UsING COUNT MODELS TO ESTIMATE RATES [< ! '
BRrIEF NOTE WITH EXAMPLES
CENTER FOR

RESEARCH METHODS
Paul E. Johnson, CRMDA, paul john@ku.edu & DATA ANALYSIS

College of Liberal Arts
& Sciences

Guide No: 45 Keywords: Regression, Poisson, Count model Nov. 20, 2018
See crmda.ku.edu/guides for updates.

Abstract
This demonstrates how to use count regression (Poisson or Negative Binomial), to estimate rates

of events.

We conducted an analysis of injury rates among fireworks industry workers for one project, using
R (R Core Team, 2018). A SAS enthusiast wondered if we could match some estimates from SAS.
We will demonstrate how this can be done. We have fully worked 2 example projects in both SAS
and R to demonstrate the equivalence of the results obtained with the two software packages.

We found the most serious impediment was the terminology of models for rates of events. The
transition from estimating counts to estimating rates is simple, but worth reviewing methodically.
Once we establish the terminology for this process, we will discuss the worked examples.

The results obtained with SAS and R are shown to be equivalent. A full understanding of the
findings can only be had by running the code that we supply along with this report. Many details
are omitted from this summary.

1 Estimating Rates with Regression Models for Counts

A Poisson regression is usually thought of as a model for counts, such as the number of on-the-job
accidents resulting in personal injury. However, because the number of hours worked varies from
month to month, we expect the accident count fluctuates as well. It is not enough to model the
count, we need to estimate the injury rate per hour worked.

The count regression can be rephrased as a way of estimating rates.

Math review

Remember the laws of logarithms and exponentials. Some of the most important facts are
1. e*-e¥ =erty

2. €lo9(®) = g and, equivalently, log(e®) = x.

w

- log(w/y) = log(z) — log(y) and log(x - y) = log(x) + log(y)
. log(1) =0

W

In this notation, log is the natural logarithm, a log with the base e. This is often referred to as In.

Address line 1 Web: https://crmda.ku.edu
Address line 2 Email: you@where.edu
City State Zipcode Phone: 123-345-5678

mailto:pauljohn@ku.edu
pauljohn@ku.edu
crmda.ku.edu/guides
https://crmda.ku.edu
mailto:you@where.edu
you@where.edu

Model for counts

In the usual Poisson model, the number of events, y;, is represented as a draw from a Poisson
distribution in which the parameter is \; = exp(X;/3). That one parameter is, it turned out, equal
to both the variance and the expected value of y;. The expected value is

Elyi|Xi] = \i = %P = exp(X;f) (1)

In this notation, X; is a row vector, the 7’th row out of a larger predictor matrix X which has N
rows (one for each case) and p columns. There is almost always a column of 1’s in the first column
of X; to represent the intercept.

Bo
Ej1
Bp
The vector of slope coefficients, 5, has as many elements as there are items in Xj.
The exponential transformation is used because, no matter what the input X;8 might be, the
transformed output will be positive. This is theoretically required in a model of counts. The
estimate of the expected value must positive.

This is a generalized linear model with a “log link” (log both sides):
log(E[y:| Xi]) = Xif8 (2)

For any given set of predictors, we can calculate the predicted value of the mean of y;. The notation
becomes cumbersome if we write E[y;], so it is usual to let p; = E[y;|X;]. Then the predicted value,
or the estimate of the mean, can be referred to as

fi; = exp(X;P) (3)

The Poisson distribution has the property that its only parameter, which in this case would be
N = exp(XiB), is also equal to its expected value and its variance. It is fairly common to begin
count models with the assumption that y; is drawn from a Poisson distribution. If it appears there
is overdispersion, then we might change the assumed distribution to Negative Binomial. In either
case, the “count to rate” transformation described next will work well.

A Rate Model

The model described so far predicts the mean number of events. The apparatus for the count model
can be used to estimate the rate of occurrence for events. We need to justify the following method
of estimating rates, where the observed count is y; and an “exposure” variable, n;, represents the
time during which counts are collected for each case 7. The unit of observation for the exposure
variable is usually time or similar.

Proposition: we can estimate the rate, rather than the count, if we transform the linear predictor
by inserting the log of the exposure:
\; = eXiB+log(ni) (4)

Page 2 of 24

The additional quantity, log(n;), that is known as an offset. There is no coefficient or weight for
the offset term in the predictor, it simply is assumed to enter the model with the value log(n;).

On the face of it, it appears there is no sense in this, so I make a special effort to justify it. There
are two ways to describe the adaptation of the Poisson model to estimate rates.

Derivation 1: Hypothesize a rate model

This is offered in Atkinson, et al (7, p. 10) as a mathematical “sleight of hand.” Suppose

1. n; is the “exposure” variable.

2. 7; is the rate of events per unit of observation, n;.

Then a model for the expected event count for case i would be the rate times the exposure, or
E[yl] = T;Ny;. (5)

Now suppose the rate is driven by the linear predictor we were using for the raw count model, with
an exponential transformation, 7; = eXi?. The expect count is

Elyi] = % (6)

The laws of logs are then employed:

Elyi] = eXiBelog(ni) _ Xif+log(ni) (7)
(This is allowed because n; = elo9(m)),

Derivation 2: The left hand side is count over exposure

Assert that the outcome being modeled is y;/n;, the ratio of the count to the exposure. Surely,
that ratio is a rate! The GLM looks like the original count model, except for the fact that n; is in
the denominator of the left hand side.

Elyi/ni] = 7. (8)

Because the expected value is a linear operator (for any x, E[rky;| = xE[y;]), we can rewrite the
left hand side (using 1/n; in the role of):

1 .
—E[yi] = ¥

()

From this point, the derivation can take either of two turns. In one approach, multiply both sides
by Uz

Ely] = Xn,
Page 3 of 24

We have arrived at (6) again and the previous derivation applies.

Another derivation starts with (8) and logs both sides:

log(Ely]/ni) = X (law of logarithms)
log(E[y:]) — log(n;) = X8 (law of logarithms)
log(Elyi)) = XBHog(m)
Elyi] = exp(Xif + log(ni))

Recall that is the same as the “log link” formulation of the Poisson model (2), except that there is
a new offeset predictor added, log(n;).

Confidence intervals for estimated rates

The calculation of confidence intervals for predicted values from generalized linear models is an
area of open research and controversy. There have been at least 30 methods proposed, many
using exotic mathematics. In most of the practical research applications, a simple “seat of the
pants” Wald approximation is taken. For each case, a standard error is calculated, and then the
confidence interval is derived by a simple thing like

exp(X;f3 + log(n;) + 1.96 - std.err.)

where 1.96 is a familiar number for regression analysts, roughly indicting the width of 95% of cases
that would arise in repeated sampling, and std.err. is the value variously described in software as
the standard error of the fitted value (se.fit in R). This method is not perfect because it ignores
our uncertainty about B, but it is usually considered good enough. This is the method I use in the
rockchalk package for R and it is the method that SAS adopts in all of their derivations.

Injury rates for different values of exposure

The motivating example for this project was a study of injuries among employees in the fireworks
industry. We have data for hours worked, by month, for 2016 and 2017. For each month, there
is a tabulation of the number of on-the-job accidents. The number of accidents will be the count
variable in which we are interested, and the exposure will be the number of hours worked.

If we wanted to estimate the rate of events for exposure equal to 1, this problem would be easy.
However, the current US policy is to estimate the rate per 200,000 hours of worker exposure. The
SAS software did not make this easy.

The observed number of injuries per hours worked would be

Ui INJuries;

ni #of hours;

The estimated expected number of injuries, which we are treating as a predicted value, given some
predictors and an exposure n;, would be

Elyi|X;] = exp(X;B) + log(ns) (9)
Page 4 of 24

We want a rate for a given number of hours worked. This is the point at which the examples we
found were difficult to understand because the available software treats this in different ways.

First, suppose we want to estimate the accident rate for n; = 1 unit of exposure. Because log(1) = 0,
then inserting estimates § into the predictive formula for n; = 1 we find the rate for case ¢ with
exposure 1:

rate per 1 unit exposure; = exp(X;3) + log(1) = exp(X;) (10)

Because log(1) = 0, estimating the rate per 1 unit of exposure is the same as estimating the predicted
value from the rate regression after removing the offset entirely. The estimate of exp(X;[3) is the
number of injuries expected for just one hour of labor.

In our analysis of injuries, however, we are not asked for “injuries per 1 hour”. Instead, we are asked
for a value consistent with previous governmentally supervised studies. The OSHA rate standard
uses 200,000 hours worked as the baseline value and the desired estimate is the number of injuries
per 200,000 hours worked. As a result, to calculate the injury rate per 200,000 hours worked, we
use the same formula, but insert the offset log(200, 000).

rateogma = rate per 200000 unit exposure = exp(Xi,é’) + log (200, 000) (11)

2 Case studies

Here we have worked example case studies.

Insurance Rate Regressions

There is an example of a Poisson-based estimate of a rate model in the SAS Usage Note 24188'.
The model predicts insurance claims rates for cars as a function of their size (“small”; “medium”,
and “large”) and the age of the car’s owner, which is very coarsely grouped (“1” and “2”). We are
predicting claims per policyholder category (not claims per year).

One interesting thing worth noting is that the data is imported in aggregated form, as summarized
in Table 1. Since the raw input data includes only 6 lines, it seems like a hollow exercise to create
a variable summary table, but I did so to find out what would happen (see Table 2).

In our SAS folder for this project, we replicate the SAS calculations described on the SAS website
(“ SAS-help_note24188.sas ” and the accompanying *.Ist and *.log files).

In the R folder, see “ SAS-help_note24188.R. ”.
The Stata version is “ SAS-help_note24188.do ”.

In the SAS webpage, the theoretical model is represented as

log(,u/n) = 60 + BICARlarge + 52CARmedium + 53CARsmall + /84AGE1 + 55AGE2

Ynttp: // support. sas. com/kb/24188. html. Accessed 2018-01-23. We have a copy of that report saved in a
PDF in case it becomes unavailable in the future.

Page 5 of 24

http://support.sas.com/kb/24188.html

The subscripts refer to the dummy variables representing various car sizes and ages. The notation
seem poor because the estimates for C ARgq and AGE, cannot be obtained separately because
the model is overidentified. It should have been written:

log(,u/n) = 50 + 5ICARlarge + BQCARmedium + 55AGE2 (12)

If T were writing this from scratch, I would have written

log(pi/ni) = Bo + Picar.large; + Pacar.medium; + Psage.old;

In any case, beginning with the SAS formula in equation (12), we use the rate model derivation 2
above:

log(,u,) - log(n) = ﬂO + ﬂlCARlarge + 5QCARmedium + 55AGE2
= fBo + BICARlarge + B2CARmedium + s AGE2 + lOg(”)

w=exp(Po + BlCARlarge + B2C AR pedium + B5AGES + log(n))
=nX ewp(ﬂ[) + /BICARlarge + /BQCARmedium + 55AGE2>

and the observed value of claims is assumed to be Poisson

claims ~ Poisson(u).

Table 1: Insurance claim data

n claims car age carnum nlog agen
1 500 42 small 1 1 6.21 1
2 1200 37 medium 1 2 7.09 1
3 100 1 large 1 3 4.61 1
4 400 101 small 2 1 5.99 2
5 500 73 medium 2 2 6.21 2
6 300 14 large 2 3 5.70 2

In R code for the model, the offset can be estimated either with a predictor that is logged in the
data set or with math in the formula itself. Here we take the latter approach.

ins2 <- glm(claims ~ offset(log(n)) + car + age, family =
"poisson", data = insure)

The summary table is presented in Table 3.

In Table 3, my eye was drawn to the fact that the sample size, N, is reported as 6 and the deviance
is 2.81. One might say “aha, deviance is hugely bigger than degrees of freedom,” but that would
be a mistake. The degrees of freedom value against which 2.81 must be compared is N — 4 = 2
because 4 parameters are estimated in the model. Hence residual deviance of 2.81 on 2 degrees of
freedom is not too bad.

Page 6 of 24

Table 2: Descriptive statistics (insurance claims)

variable mean sd min max
1 claims 44.67 37.12 1 101
2 offset(log(n)) 5.97 0.8134 4.605 7.09
3 car
4 small 0.3333
5 medium 0.3333
6 large 0.3333
7 age
8 1 0.5
9 2 0.5

Table 3: Insurance claims offset model (Poisson)
Poisson with offset

Estimate
(S.E.)
(Intercept) —2.637HH*
(0.132)
Car: medium —0.693***
(0.128)
Car: large —1.764%**
(0.272)
Age: senior 1.320%**
(0.136)
N 6
Deviance 2.821
—2LLR(Modelx?) 172.333%%*
Akaike IC 40.93

#*p < 0.05% p < 0.01s0xp < 0.001

The parameter estimates seem to indicate that as the insured car becomes larger, the predicted
number of insurance claims should go down, while if the owner is older, the number of claims should
go up. Rather than inspecting the parameter estimates, I will inspect the predicted values. Using
the predictOMatic function, I specify the values of the predictors for which I want predictions in
the predVals argument. The setting “table” means “show observed categories” and the number of
cars for which we want a prediction is 1. Hence, we are estimating the rate per car.

ins2.pom <- predictOMatic(ins2, predVals = list("car" = "table",
"age" = "table","n" = 1), interval = "confidence")
rockchalk:::predCI: model’s predict method does not return an interval.

We will improvize with a Wald type approximation to the confidence interval

Page 7 of 24

Table 4: Predicted rates from the insurance model (Poisson)
n car age fit lwr upr

1.00 small 1 0.07 0.06 0.09
1.00 medium 1 0.04 0.03 0.05
1.00 large 1 0.01 0.01 0.02
1.00 small 2 0.27 0.22 0.32
1.00 medium 2 0.13 0.11 0.17
1.00 large 2 0.05 0.03 0.08

In R, it is easier to obtain predicted values of the rate than it is in SAS. The SAS code (as illustrated
in SAS-help_note24188.sas) obscures the details to an extent, but the key insight is this: the rates
being estimated are desired for n; = 1, meaning the exposure’s offset term needs to be set at
log(1) = 0 in calculating the predicted rates. Because of the way SAS code calculates predicted
values, then, it is necessary to do some after-the-fact adjustments that remove the effect caused by
offset(nlog).

In the SAS Usage Note 24188, there are 3 SAS procedures shown for calculating confidence intervals
on estimates. The one I replicate in my examples is SAS method 2. The first method described in
the SAS note is not possible for us because our version of SAS is different (the SAS plm feature is
unavailable).

Soccer goals

The R package GWRM includes a data set about goals scored in the European soccer league.
(While I don’t watch soccer, I am a fan of count data that obviously calls for a correction in the
form of a logged offset.)

The usual assumption in count data sets is that the counts observed for the various cases are based
on the same amount of exposure. The goals data set does not match that explanation because it
includes some players who play just a few matches while some play in many. Predicting the number
of goals scored without taking into account the number of games played seems silly.

In Table 5, we illustrate the first 15 rows of the original data. This data is irregular in a couple
of ways. First, there are many players who participate but never score. Second, there are some
high scorers who, of course, must necessarily play in a large number of games. See Figure 1. The
descriptive statistics are summarized in Table 7.

Page 8 of 24

Table 5: The goals data set

clasif position played goals
1 12 Defender 17 0
2 12 Midfielder 21 1
3 12 Midfielder 27 4
4 9 Defender 26 3
5 12 Defender 31 2
6 9 Defender 32 2
7 12 Forward 31 6
8 14 Defender 12 0
9 5 Forward 33 5
10 9 Midfielder 33 1
11 12 Forward 34 10
12 12 Defender 25 0
13 7 Defender 31 0
14 12 Defender 17 1
15 12 Defender 5 0
8] o
QS o
= s °
o o °
Q — ° o
g " S
° ° 3
S 0 005"
o °5 % g
) o _| o 000 0o -] %g
g — °° oooo%smgo;’?g%:%%‘g%l
o 9 8 °TU08 Lcees3f858522,
o ° 0000000 000 O o 0"%800"°
° %‘b ® o0 & ®P o O 9@3%0@’0 ®
0 00 owo gg°0303% %w‘%?gaog.gg.é’:gggéggggé’
O - ececbsestnccasstbassITISSe5 28803280
T T T T
0 10 20 30

matches played (jittered)

Figure 1: Goals and matches

We might not have considered the importance of the number of matches if we proceeded in haste
with a count regression analysis of the number of goals. The Poisson-based generalized linear
model’s only predictor is the player’s position, which has three categories.

In R, the generalized linear model can be estimated as follows.

ml <- glm(goals ~ position, data = goals, family = poisson)
summary (m1)

Page 9 of 24

The estimated model is summarized in Table 6. The parameters are understandable (front line
players score more goals than midfielders, etc.) and statistically significant. One might take that
as a sign of encouragement, but there is a sign of trouble. The deviance, which should be nearly
the same as the number of cases, is about 4 times larger. A high amount of deviance is often taken
to mean that there is overdispersion, which, in this case, is caused by the fact we did not take into
account the number of matches in which the players participated. Simply put, within a position,
we have grouped together players who participated in 5 games with others who participated in 30
and the number of goals they score is much more variable than the Poisson model predicts.

Table 6: Poisson regression estimates
Poisson Regression (without offset)

Estimate

(S.E.)
(Intercept) -0.161°**

(0.054)
positionForward 1.725%%*

(0.060)
positionMidfielder — 0.802***

(0.062)
N 1224
Deviance 4318.130

—2LLR(Modelx?) 1099.036***
*p < 0.05%k p < 0.01xexp < 0.001

Table 7: Goals data: descriptive stats

variable min max mean sd skewness kurtosis
1 goals 0 29 2.208 3.706 2.937 10.94
2 position
3 Defender 0.335
4 Forward 0.2296
5 Midfielder 0.4355

Page 10 of 24

Table 8: Poisson mismatch between observed and predicted counts
Count Observed Predicted Difference

1 0 44.93 21.01 23.92
2 1 16.75 25.48 -8.73
3 2 11.68 19.14 -7.46
4 3 6.54 12.42 -5.89
) 4 4.58 8.04 -3.46
6 5 3.19 5.40 -2.22
7 6 2.61 3.62 -1.01
8 7 1.47 2.29 -0.82
9 8 1.72 1.33 0.39
10 9 1.63 0.70 0.94
11 10 0.74 0.33 0.40

The deviance of the Poisson model appears quite high. As shown in Table 8, the number of observed
0’s is quite high compared to the number predicted, while the predictions are on the high side for
counts from 1 through 7.

We can work through the usual tests for overdispersion. First, the Pearson residuals are used to
conduct a x? test as follows:

ml.p.resids <- residuals(ml, type="pearson")
test.stat <- sum(ml.p.resids”2)
test.stat

[[1] 4902.172

‘ pchisq(test.stat, mi$df.residual, lower.tail=FALSE)

11 o

The AER package includes a dispersion test that supports the conclusion that the Poisson model
is not well suited to the data.

library (AER)
dispersiontest (ml, trafo=2)

Overdispersion test

data: ml
z = 11.495, p-value < 2.2e-16
alternative hypothesis: true alpha is greater than 0
sample estimates:
alpha
1.325309

I have been meaning to emphasize for students is that there are two kinds of predicted values that
are obtained from generalized linear models. The first type, which is the default of R’s predict
function, is a prediction on the link scale. In the Poisson case, this is a prediction of n; = X3,
which we might refer to either as 7; or Xi,é’ .

The rockchalk package’s function predictOMatic provides fitted values on the response scale.

Page 11 of 24

ot

ot

10

ot

10

predictOMatic(ml, predVals = list(position = "table"), interval =
"confidence")

rockchalk:::predCI: model’s predict method does not return an interval.
We will improvize with a Wald type approximation to the confidence interval
position fit lwr upr

1 Midfielder 1.8986867 1.7852375 2.0193453
2 Defender 0.8512195 0.7664394 0.9453777
3 Forward 4.7758007 4.5269998 5.0382756

The predictOMatic function currently cannot display the link scale (that will be corrected). As a
result, we will compare the link and response values in the old-fashioned way with the following
code (and raw R output):

nd <- newdata(ml, predVals = list(position = "table"))
predict (ml1, newdata = nd, type = "link", interval = "confidence",
se.fit = TRUE)

$fit
1 2 3
0.6411624 -0.1610852 1.5635616

$se.fit
1 2 &
0.03143473 0.05352877 0.02729755

$residual.scale
[1] 1

As we see, the fitted values on the link scale may be positive or negative. The fitted values on the
response scale are the transformed by the inverse link function, exp(fit), as we see here:

predict (ml1, newdata = nd, type = "response", interval =
"confidence", se.fit = TRUE)

$fit
1 2 3
1.8986867 0.8512195 4.7758007

$se.fit
1 2 &
0.05968470 0.04556473 0.13036768

$residual.scale
[1] 1

Rate Models

To correct the obvious problem that the model should take into account the number of games played
for each player, the offset predictor is inserted in the Poisson GLM. The estimates are summarized in
Table 9. The parameter estimates for the positions are very similar, which is something of a surprise.
The inclusion of the offset reduces the residual model deviance very substantially (although it is
still not as good as it will be). In Table 10, we have the comparison of the predicted and observed
outcomes

Page 12 of 24

Offset model for rate of goals per game
m3 <- glm(goals ~ position + offset(log(played)),
data = goals, family = poisson)
summary (m3)

Table 9: Poisson regression estimates
Without offset) With offset

Estimate Estimate
(S.E.) (S.E.)
(Intercept) —0.161** —3.195%**
(0.054) (0.054)
positionForward 1.725%** 1.747%%*
(0.060) (0.060)
positionMidfielder 0.802%*** 0.804***
(0.062) (0.062)
N 1224 1224
Deviance 4318.130 2396.330

—2LLR(Modelx?) 1099.036*** 1130.615%**
*p < 0.05% p < 0.01%exp < 0.001

Table 10: Poisson offset model observed and predicted counts
Count Observed Predicted Difference

1 0 44.93 30.79 14.14
2 1 16.75 21.83 -5.08
3 2 11.68 15.18 -3.49
4 3 6.54 10.14 -3.61
) 4 4.58 6.65 -2.08
6 5 3.19 4.42 -1.24
7 6 2.61 3.09 -0.47
8 7 1.47 2.28 -0.81
9 8 1.72 1.74 -0.03
10 9 1.63 1.31 0.32
11 10 0.74 0.95 -0.21
12 11 0.98 0.65 0.33
13 12 0.41 0.42 -0.01
14 13 0.33 0.25 0.08
15 14 0.33 0.14 0.18
16 15 0.49 0.08 0.41
17 16 0.16 0.04 0.13
18 17 0.33 0.02 0.31
19 18 0.08 0.01 0.07
20 19 0.25 0.00 0.24
21 20 0.16 0.00 0.16

Page 13 of 24

Even though the AER package’s dispersion test does not reject the null hypothesis that there is no
overdispersion, I'm still distrustful of this model.

dispersiontest (m3, trafo=2)

Overdispersion test

data: m3
z = 10.664, p-value < 2.2e-16
alternative hypothesis: true alpha is greater than 0
sample estimates:
alpha
0.4989262

If T thought the problem was primarily in the excess of 0’s in the outcome, I might pursue a zero-
inflated model. However, I’d rather try a negative binomial model (as we will see, the results are
good).

Negative binomial models

The dispersion test for the Poisson model with offset indicates that there is no substantial overdis-
persion. However, the inspection of Table 10 makes me wonder if we ought to take one more step
to adjust the model.

We fit a negative binomial model, with and without the offset. The models are estimated with the
following R code

library (MASS)

m2 <- glm.nb(goals ~ position, data = goals)

summary (m2)

m4 <- glm.nb(goals ~ position + offset(log(played)), data = goals)
summary (m4)

The two models are summarized side-by-side in Table 11

Table 11: Negative Binomial estimates of soccer goals

Without Offset With Offset

Estimate Estimate
(S.E.) (S.E.)
(Intercept) —0.161 —3.221 %%
(0.083) (0.068)
positionForward 1.725%%* 1.634%%*
(0.116) (0.089)
positionMidfielder 0.8027%** 0.762%**
(0.104) (0.084)
N 1224 1224
theta 0.612 1.785
Deviance 1215.04 1160.73
AIC 4488.49 3840.57

*p < 0.05%k p < 0.01%exp < 0.001

Page 14 of 24

Even if we don’t include the offset, the dispersion diagnostics for the negative binomial model are
quite favorable:

m2.p.resids <- residuals(m2, type="pearson")
test.stat <- sum(m2.p.resids”2)
test.stat

[[1] 1081.579

‘ pchisq(test.stat, mi$df.residual, lower.tail=FALSE)

[[1] 0.998266

The predicted and observed outcomes from the Negative Binomial without and with the offset are
displayed in Table 12.

Page 15 of 24

Table 12: Goals: Negative Binomial predictions
a) Without offset
Count Observed Predicted Difference

1 0 44.93 44.08 0.86
2 1 16.75 18.78 -2.03
3 2 11.68 10.81 0.88
4 3 6.54 6.88 -0.35
5 4 4.58 4.65 -0.08
6 5 3.19 3.28 -0.09
7 6 2.61 2.39 0.23
8 7 1.47 1.78 -0.31
9 8 1.72 1.36 0.35
10 9 1.63 1.06 0.57
11 10 0.74 0.84 -0.10
12 11 0.98 0.67 0.31
13 12 0.41 0.54 -0.13
14 13 0.33 0.44 -0.12
15 14 0.33 0.37 -0.04
16 15 0.49 0.30 0.19

b) With offset
Count Observed Predicted Difference

1 0 44.93 40.15 4.78
2 1 16.75 21.08 -4.33
3 2 11.68 12.49 -0.80
4 3 6.54 7.85 -1.32
) 4 4.58 5.15 -0.57
6 5 3.19 3.49 -0.31
7 6 2.61 2.44 0.17
8 7 1.47 1.75 -0.28
9 8 1.72 1.28 0.44
10 9 1.63 0.95 0.68
11 10 0.74 0.72 0.02
12 11 0.98 0.55 0.43
13 12 0.41 0.43 -0.02
14 13 0.33 0.33 -0.01
15 14 0.33 0.26 0.06
16 15 0.49 0.21 0.28

To my eye, the predictions of the model without the offset are closer to the marginal totals of the
data in Table 12. I was inclined to say “ah, the model without the offsets is just as good.” But that
conclusion would be an error. Consider the fact that the deviance values reported for the models
are quite different. The conclusions of a x? test comparing the two models, whether using base R’s
anova() function or the Irtest() function in the lmtest package, indicate that the second model
is better.

‘ anova(m2, m4, test = "Chisq")

Page 16 of 24

Likelihood ratio tests of Negative Binomial Models

Response: goals

Model theta Resid. df 2 x log-lik. Test
1 position 0.611557 1221 -4480.493
2 position + offset(log(played)) 1.784732 1221 -3832.572 1 vs 2

df LR stat. Pr(Chi)
1
2 0 647.9203 0

library(lmtest)
lrtest (m2, m4)

Likelihood ratio test

Model 1: goals ~ position

Model 2: goals ~ position + offset(log(played))
#Df LogLik Df Chisq Pr(>Chisq)

1 4 -2240.2

2 4 -1916.3 0 647.92 < 2.2e-16 *x*x*

Signif. codes: O ’**%’ 0.001 ’*%’ 0.01 ’%’ 0.05 .’ 0.1 ’> ’ 1

The output from the anova function draws our attention to the difference in the estimated value
of # in the two negative binomial models. When the offset is included, 6 rises from 0.612 to 1.78.
Recall that as 8 becomes larger, the random noise contributed by the log-gamma random error
becomes smaller. The 0 parameter reported here is transformed in Stata output and referred to as
a = 1/6. The variance of the negative binomial process is

1
pi G = o

As 0 — oo, this model’s uncertainty shrinks to the Poisson model. Simply put, the amount of
unaccounted for uncertainty is meaningfully reduced by including the offset for the number of
games played.

When all is said and done, then, what impact does a player’s position have on the number of goals
scored. The predictOMatic output from this command

m4a.pom <-predictOMatic(m4, predVals=1list(played=1, position =
"table"), interval = "confidence")

is summarized in Table 13.

Table 13: Predicted goal scoring rate per game (Negative Binomial Model with offset)
position played fit Iwr upr
Midfielder 1.00 0.09 0.08 0.09
Defender 1.00 0.04 0.03 0.05
Forward 1.00 0.20 0.18 0.23

Fireworks Industry Injury Analysis

This is the project for which we started to explore Poisson rate models more closely. The objective
is to estimate the rate of worker accidental injuries per 200,000 hours worked in a segment of the
the fireworks manufacturing and sales industries.

Page 17 of 24

The data is available in a “long” format file, “fireworks-1617.csv” summarized in Table 14.

Table 14: Monthly Injury Data

year month hours accidents

1 2016 Jan 1348731 27
2 2016 Feb 1262588 15
3 2016 Mar 1430135 21
4 2016 Apr 1314135 15
5 2016 May 1392850 13
6 2016 June 1351400 17
7 2016 Jul 1304426 22
8 2016 Aug 1344890 9
9 2016 Sept 1408759 23
10 2016 Oct 1329649 23
11 2016 Nov 1476077 23
12 2016 Dec 1350741 32
13 2017 Jan 1486180 25
14 2017 Feb 1419049 18
15 2017 Mar 1359676 20
16 2017 Apr 1488946 20
17 2017 May 1404619 26
18 2017 June 1533631 34
19 2017 Jul 1424862 37
20 2017 Aug 1483181 23
21 2017 Sept 1390857 16
22 2017 Oct 1430398 28
23 2017 Nov 1498478 24
24 2017 Dec 1457201 19

In the R folder included with this report, there is a file “ fireworks-1.R ” that was used to make our
original calculations for this project. The same code has been incorporated into this document to
assure reproducability. For comparison, we also offer “f ireworks-1.sas ”, a SAS code file, as well as
output file, fireworks-1.1st 7. The SAS and R files generate identical results.

The important difference between the insurance rate model and firework employee injury model is
that we want the rate for 200,000 hours of labor, so the offset in the predictive model needs to be
adjusted correctly. The predicted values must be drawn with the offset value of log(200000). In
the SAS code, this amounts to a somewhat ungainly process in which one calculates the combined
predictive sum X;5 + log(n;) from which the offset must replaced with log(200,000).

Poisson model without offset:

m0 <- glm(accidents ~ 1 + yearf + junjul, data = fire, family =
"poisson")
summary (m0)

Call:
glm(formula = accidents ~ 1 + yearf + junjul, family = "poisson",
data = fire)

Deviance Residuals:

Page 18 of 24

10

20

ot

10

15

20

10

-2.5
Coef
(Int
year
junj
Sign
(Dis
Resi

AIC:

Numb

Min 1Q Median 30 Max
632 -0.9572 0.1075 0.8835 2.7087

ficients:

Estimate Std. Error z value Pr(>|z|)
ercept) 2.94543 0.06827 43.144 <2e-16 *x*x*
£2017 0.18924 0.08726 2.169 0.0301 =
ulJune.or.July 0.26966 0.10711 2.518 0.0118 =
if. codes: 0 ’x%xx’ 0.001 ’>*xx%x’ 0.01 ’%’ 0.05 ’.’ 0.1 > > 1

persion parameter for poisson family taken to be 1)
Null deviance: 45.966 on 23 degrees of freedom
dual deviance: 35.235 on 21 degrees of freedom

1568 .72

er of Fisher Scoring iterations: 4

Poisson model with offset, no other predictors:

mil

<- glm(accidents ~ offset(hourslog) + 1, data = fire,
"poisson")

summary (m1)

family

Call
glm(
Devi
-2.9
Coef
(Int
Sign
(Dis
Resi

AIC:

Numb

formula = accidents ~ offset(hourslog) + 1, family = "poisson",
data = fire)

ance Residuals:

Min 1Q Median 3Q Max

8797 -0.94975 -0.05732 0.53812 2.81399

ficients:

Estimate Std. Error z value Pr(>|z])

ercept) -11.05988 0.04344 -254.6 <2e-16 *x*x*

if. codes: 0 ’*x%’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 ’ > 1
persion parameter for poisson family taken to be 1)

Null deviance: 41.203 on 23 degrees of freedom
dual deviance: 41.203 on 23 degrees of freedom

160 .69

er of Fisher Scoring iterations: 4

Next, I report the predicted values of the rate of accidents per 200,000 hours worked. The client for
whom we did the original analysis wanted three confidence intervals for the estimated injury rates

nd
H##t
H#it

mi.

ml

mil

<- data.frame (hourslog = 1log(200000))

This is number of accidents predicted per 200000 hours

pooling both years of data:

p95 <- predictOMatic(ml, predVals
interval = "confidence",
level = 0.95)

.p90 <- predictOMatic(ml, predVals = nd,
interval = "confidence",
level = 0.90)

.p80 <- predictOMatic(ml, predVals

nd ,

]
B
Q,

Page 19 of 24

(o))

10

20

interval = "confidence",
level = 0.80)
micis <- merge(ml.p95, ml1.p90, by = c("hourslog", "fit"), suffix =
c("95", "90"))
micis <- merge(mlcis, m1.p80, by = c("hourslog", "fit"), suffix =
c("", "80"))

mlcis

hourslog fit 1lwr9b upr95 1lwr90 upr90 lwr upr
1 12.20607 3.146198 2.88943 3.425783 2.929251 3.379212 2.975844 3.326304

Poisson with offset, including the year as a predictor

m2 <- glm(accidents ~ offset(hourslog) + 1 + yearf, fire, family =
"poisson")
summary (m2)

Call:
glm(formula = accidents ~ offset(hourslog) + 1 + yearf, family = "poisson",
data = fire)

Deviance Residuals:
Min 1Q Median 30 Max
-2.7186 -1.0119 -0.1056 0.6592 2.5049

Coefficients:
Estimate Std. Error =z value Pr(>|z])

(Intercept) -11.12692 0.06455 -172.378 <2e-16 **x*
yearf2017 0.12614 0.08726 1.445 0.148
Signif. codes: O ’**%x’ 0.001 ’*%’ 0.01 ’%’ 0.05 .’ 0.1 ’> ’ 1

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 41.203 on 23 degrees of freedom
Residual deviance: 39.107 on 22 degrees of freedom

AIC: 160.59

Number of Fisher Scoring iterations: 4

The predicted values of the number of accidents per 200,000 hours worked are summarized in the
same manner.

m2cis

yearf fit 1lwr9b upr95 1wr90 upr90 lwr upr
1 2016 2.942189 2.592542 3.338993 2.645815 3.271763 2.708596 3.195929
2 2017 3.337730 2.974863 3.744859 3.030422 3.676202 3.095767 3.598605

The final model includes a dummy variable to find out if the injury rate is higher in June and July.

m3 <- glm(accidents ~ offset (hourslog) + 1 + yearf + junjul,
dat = fire, family = "poisson")

summary (m3)

Page 20 of 24

wt

10

20

ot

10

ot

Call:
glm(formula = accidents ~ offset(hourslog) + 1 + yearf + junjul,
family = "poisson", data = fire)

Deviance Residuals:
Min 1Q Median 30 Max
-2.5266 -0.8366 -0.0296 0.7290 2.7329

Coefficients:
Estimate Std. Error =z value Pr(>|z])

(Intercept) -11.17578 0.06810 -164.099 <2e-16 *xx*
yearf2017 0.12395 0.08727 1.420 0.1555
junjulJune.or.July 0.26820 0.10711 2.504 0.0123 =
Signif. codes: O ’xxx’ 0.001 ’*xx’> 0.01 ’%’ 0.05 ’>.” 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 41.203 on 23 degrees of freedom
Residual deviance: 33.163 on 21 degrees of freedom

AIC: 156.65

Number of Fisher Scoring iterations: 4

yearf hourslog fit junjul9b lwr9b upr95 junjul9o 1lwr90 upr90
1 2016 12.20607 2.801881 other 2.451769 3.201989 other 2.504953 3.134005
2 2016 12.20607 3.663778 June.or.July 2.970351 4.519084 June.or.July 3.072258 4.369186
3 2017 12.20607 3.171626 other 2.803532 3.588050 other 2.859691 3.517586
4 2017 12.20607 4.147261 June.or.July 3.390038 5.073623 June.or.July 3.501720 4.911808
junjul lwr upr
1 other 2.567704 3.057414
2 June.or.July 3.194097 4.202523
3 other 2.925837 3.438062
4 June.or.July 3.635056 4.731640

The residual deviance of m3 is slightly higher than the degrees of freedom. This variable may
be "overdispersed”, it has higher variance than the Poisson distribution might lead us to expect.
However, the dispsersion test in the AER package does not seem to indicate there is much trouble.

library (AER)
dispersiontest (m3)

Overdispersion test

data: m3
z = 0.955671, p-value = 0.1696
alternative hypothesis: true dispersion is greater than 1
sample estimates:
dispersion
1.387327

3 Interesting Quirk in Aggregation

While working on this project, we noticed that we get the same hospital injury rate for 2016 whether
we use 1) the annual aggregated data (2 rows, one for 2016 and one for 2017) or 2) the monthly
data as described above. In retrospect, this might seem obvious to some, but it seemed interesting
and worth writing down for future reference. We will also see that the estimated injury rate per
200,000 worked, and the confidence intervals, are equivalent as well.

Page 21 of 24

We will simply demonstrate by comparing the monthly and annual data estimates. Suppose first
we use the monthly injury rate data as shown in Table 14. The R code with which we fit the rate
model uses the year as the only predictor, since we are interested in estimating the annual rate
of injury. This assumes—implicitly-that the rate of injury is the same across all months of 2016.
Recognizing that the monthly-data model assumes that the true rate is fixed for the whole year, of
course, is a powerful hint for the eventual equivalence of the monthly and annual data estimates.

Table 15: Annual fire Data

year hours accidents
1 2016 16314381 240
2 2017 17377078 290

The Poisson regression is calculated with the monthly information is with an offset term, the
log(hours), which is represented in R as “offset(hourslog)”.

m2.monthly <- glm(accidents ~ offset(hourslog) + 1 + yearf, fire,
family = "poisson")
summary (m2.monthly)

And the estimated fire rate with 95% confidence intervals is obtained as follows. The column labeled
“fit” is the estimated rate an the columns lwr and upr are the lower and upper confidence intervals:

rockchalk:::predCI: model’s predict method does not return an interval.
We will improvize with a Wald type approximation to the confidence interval
hourslog yearf fit lwr upr

1 12.20607 2016 2.942189 2.592542 3.338993
2 12.20607 2017 3.337730 2.974863 3.744859

Now suppose the data are aggregated at the annual level. The input information used in the
estimation is just 2 lines, as shown in Table 15. One might have the intuition that we are “throwing
away degrees of freedom” by using the annual data, but that argument overlooks the fact that the
number of hours worked during the year is the sum of hours worked in the various months. In what
follows, the R code refers to this annual data as “fireagg”.

The Poisson generalized linear model is estimated with an offset equal to the the actual number of
hours worked in each year:

m2.annual <- glm(accidents ~ offset(hourslog) + 1 + yearf,
fireagg, family = "poisson")
summary (m2.annual)

We note that the estimated rates for the two years are identical to the values obtained with the
monthly information:

rockchalk:::predCI: model’s predict method does not return an interval.
We will improvize with a Wald type approximation to the confidence interval
hourslog yearf fit lwr upr

1 12.20607 2016 2.942189 2.592542 3.338993
2 12.20607 2017 3.337730 2.974863 3.744859

The coefficients of the fitted models are shown side-by-side in Table 3. Note that the coefficients
and standard errors are identical. There is a superficial difference in the number of cases, since
the monthly estimates are compiled with more “rows” of information and the annual estimates are

Page 22 of 24

(o))

10

20

Table 16: Comparing Annual and Monthly Fits
Annual Monthly
Estimate Estimate

(S.E.) (S.E.)
(Intercept) -11.127HFFF 11,127
(0.065) (0.065)
yearf2017 0.126 0.126
(0.087) (0.087)
N 2 24
Deviance 0.000 39.107
—2LLR(Modelx?) 2.096 2.096

*p < 0.05%x p < 0.0150xp < 0.001

based on two “rows”. But the information involved-the number of accidents and the number of
hours worked-are equivalent in the two methods. The model y? statistics are identical.

In the SAS code files for these example projects, we find the same equivalence of estimates based
on the monthly and annual data.

References

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing.

Replication Information

Please leave this next code chunk if you are producing a guide document.

R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.10

Matrix products: default
BLAS: /usr/1ib/x86_64-linux-gnu/blas/libblas.so0.3.8.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so0.3.8.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] AER_1.2-5 survival_2.43-1 Ilmtest_0.9-36 z00_1.8-2

[5] car_3.0-0 carData_3.0-1 kutils_1.51 COUNT_1.3.4
[9] sandwich_2.4-0 msme_0.5.3 lattice_0.20-38 MASS_7.3-51.1
[13] rockchalk_1.8.129 xtable_1.8-2 stationery_0.98.5.6

loaded via a namespace (and not attached):

Page 23 of 24

25

30

[1]

[6]
[11]
[16]
[21]
[26]
[31]
[36]

zip_1.0.0
nloptr_1.0.4
lmed4_1.1-17
openxlsx_4.1.0
rio_0.5.10
grid_3.5.1
lavaan_0.6-1
htmltools_0.3.6

Rcpp_0.12.17
plyr_1.8.4
tibble_1.4.2
Matrix_1.2-15
stringr_1.3.1

cellranger_1.1.0
forcats_0.3.0
evaluate_0.10.1
curl_3.2
knitr_1.20

data.table_1.11.4 readxl_1.1.0

Formula_1.2-3
splines_3.5.1

minqa_1.2.4
abind_1.4-5

pillar_1.2.3
tools_3.5.1
nlme_3.1-137
pbivnorm_0.6.0
stats4_3.5.1
foreign_0.8-71
magrittr_1.5
mnormt_1.5-5

compiler_3.5.1
digest_0.6.15
rlang_0.2.1
haven_1.1.1
rprojroot_1.3-2
rmarkdown_1.10
backports_1.1.2
stringi_1.2.3

Page 24 of 24

	Estimating Rates with Regression Models for Counts
	Case studies
	Interesting Quirk in Aggregation
	References

