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1 Introduction
The Chi-Square distribution is a staple of statistical analysis. It is often used to judge “how
far away” some number is from some other number.

The simplest place to start is that the Chi-Square distribution is what you get if you take
observations from a standard Normal distribution and square them and add them up. If we
use Z1,Z2, and so forth to refer to draws from N(0,1), then
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That’s means the sum of Z ′s squared has a Chi-Square distribution with N degrees of
freedom. The term “degrees of freedom” has some emotional and cognitive implications for
psychologists, but it is really just a parameter for us.

Things that are sums of squares have χ2 distributions.
Now, suppose the numbers being added up are not standardized, but they are centered.

That is to say, they have a Normal distribution with a mean of 0 and a standard deviation
of sd. That means we would have to divide each observation by sd in order to obtain the
Zi’s which are standardized Normal observations. Obviously,(
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Equivalently, suppose you think of the Yi as being proportional to the Zi in this way:

Yi = sd∗Zi

The coefficient sd is playing the role of a “scaling coefficient” and without too much effort
you find out that if some variable xi =∑

Z2
i has a Chi-square distribution, χ2

N , then sd×xi
has a distribution equal to sd×χ2

N .
The elementary laws of expected values and variances dictate that

E(sd×xi) = sd∗E(xi)

and
V ar(sd×xi) = sd2V ar(xi)

1



In other words, the Chi-square distribution applies not just for a sum of squares of a
standardized Normal distribution, but in fact it describes a sum of squares of any Normal
distribution that is centered around zero.

2 Mathematical Description
The Chi-Square probability density function for xi =∑

Z2
i is defined as:

f (xi) = x
(N/2−1)
i exp(−xi/2)

2N/2Γ[N/2]
It is defined on a range of positive numbers, 0≤ xi ≤∞. Because we are thinking of this

value as a sum of squared values, it could not possibly be smaller than zero. It also assumes
that N > 0, which is obviously true because we are thinking of the variable as a sum of N
squared items.

Why does the χ2 have that functional form? Well, write down the probability model for
a standardized Normal distribution, and then realize that the probability of a squared-value
of that standardized Normal is EXTREMELY easy to calculate if you know a little bit of
mathematical statistics. The only “fancy” bit is that this formula uses our friend the Gamma
Function (see my handout on the Gamma distribution), to represent a factorial. But we have
it on good authority (Robert V. Hogg and Allen T. Craig, Introduction to Mathematical
Statistics, 4ed, New York: Macmillian, 1978, p. 115) that Γ(1/2) =

√
π.

3 Illustrations
The probability density function of the Chi-Square distribution changes quite a bit when one
puts in different values of the parameters. If somebody knows some “interesting” parameter
settings, then a clear, beautiful illustration of the Chi-square can be produced. Consider the
following code, which can be used to create the illustration of 2 possible Chi-Square density
functions in Figure 1.
xva l s <− seq (0 ,10 , l eng th . ou t =1000)
ch i square1 <− dchi sq ( xvals , d f=1)
ch i square2 <− dchi sq ( xvals , d f=6)
matplot ( xvals , cbind ( ch isquare1 , ch i square2 ) , type=" l " , x lab="

p o s s i b l e va lue s o f x " , y lab=" p r obab i l i t y o f x " , yl im=c (0 , 1 ) ,
main="Chi−Square Probab i l i t y Den s i t i e s " )

t ex t ( .4 , .9 , " df=1" , pos=4, c o l =1)
text (4 , .2 , " df=6" , pos=4, c o l =2)
The shape of the Chi-Square is primarily dependent upon the degrees of freedom that are

witnessed in any particular univariate analysis. The adjustment of the degrees of freedom
will have a substantial impact on the shape of the distribution. The following code will
produce example density functions for a variety of shapes with a variety of degrees of freedom.
Examples of Chi-Square density function with a variety of degrees of freedom are found in
Figure 2.
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Figure 1: χ2 Density Functions

4 Expected Value, Variance, and the role of the pa-
rameters

The Chi-Square distribution is a form of the Gamma distribution, and most treatments of the
Chi-Square rely on the general results about the Gamma to state the characteristics of the
special-case Chi-square. The Gamma distribution G(α,β) is a two parameter distribution,
with parameters shape (α) and scale (β).

Gammaprobability density = 1
Γ(α)βαx

α−1e−x/β

Note that if the shape parameter of a Gamma distribution is N
2 and the scale parameter

is equal to 2, then this probability density is identical to the Chi-square distribution with
degrees of freedom equal to N .

Since it is known that the expected value of a Gamma distribution is αβ and the variance
is αβ2, that means that the expected value of a Chi-square for N observations is

E(x) =N

and the variance of a Chi-square variable is

V ar(x) = 2N
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Figure 2: Chi-Square Densities various df
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Now, if a variable is proportional to a Chi-Square xi, yi = σxi, we know that yi has a
distribution

yi ∼ σχ2
N

and the probability density is (via a “change of variables”)

f (yi) =
y
(N

2 −1)
i exp

(
− yi

2σ

)
σN/22N/2Γ[N/2]

and
E(yi) = σN

V ar(yi) = σ2N

The mode (for N > 2) is
mode(yi) = σ(N −2)

The Chi-Square is related to the Poisson distributions with parameter and expected value
equal to xi

2 by:

P [Chi−Square(n)≥ xi] = P
[
Poisson

(
xi
2

)
≤ n

2 −1
]

5 How is this useful in Bayesian analysis?
In statistical problems, we often confront 2 kinds of parameters. The “slope coefficients” of a
regression model are one type, and we usually have priors that are single-peaked and symmet-
ric. The prior for such a coefficient might be Uniform, Normal, or any other mathematically
workable distribution.

Sometimes other coefficients are not supposed to be symmetrical. For example, the
variance of a distribution cannot be negative, so we need a distribution that is shaped to
have a minimum at zero. The Gamma, or its special case the Chi-square, is an obvious
candidate.

The most important aspect of the Chi-square, however, is that it is very mathematically
workable! If one is discussing a Normal distribution, for example, N(µ,σ2) one must specify
prior beliefs about the distributions of µ and σ2. Recall that in Bayesian updating, we
calculate the posterior probability as the product of the likelihood times the prior, so some
formula that makes that result as simple as possible would be great.

p(σ2|y) = p(y|σ2)p(σ2)

From the story that we told about where Chi-square variables come from, it should be
very obvious that if y is normal, we can calculate p(y|σ2) (assuming µ is taken as “given”
for the moment). So all we need is a prior that makes p(σ2|y) as simple as possible. If you
choose p(σ2) to be Chi-squared, then it turns out to be very workable.

Suppose you look at the numerator from the Chi-Square, and “guess” that you want to
put 1/σ2 in place of xi. You describe your prior opinion about σ2
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prior : p
(
σ2
)
∝ (σ2)−N/2−1exp

(
−1

2So/σ
2
)

We use N and S0 as a “scaling factors” to describe how our beliefs vary from one situation
to another. N is the “degrees of freedom”.

Note that is very convenient if your Normal theory for y says:

p(yi|σ2) = 1√
2πσ2

exp(−1
2

(yi−µ)2

σ2 )

Suppose the sample size of the dataset is n. If you let S = ∑n
i=1(yi−µ2) represent the

sum of squares, then we rearrange to find a posterior:

p(σ2|y)∝ (σ2)−(N+n)/2−1exp(−1
2(So+S)/σ2)

Look how similar the prior is to the posterior.
It gets confusing discussing σ2 and 1/σ2. Bayesians don’t usually talk about estimating

the variance of σ2, but rather the precision, which is defined as

τ = 1
σ2

Hence, the distribution of the “precision” is given as a Chi-Square variable, and if your
prior is

prior : p(τ)∝ τN/2−1exp
(
−1

2Soτ
)

then the posterior is a Chi-Square variable

(So+S)τ ∼ χ2
N+n

If you really do want to talk about the variance, rather than the precision, then you are
using a prior that is an INVERSE Chi-Square. Your prior is the inverse chi-square

σ2 ∼ SoX−2
N

which I’ve seen referred to as
σ2 ∼ (S0 +S)χ−2

N+n

As a result, a prior for a variance parameter is often given as an inverse Chi-square, while
the prior for a precision parameter is given as a Chi-square.
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