications that Ieidbtim a bigger model, and as a result,
the impact of a permanent one unit changesrafter many many (actually, an infinite number of)
periods is:

1
l-g-@-®—— ¢

(See Hamilton's p. 20 result, Proposition 1.3). Please tdimnget this is only valid if the
system is stable.

11



4 What the heck is that L thing doing in my reading again?

L is the lag operator, and it has some nice properties. Unfatély, not many authors clearly
explore the operator. Instead, they tend to just want tonthtaround as if it were a number,
which works much of the time, but not always. One of the stiiesgf Hamilton’s chapter 2 is a
pretty thorough explanation of what L is and what is good for.

4.1 What are we sure is true of L?

| don’t know about a comprehhensive list, but:
1. definition:

X-1=Lx

2. raise L to powers

X2 = L(Lx) = L?%

X—3 = L(L%) = L3
3. L obeys linearity, so you can multiply by a constant:
4x Ly = L(4%)
4. L obeys a distributive law. You can also act as if L is a cogdfit and do things like:
L(3%x +4xVyt) = 3Lx + 4Ly
or
L(1+3L) = L+3L2

5. polynomial grouping is meaningful. You can do “factoriramd “multiplying” of expres-
sions involvingL

6L2+5L+1=(3L+1)(2L+1)

Then we know it is the same thing to apply either the left orrigbt to a variable . So, first
apply the left hand side:

(6L2+5L + 1)% = 6%_2+ 5% _1+ %

and that is the same as applying the right hand side:

BL+D(2L+1)x = (3L+1)(2¢-1+X%)

12



= 6LX_1 +3Lx +2%_1 + X%

= 6% 2+ 5%_1+X

What do we think is not true of L? Remember L is an operator,aogan’t assume it always
works like a real number. So, for example, it meaningful tk éoout the inverse of

(1-qL)

only if |@| < 1. As Hamilton observes, in that case the invéise ¢L)~! exists and the idea
of “dividing” something by(1— ¢gL) make sense. (Hamilton, p. 28; yes, its just another example
of the geometric series).

4.2 Think of a difference equation as a polynomial in L

Take any discrete time system, like 11.:

Vi =@t 1+ @V -2+ ...+ @ php+W (22)
If you use the L operator, this is

Vi = @lyt + @L2Y + ...+ @ pLPy + (23)
And you might as well write:

(1-@L—@L? — .. .gLP)y = w (24)

If we want a “solution” fory; then we want; on the left hand side, all by itself, an we wish we
could do something simple like:

Wi
1-@L—@l?2—.. .@LP)
The big problem is that we can’t write such a thing down beeaus can'’t just bash L about
as if it were a number. In some particular cases, HamiltomvsHp. 30) that it is meaningful. In

particular, guess what: it depends on the eigenvalues.nAgajenvalues, | can’t stand it.
Still, the notion that we just write use shorthand like

(25)

Yt:(

ClL)=1—q@lL—@L>— .. @LP (26)
and
v =CH(L)w

is appealing. Note how doing this makes it clear that the thieeat value ofy; is a weighted
combination of inputs! That's exactly what we wanted for tdgnamic multipliers” model. If
only we knew ifC~1(L) were a meaningful thing, and how to calculate it!

13



4.3 The result is especially clear in a first order differenceequation.

Hamilton shows a simple case of an AR(1) model, one for whiflh) = 1 — ¢L , and he shows
that, by simple algebra, that we can get what we want. Staint wi
(1— L)yt =w

and multiply both sides by (kgL + @?L? + @3L3 + ... + ¢'L!). You are allowed to do that with
L's, as we described above.
Then evaluate this by doing the multiplication term by term:

(1+ QL+ @?L2+ ...+ ¢'LY(1—qlL)
What do you end up with?

(1— @Ity @27
Man, oh man. that means:

(1- @y = L+ 9L+ L2 + .. + L )w (28)
which means

v — @Iy = A+ oL+ L2+ ..+ ¢ LY)w (29)

And sinceL'1y; is just the value of y at t = -1, then the second term on the kfdrside is:
oIy — ity

Then move that to the right hand side of the big equation, aokl \what we have:

o= @Y 1+ (L+ oL+ L2+ + ¢l (30)

This got a lot of work done! We hawg by itself on the left hand side, and some “other stuff”
on the right, just what we wanted! Now, we se®y itself on the left hand side, it means we found
the “practical equivalent” o€ ~1(L) =(1— ¢L)~* . It does “almost” what we want, except there is
little problem of the term

Py = gty

That is “extra”, “unwanted”,’hated”, “undesirable”, anemerally ugly. But, if we assume
that ¢ <1, then we can assert that this extra part “shrinks” to zero,and we throw it away.

The conclusion is that, i < 1, then we can adsif (1— ¢L)~! exists, and that means we
can write things like

(1— L)yt =w
(1-gb) H(1-qL)y = (1- L) 'w
v =(1—oL) 'w
v = (1+ oL+ @?L% 4.+ ¢@'LY)w (31)
Please remember, it is only “as if” we are allowed to dividéhbsides by(1— ¢L) . SinceL is

not a number, it is not strictly meaningful to speak of diersbyL .

14



4.4 What if that “sneaky trick” worked more generally?

Consider a pth order difference equation:

Ve — byt — @L2y — ... — @oLPy = W (32)
or

(1-@L—@L?— .. — @LP)yi = w (33)

When | was in 9th grade, | don’t think | was paying attentiont since then I've learned it
is true that if you can write a polynomial by factoring it. Thaeans there are some numbers
A1,A2,...,Ap such that:

(1-@L—@L?— ... —@LP) = (1—A1L)(1—AgL) -~ (1 —ApL)
So that means we can substitute that for the left hand sid8,cfrgl we have:
(1-A1L)(1—A2L) - (1= ApL)yr =W (34)

Now, we saw in the previous section that de know of a way to invert things like this. We
could employ the trick from the previous section to ¢et- A1L)~1 . We apply that rule over and
over again, and our problems are solved! We end up witn the left hand side, all by itself. All
we need are the coefficiems, A2, ..., Ap

4.5 Then this new kind of characteristic equation happens

Recall the characteristic equation 8. We said the systemaligesif the roots are all inside the unit
circle.

Now, when people write the difference equation with Ls intitey arrive at a different kind
of equation that looks almost just like a characteristicagigun. Look at 23 and notice there is an
equivalent of the characteristic equation, except a liifierent.

If you replace the lag operator L with the real number z, thengolynomial in L looks like

1-@z— @Z—..— =0 (35)

This is just the same as the old characteristic equatioremxww we have replaced by % .

If we talk about the roots of this equation in z, we are talkifgut the same roots that we had in
the other equation.

But the stabilty conditions are reversed. So, if the oribafi@racteristic equation required that
all roots be inside the unit circle, what does this new eguagay about the roots of z? They have
to be outside the unit circle!

Note the very excellent paragraph Hamilton, (p. 32), wherekntions the frequent confusion
when some authors talk about roots inside or outside th&eaiithout precisely describing what
equation they are talking about. Wow. That really answeosdesquestions | had accumulated.
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4.6 Now, back to the dynamic multipliers again.

Look at this equation in the factored polynomial above. Sgopy you did apply the inverse for
each term, you would end up with on the left hand side, all by itself.

Ve=(1—-A1L) 12— AL) 7t (12— ApL) " Iw (36)

Doing this requires that each of the rodis A,, ...Ap is inside the unit circle.

Now, if you recall what it “really” means to applfl — A;L)~! , what we are really doing is
multiplying by a long sum, (1 ¥1+A;L+A2L%+ ... + ALLY) . We have to do that fofl — Ap) ~?
and so forth. At the end, on the right hand side we have allkofd. 's andA ’s floating around.
We don't care to actually write all that out, we might as weltey however, that the formula would
have to be something like:

Yo = Uk + PriWe—1 + PoWe 2+ ... + UkWo (37)

The coefficientg/x might be algebraically complicated, but we know for sureyttiepend on
theA; .

These coefficientgx are just the dynamic multipliers! Hamilton p. 35 gives thenfalae, I'm
too tired for that now.
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