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The “ordinary” writings about difference equations are concerned about systems with constants
for input, usually. Or the inputs are simple, step functionsor impulse functions. We need to review
some of that, then concentrate on the claims/findings of Hamilton, Time Series Analysis, Chapters
1 & 2.

1 Constant input

1.1 First order difference equation

Given the “ordinary” setup, we have:
yt = A∗ yt−1+B
B is constant input, A is a constant “multiplier”. This can besolved easily, just begin aty0 and

go over and over!
y1 = A∗ y0+B
y2 = A(A∗ y0+B)+B = A2y0+AB+B
y3 = A(A2y0+AB+B)+B = A3y0+A2B+AB+B
Could this possibly get more dull. I’m sick of it already. Easily I can see the pattern, can’t you?

yt = Aty0+At−1B+At−2B+At−3B+ ...AB+B (1)

yt = Aty0+B[At−1+At−2+At−3+ ...A+1] (2)

Recall the geometric series we discussed in class. In the brackets, that’s what we have, and the
series can be solved explicitly as

At−1+At−2+At−3+ ...A+1= 1−At

1−A
So put that into equation 2 and you get

yt = Aty0+B
1−At

1−A

or

yt = Aty0+B
1

1−A
−B

At

1−A
= Aty0+

B
1−A

[

1−At]

or
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yt = At [y0−
B

1−A
]+

B
1−A

(3)

This is what is known as asolution of the original difference equation. It is a solution because
it gives a formula foryt that does not depend onyt−1 . You can look at this in any of these ways,
which ever gives you insight.

I often forget to emphasize that this solution is true only ifA 6= 1 . But now I’m emphasizing
it. If A = 1 , then it is impossible to divide anything by(1−A) . Instead, the solution ends up as:

yt = Aty0+B[At−1+At−2+At−3+ ...A+1] = y0+(t −1)∗B (4)

This is a symptom of the time-series research problem of the “unit root.” There is a dramatic
change in the behavior of the dynamic system ifA = 1 .

1.2 Properties

It is evident in 3 that the path ofyt depends on the value of A. AssumingA 6= 1 , then:
If A ≥ 1 , thenyt “explodes”, getting bigger and bigger.
If 0 ≤ A < 1 , thenyt gradually “moves toward” B

1−A

The value B
1−A is a vital value, it is the “equilibrium” level of the system.

If −1 < A < 0 , thenyt , it goes toward B
1−A but it does not do it peacefully. Instead, it

“oscillates”. Oscillates means it alternates, going aboveand below the equilibrium.
If A <−1 , thenyt “explodes”, and it oscillates too.|yt | gets bigger and bigger.
Draw some pictures of this!
A dynamical system is said to be stable if, ast → ∞ , thenyt remains bounded. It does not

“explode”. Either it tends to a constant value, as in the AR(1) case, or it oscillates within a limited
region.

1.3 Look at the “big picture”

Suppose I said to you that the equation

yt = Ayt−1+B

has a solution ifA 6= 1 , a general solution, like this:

yt = k1∗λ t + k2

That is true, which means that when you are confronted with the difference equation, then you
should think to youself: “aha! this a linear time system and there is someλ which determines the
dynamics of the system.“ In the terms of the trade, the termλ is known as aroot.

The only problem is to find out whatλ might be. Now, if you look at the previous section, you
easily know that

λ = A
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and

k1 = [y0−
B

1−A
]

k2 =
B

1−A

It does not seem so complicated to me.
If you read a big fat book on differential or difference equations, you will see talk about a

general solution and a particular solution. The general part refers to solving the homogeneous
equation:

yt −Ayt−1 = 0

and then adding a particular solution for the other part of the original model, the “input” B.

1.4 The giant picture

Now, suppose you said your system had more lagged inputs, as in

yt = A∗ yt−1+B∗ yt−2+C (5)

From looking at this, I can tell you that, for “most” values ofA andB there is a general solution
with 2 “roots”, λ1 andλ2 of the form

yt = k1λ t
1+ k2λ t

2 (6)

Now, you want to know the values ofλ1 andλ2 if you want to know if this system is stable.
Its not so easy to get those “roots” as it is in the previous case, but at least we understand our goal.
We want to know those roots.

Goldberg contends (p. 134) that these roots are found as the solution of the “auxiliary equa-
tion”, also sometimes known as thecharacteristic equation. To derive that, set C=0, so we
consider only the heart of the system:

yt −Ayt−1−Byt−2 = 0

Because we get tired of fussing over minus signs, relabel thecoefficients asa1 = −A and
a2 =−B.

yt +a1yt−1+a2yt−2 = 0

Goldberg says it is “easy” to see there is at least one “test solution” like

yt = λ t

Insert that “test solution” into 5 and you get:
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λ t +a1∗λ t−1+a2∗λ t−2 = 0

Which you can rearrange (by dividing everything byλ t−2 ) as

λ 2+a1λ +a2 = 0 (7)

This is thecharacteristic equation for the second order dynamic system. The possible solu-
tions are referred to asλ1 andλ2 . If these two solutions are not the same, then the general solution
I claimed in 6 is valid. That is the case of “distinct roots”.

Now, we want to know if the roots are:

real valued: smaller then 1 in absolute value, we want to know if they are positive or negative

or

complex valued: the system oscillates, perhaps without bound!

Systems with complex roots make my head hurt, because then I have to remember what
√
−1

means. And sin() and cos() and modulus and other stuff I hate.
Worry about that another later.

1.5 The impossibly huge picture

Just remember this:
In general, if your discrete time system has M lags, then its solution has M roots, and your

problem is to find out about their values.
It is important to find because:
1) You can check system “stability”
2) You can see dynamic properties (oscillation)
3) You can interpret the importance of inputs into the system. Certain values of the roots will

cause the system to respond strongly to new input. Other cases might not.
The search for roots is what drives us to work on the so-calledcharacteristic equation. It is

characteristic of the system’s underlying dynamics. Givena theory like this:

yt = A∗ yt−1+B∗ yt−2+C

write the part with the y’s like so:

yt −A∗ yt−1−B∗ yt−2 = 0

And we know there will be a general solution which fits into a pattern like 6. Of course, if you
have a really big difference equation, like:

yt = A∗ yt−1+B∗ yt−2+C ∗ yt−3+D∗ yt−4+E

then the homogeneous general part of this is
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yt −A∗ yt−1−B∗ yt−2−C ∗ yt−3−D∗ yt−4 = 0

And if we know the general part of the solution is a set of constantsk j andλ j such that

yt = k1λ t
1+ k2λ t

2+ k3λ t
3+ k4λ t

4

Now, how in the world do we get the coefficients? We want those roots! We must have them.
It turns out that there is a big fat theorem which says that theroots are found as the solution

to the so-called “characteristic equation”. I’ve been confused sometimes because I have seen this
written down two different ways. Sometimes it goes like this

λ 4−Aλ 3−Bλ 2−Cλ −D = 0 (8)

Other times people get rid of the minus signs (the way I did in the second order case) or they
convert the whole equation by dividing everything through by a new variablez = 1

λ .
If you can solve that for theλ ’s, then you have the roots, and you can analyze them to determine

the system’s behavior. There are different ways to solve forthese magical numbers, and we will
get to that later in these notes, kinda.

Also note one more thing. A polynomial like the characteristic equation can also be factored,
and it turns out the roots pop up in an obvious way:

λ 4−Aλ 3−Bλ 2−Cλ −D = (λ −λ1)(λ −λ2)(λ −λ3)(λ −λ4) (9)

In Mickens’s bookDifference Equations, on p. 124, he states as a theorem that, as long as the
roots are distinct, then the solution to the homogeneous difference equation with p lags takes the
general form:

yt = c1λ t
1+ c2λ t

2+ c3λ t
3+ ...+ cpλ t

p

1.6 Now, about that “unit circle” business.

In the first order equation, we know the “stability condition” is that the coefficient|λ |< 1 . In the
higher order equations, a similar equation applies for all the individualλ j . If all the λ j are real
numbers, then the stability requirement is just that each one is smaller than one, or|λ j|< 1 .

Unfortunately, sometimes, the root can be a complex number.For example, in a second order
system, the characteristic equation is a quadratic equation, and since 9th grade or so we know the
famous formula to solve quadratic equations. The “roots” of

ax2+bx+ c = 0

are given by the formula

x = −b±
√

b2−4ac
2a

When I was in school, we said that a solution only existed ifb2−4ac > 0. Back then, they
taught us “you can’t take the square root of a negative number.”
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Well, we aren’t in high school anymore! This is college. You can do it! We must solve all
these characteristic equations, no matter what the coefficients. And that means figuring out what
it means if there is a square root of a negative number! That’swhat complex numbers are for. In
complex number theory (not my specialty, for sure), there isa thing i defined as the square root of
minus 1:

i =
√
−1

and it turns out that we can take the square root of
√

b2−4ac > 0 if we use thati thing.
A complex number has two parts, a real part and an imaginary part. Generally speaking, a

complex number looks like so:

n1+n2∗ i

n1 is the “real part” and the rest is the “complex part,” a numbern2 is a real number multiplied
by the square root of -1.

In the above example of the quadratic equation, suppose thatb=2, a=1 and c =3. Then the root
is

x =
2±

√
4−12
2

=
2+

√
−8

2
= 1±

√
−1∗

√
4
√

2
2

= 1± i
2
√

2
2

x = 1± i
√

2

The real part is 1, the imaginary part is
√

2 .
So, if you have a characteristic equation with complex roots, you have some trouble ahead of

you, but not all that much. To understand all the details, it involves sin(), cos(), and the pythagorean
theorem. You can study that on you own if you want, but the onlyreally vital thing is this.

Stability a complex root requires the following:
√

n2
1+n2

2

What’s the idea behind this? Ifλ j is complex, then raising it to powers likeλ 2 andλ 3 and
so forth may either cause the value to shrink to zero or it might instead explode to infinity. The
condition for the value to shrink to zero is that the value of the modulus, of “length”, of the
complex number must be smaller than one. Look at Hamilton, p.709. The modulus is defined by
the pythagorean theorem, i.e.,

R =
√

n2
1+n2

2
I don’t have the patience to explain the steps that it takes tojustify this claim.
If you took a Cartesian plan, a basic graph, you can find all thevalues ofn1 andn2 for which

the modulus is smaller than one. If you dres that, then you would have a circle centered at zero,
with a radius of one. Thisunit circle is the thing people are referring to when they say that a
system is stable if all the roots are inside the unit circle.

With real valued roots, inside the unit circle just means|λ j|< 1, but with complex roots, it is a
little more complicated to understand.
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2 What if the inputs are not constant?

Here’s where I’ve always gotten stuck in the past! The Hamilton Chapters 1 & 2 cleared up a lot
of questions for me.

2.1 First-order difference equation

Think about theB in the first order difference equation for a minute. It is a constant input. But
imagine that, instead of a constant B, at each time step we geta different number. Follow Hamilton
and use the variablewt to refer to the different numbers for inputs.

Who cares? Then the first order difference equation described above in 1 on page 1 only needs
a little bit of adaptation. I like the letter A, but nobody else does, they all seem to like the Greekφ
, so I cave in and start using that. Let’s follow Hamilton and suppose a first order system:

yt = φyt−1+wt . (10)

Hamilton starts iterating this equation at t=0, supposing he knows the value at time -1 for y,
which he callsy−1 . So we have this:

y0 = φy−1+w0

plug that in go gety1 , y2 , and so forth, until we have:

yt = φ t+1y−1+φ tw0+φ t−1wt−1+φ t−2wt−2+ ...+φwt−1+wt (11)

The key thing is that we are looking at the “inputs”w as just a string of numbers. Instead of
adding B at every timestep, we are just adding onwt . The numbers{w0,w1,w2, ...,wt} are just
numbers, nothing special. Just numbers that get added.

2.1.1 Dynamic Multiplier

Well, maybe they are not just numbers. They are “inputs.” They are quantities we theorize about,
things that we think might affect y. Hamilton is often interested in the “dynamic multiplier ”, the
impact onyt caused by a change in one of the input values at one time.

In the above example 11, the first order model, it is painfullyobvious. The impact of a change
in wt depends on “how long ago” it was and also on these coefficientsφ . If you could somehow
“grab” the variablew0 and make it one unit larger, then it is apparent that the change in yt would
beφ t . If you have to be skeptical about it, look at it like this. Addone unit tow0 and rewrite 11:

ynew
t = φ t+1y−1+φ t(w0+1)+φ t−1wt−1+φ t−2wt−2+ ...+φwt−1+wt (12)

Now if you subtract 11 from 12, you get:

ynew
t − yt = φ t(w0+1)−φ tw0

ynew
t − yt = φ t (13)
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This shows the discrete change, the gap between the originalyt andynew
t .

To the “high powered” math types, its not very interesting tolook just at the discrete change,
they want to look at derivatives or partial derivatives. Maybe we need to talk in more detail about
that.

Hamilton uses partial derivatives to describe this effect.

∂yt+ j

∂wt
= φ j (14)

In other words, a change inw at timet has an effectj time periods later that is equal toφ j .
Please note that the interpretation of the coefficientφ in this finding is strikingly similar to the

first section above (see equation 3). If the system is “stable”, meaning|φ | < 1 , then the effect of
a change in w has a smaller and smaller effect as time goes by. If the system is unstable, then the
effect of w gets bigger and bigger.

So, unlike the boring, old interpretation of difference equations, rather than just caring about
stability, we are not concerned about the “long lasting impact” of a variable input into the system.

2.1.2 Effect of a permanent increase inwt .

The claim in 14 shows the effect of a unit change inwt at any one time. We can use that insight to
wonder about the impact of a “permanent” change inw . If, beginning at some time t, the value of
wt is increased, and all followingw′s are increased similarly, then the effect at t+j is the sum of the
effects of all thew′s :

1+φ +φ2+φ3+φ4+φ5+ . . .φ j

If you let j get really big, say, infinite, and|φ | < 1, then this impact in j periods after the change
is:

1−φ j+1

1−φ

and when j is huge andφ j tends toward 0, so as a result the impact of a permanent changein
wt is

1
1−φ

(15)

Do you see why its a rather silly question to measure the impact of a change whenφ is 1 or
greater? See why it is so vital that a dynamic system be “stable” if we are going to get anything
useful out of it?

2.2 Higher order difference equations

Add more lagged y’s, and a coefficientφ j for each one:

yt = φ1yt−1+φ2yt−2+ ...+φp−1yt−p−1+φpyt−p +wt . (16)
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If you follow along with Hamilton (p. 8-9), you start to see his plan. Use whatever mathemat-
ical tool you can to find out the dynamic properties of the system, and, in particular, measure the
impact of changes inwt .

On p. 8, Hamilton introduces a way to convert a single equation model into a matrix equation.
That’s not done just because matrices are cool, but also because they have powers and there are
lots of results about them. His attention ends up focusing onthe matrixF, which is:

F =























φ1 φ2 φ3 . . . φp−1 φp

1 0 0
... 0 0

0 1 0
... 0 0

0 0 1
... 0 0

...
...

...
...

...
...

0 0 0
... 1 0























(17)

You arrive at that matrix by writing the main equation you areinterested in in the first row, and
then add a set of identities like

yk = yk (18)

where k={y-1,y-2,...,y-p}.
Look at the top of p. 9 in Hamilton. You see that if we repeat theiteration process, putting in

new inputs and calculatingyt at each step, it is as though we are multiplying F by itself, repeatedly.
We can talk details, but the big news is tha the impact of a change inwt ends up being filtered

through the matrix F andF2 andF3 and so forth.

3 What’s that Eigenvalue thing all about?

Oh, please, not that. I took linear algebra in 1985. You expect me to remember that? I didn’t like
it then, much. If I have to do it again, at least I want to know what for!

3.1 Justification of awful pain and suffering

There are 2 reasons why the eigenvalue comes back at me after all these years.

1. Eigenvalues of the matrixF end up solving the characteristic equation 8. In fact, the eigen-
valuesare the roots of the characteristic equation. (Hamilton provesthis in Proposition 1.l,
p. 10).

2. Eigenvalues of the matrixF end up giving ingredients in the calculation of∂yt+ j

∂wt
. The

dynamic multiplier is a linear sum of the eigenvalues, something like c1λ1 + c2λ2 for a
second order system, and the coefficientsc1 andc2 have formula that include the roots as
well.
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3.2 Actual pain and suffering

Suppose you have some square matrix. I don’t know why we can’tcall it F. The definition of an
eigenvalue goes like this. A numberλ is an eigenvalue if the determinant|F −λ I| = 0 . The
determinant of a 2x2 matrix is so easy that calculating it is like falling out of bed. If the matrix is:

[

a b
c d

]

Then
∣

∣

∣

∣

[

a b
c d

]
∣

∣

∣

∣

= ad − cb

A determinant of a bigger matrix is more difficult to calculate, usually involves some high order
polynomials.

So if the matrix that you are trying to get a determinant isF −λ I , that means you are getting
the determinant of

F −λ I =























φ1−λ φ2 φ3 . . . φp−1 φp

1 −λ 0
... 0 0

0 1 −λ
... 0 0

0 0 1
... 0 0

...
...

...
...

...
...

0 0 0
... 1 −λ























(19)

Solving the determinant|F −λ I| usually means solving a polynomial inλ .
There can be up to as many different solutions–values ofλ –as there are rows in this matrix.

And finding may not be easy. In fact, I don’t think there is a general formula for solving these if
the order is more than 3.

Now here are 2 mathematical complications:

1. If all of the solutions are distinct, some of the mathematics works out more easily.

2. If all of the solutions are real-valued, then we are more familiar with interpreting the results.

Note Hamilton has a lot of effort expended to the case in whichthe eigenvalues are distinct, versus
the case in which some are repeated. Note he also has a pretty big effort devoted to working out
the details of the complex solution cases.

3.3 Characteristic. Schmarasteristic.

Now, as far as solving the characteristic equation goes, this just works like magic. You can adjust
the coefficientλ to make|F −λ I| = 0 , and all such numbers are the roots of the characteristic
equation. Now days, we even have computer smart enough to findtheλ j for us :)
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3.4 Remember we wanted the dynamic multiplier?

As far as finding the dynamic multipliers, it is a little more work.
Hamilton, on p. 11, uses a result from linear algebra for matrices with distinct eigenvalues.

The result is that

F = T ΛT−1

for some matrix T and whereΛ is a matrix that collects up the eigenvalues, like so:

Λ =





λ1 0 0
0 λ2 0
0 0 λ3



 (20)

Now there is a stunning thing about this result. If you need tocalculateΛ2 is is just the squared
items fromΛ . If you needΛ3 , it is just the cubed elements ofΛ . Its just as simple as pie!

Furthermore, if you calculateF2 , it ends up being as simple asT Λ2T , and if you needF3 it is
just T Λ3T−1 .

So, it is trivially easy to tell the values ofFt .
That means, whenever we need a number fromF t , it is no trouble to get it.
The multiplier is, in general, a combination of the eigenvalues. The impact of a change inwt

that will be felt after j periods is like so:

∂yt+ j

∂wt
= c1λ j

1 + c2λ j
2 + ...+ cpλ j

p (21)

There’s a formula on p. 12 in Hamilton to use for the c coefficients.
So we know that the dynamic multiplier, which describes the impact of a unit change inwt is a

weighted combination of the eigenvalues.

3.5 Didn’t you want the impact of a permanent change too?

But wait! it gets even better than that. We can use the eigenvalues as a “safety check” to make one
more very important observation. Look back up at equation 15. We want a result like that, but for
equations with more lagged y’s.

The impact of a permanent change inwt in a higher order equation can be seen as a direct
extension of 15. That is, assuming that ALL roots (eigenvalues) are inside the unit circle, it is
meaningful to make the exact same simplifications that led to15 in a bigger model, and as a result,
the impact of a permanent one unit change inwt after many many (actually, an infinite number of)
periods is:

1
1−φ1−φ2−φ3−·· ·−φp

(See Hamilton’s p. 20 result, Proposition 1.3). Please don’t forget this is only valid if the
system is stable.
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4 What the heck is that L thing doing in my reading again?

L is the lag operator, and it has some nice properties. Unfortunately, not many authors clearly
explore the operator. Instead, they tend to just want to throw it around as if it were a number,
which works much of the time, but not always. One of the strength’s of Hamilton’s chapter 2 is a
pretty thorough explanation of what L is and what is good for.

4.1 What are we sure is true of L?

I don’t know about a comprehhensive list, but:
1. definition:

xt−1 = Lxt

2. raise L to powers

xt−2 = L(Lxt) = L2xt

xt−3 = L(L2xt) = L3xt

3. L obeys linearity, so you can multiply by a constant:

4∗Lxt = L(4xt)

4. L obeys a distributive law. You can also act as if L is a coefficient and do things like:

L(3∗ xt +4∗ yt) = 3Lxt +4Lyt

or

L(1+3L) = L+3L2

5. polynomial grouping is meaningful. You can do “factoring” and “multiplying” of expres-
sions involvingL

6L2+5L+1= (3L+1)(2L+1)

Then we know it is the same thing to apply either the left or theright to a variablext . So, first
apply the left hand side:

(6L2+5L+1)xt = 6xt−2+5xt−1+ xt

and that is the same as applying the right hand side:

(3L+1)(2L+1)xt = (3L+1)(2xt−1+ xt)
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= 6Lxt−1+3Lxt +2xt−1+ xt

= 6xt−2+5xt−1+ xt

What do we think is not true of L? Remember L is an operator, so you can’t assume it always
works like a real number. So, for example, it meaningful to talk about the inverse of

(1−φL)

only if |φ |< 1 . As Hamilton observes, in that case the inverse(1−φL)−1 exists and the idea
of “dividing” something by(1−φL) make sense. (Hamilton, p. 28; yes, its just another example
of the geometric series).

4.2 Think of a difference equation as a polynomial in L

Take any discrete time system, like 11:

yt = φ1yt−1+φ2yt−2+ ...+φt−pyt−p +wt (22)

If you use the L operator, this is

yt = φ1Lyt +φ2L2yt + ...+φt−pLpyt +wt (23)

And you might as well write:

(1−φ1L−φ2L2− ...φpLp)yt = wt (24)

If we want a “solution” foryt then we wantyt on the left hand side, all by itself, an we wish we
could do something simple like:

yt =
wt

(1−φ1L−φ2L2− ...φpLp)
(25)

The big problem is that we can’t write such a thing down because we can’t just bash L about
as if it were a number. In some particular cases, Hamilton shows (p. 30) that it is meaningful. In
particular, guess what: it depends on the eigenvalues. Again, eigenvalues, I can’t stand it.

Still, the notion that we just write use shorthand like

C(L) = 1−φ1L−φ2L2− ...φpLp (26)

and

yt =C−1(L)wt

is appealing. Note how doing this makes it clear that the the current value ofyt is a weighted
combination of inputs! That’s exactly what we wanted for the“dynamic multipliers” model. If
only we knew ifC−1(L) were a meaningful thing, and how to calculate it!
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4.3 The result is especially clear in a first order differenceequation.

Hamilton shows a simple case of an AR(1) model, one for whichC(L) = 1− φL , and he shows
that, by simple algebra, that we can get what we want. Start with

(1−φL)yt = wt

and multiply both sides by (1+φL+φ2L2+φ3L3+ ...+φ tLt). You are allowed to do that with
L’s, as we described above.

Then evaluate this by doing the multiplication term by term:

(1+φL+φ2L2+ ...+φ tLt)(1−φL)

What do you end up with?

(1−φ t+1Lt+1) (27)

Man, oh man. that means:

(1−φ t+1Lt+1)yt = (1+φL+φ2L2+ ...+φ tLt)wt (28)

which means
yt −φ t+1Lt+1yt = (1+φL+φ2L2+ ...+φ tLt)wt (29)

And sinceLt+1yt is just the value of y at t = -1, then the second term on the left hand side is:

φ t+1Lt+1yt = φ t+1y−1

Then move that to the right hand side of the big equation, and look what we have:

yt = φ t+1y−1+(1+φL+φ2L2+ ...+φ tLt)wt (30)

This got a lot of work done! We haveyt by itself on the left hand side, and some “other stuff”
on the right, just what we wanted! Now, we seeyt by itself on the left hand side, it means we found
the “practical equivalent” ofC−1(L) =(1−φL)−1 . It does “almost” what we want, except there is
little problem of the term

φ t+1Lt+1yt = φ t+1y−1

That is “extra”, “unwanted”,”hated”, “undesirable”, and generally ugly. But, if we assume
that φ <1, then we can assert that this extra part “shrinks” to zero,and we throw it away.

The conclusion is that, ifφ < 1 , then we can actas if (1−φL)−1 exists, and that means we
can write things like

(1−φL)yt = wt

(1−φL)−1(1−φL)yt = (1−φL)−1wt

yt = (1−φL)−1wt

yt = (1+φL+φ2L2+ ...+φ tLt)wt (31)

Please remember, it is only “as if” we are allowed to divide both sides by(1−φL) . SinceL is
not a number, it is not strictly meaningful to speak of division byL .
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4.4 What if that “sneaky trick” worked more generally?

Consider a pth order difference equation:

yt −φ1Lyt −φ2L2yt − ...−φpLpyt = wt (32)

or

(1−φ1L−φ2L2− ...−φpLp)yt = wt (33)

When I was in 9th grade, I don’t think I was paying attention, but since then I’ve learned it
is true that if you can write a polynomial by factoring it. That means there are some numbers
λ1,λ2, ...,λp such that:

(1−φ1L−φ2L2− ...−φpLp) = (1−λ1L)(1−λ2L) · · ·(1−λpL)

So that means we can substitute that for the left hand side of 33, and we have:

(1−λ1L)(1−λ2L) · · ·(1−λpL)yt = wt (34)

Now, we saw in the previous section that wedo know of a way to invert things like this. We
could employ the trick from the previous section to get(1−λ1L)−1 . We apply that rule over and
over again, and our problems are solved! We end up withyt on the left hand side, all by itself. All
we need are the coefficientsλ1,λ2, ...,λp

4.5 Then this new kind of characteristic equation happens

Recall the characteristic equation 8. We said the system is stable if the roots are all inside the unit
circle.

Now, when people write the difference equation with L’s in it, they arrive at a different kind
of equation that looks almost just like a characteristic equation. Look at 23 and notice there is an
equivalent of the characteristic equation, except a littledifferent.

If you replace the lag operator L with the real number z, then the polynomial in L looks like

1−φ1z−φ2z2− ...−φpzp = 0 (35)

This is just the same as the old characteristic equation, except now we have replacedλ by 1
z .

If we talk about the roots of this equation in z, we are talkingabout the same roots that we had in
the other equation.

But the stabilty conditions are reversed. So, if the original characteristic equation required that
all roots be inside the unit circle, what does this new equation say about the roots of z? They have
to be outside the unit circle!

Note the very excellent paragraph Hamilton, (p. 32), where he mentions the frequent confusion
when some authors talk about roots inside or outside the circle without precisely describing what
equation they are talking about. Wow. That really answered some questions I had accumulated.
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4.6 Now, back to the dynamic multipliers again.

Look at this equation in the factored polynomial above. Supposing you did apply the inverse for
each term, you would end up withyt on the left hand side, all by itself.

yt = (1−λ1L)−1(1−λ2L)−1 · · ·(1−λpL)−1wt (36)

Doing this requires that each of the rootsλ1,λ2, ...λp is inside the unit circle.
Now, if you recall what it “really” means to apply(1−λ1L)−1 , what we are really doing is

multiplying by a long sum, (1 +(1+λ1L+λ 2
1 L2+ ...+λ t

1Lt) . We have to do that for(1−λ2)
−1

and so forth. At the end, on the right hand side we have all kinds of L ’s andλ ’s floating around.
We don’t care to actually write all that out, we might as well note, however, that the formula would
have to be something like:

yt = ψt +ψ1wt−1+ψ2wt−2+ ...+ψtw0 (37)

The coefficientsψt might be algebraically complicated, but we know for sure they depend on
theλi .

These coefficientsψt are just the dynamic multipliers! Hamilton p. 35 gives the formulae, I’m
too tired for that now.
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