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What I learned on my Winter Vacation

These notes accompany the longer essay

That essay uses some LYX/LATEX tricks that were new to me, such as
the bold upright symbol for matrices in math. If you want to know
how that’s done, I’ll share the LYX document to you.

The next thing I want to learn is how to make transpose symbols
look nicer
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Overview: The 5 step process for manufacturing MVN

The paper says a 5 step algorithm receives the user’s requested mean
vector µ and a variance-covariance matrix Σ .

1 Calculate the eigen decomposition of Σ.

2 Check that Σ is positive definite by inspecting the eigenvalues.

1 If an eigenvalue is intolerably negative, terminate with an error
message.

2 Tolerably negative eigenvalues are reset to 0.

3 Create a scaling matrix, S. The two programs differ in this stage. R
uses the eigen decomposition while Stata uses Cholesky roots.

4 Create a candidate n× p matrix of random vectors by drawing from
N(0, 1).

5 Apply y = µ+ Sx to rescale the candidate random draws.
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MVN

x ∼MVN(µ,Σ) is a draw from the multivariate normal
distribution, MVN(µ,Σ)

x =


x1
x2
...
xp

 ∼MVN(µ,Σ) = MVN



µ1
µ2
...
µp

 ,


σ2
1 σ12 σ1p

σ12 σ2
2 σ2p

. . .

σ1p σ2p σ2
p


 .

(1)

The output from one draw is a vector of values, not a single number.

(1.1, 2.4,−3, 2.2 . . .)T (2)

A data set might be a collection of those draws, each one
representing a person’s answers on a survey.
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Draw a sample from N(µ, σ2)

A univariate “standard” normal draw xi ∼ N(0, 1)
Most programs can draw that. I could teach you where that comes
from, lets don’t worry about it now.

If you want a draw from N(5, 100), you calculate

yi = 5 + 10× xi (3)

In words: multiply by the square root of the variance and add the
desired expected value. for N(µ, σ2)

y = µ+ σ · x. (4)

Little Puzzle. Suppose you want draws that appear as if they are
N(0, 9). Is it correct to write

xi = 0 +
√

9ui? (5)

hint: The square root of 9 is not unique
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Generalize that to MVN(µ,Σ)

The process is going to be the same, except it is scaled up to draw a
vector of candidate values filled with N(0, 1) draws.

y = µ+ Sx. (6)

p candidate values N(0, 1) values are in x, multiply them by
something, add something

y1
y2
...
yp

 =


µ1
µ2
...
µp

 +


s11 s12 s1p

s21 s22 s2p

. . .

sp1 sp2 spp




x1
x2
...
xp

 .
The big puzzle is where do you get that matrix full of s’s so that the
resulting random draw has variance Σ. And what properties it
should have.
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Generalize that to MVN(µ,Σ) ...

E[y] = E[µ+ Sx] = µ+ SE[x]. (7)

And the variance matrix of y is

V ar[y] = SV ar(x)ST . (8)

Because V ar(x) = I and because ST S is symmetric,

V ar[y] = SST = ST S. (9)

So if our goal is to generate y ∼ N(µ,Σ), then we need
Σ = SST = ST S.
In a sense, S is thus one kind of “square root” of a matrix.
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If we are given a user’s requested , can we use that to
create the matrix we need?

Not always. There may be no matrix “square root”.

User might supply Σ that’s not actually a covariance matrix.

What do we know about Σ?

Symmetric, σij = σji

Positive Definite (PD) or Positive Semidefinite (PSD).

This is either esoteric and difficult to understand or simple and
obvious. Here is my simple and obvious explanation.

Here’s the formula for the MVN:

f(x) = 1
(2π)p/2|Σ|1/2 e

−1
2 (x−µ)T Σ−1(x−µ). (10)
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If we are given a user’s requested , can we use that to
create the matrix we need? ...

The basic idea of the normal is that as a point moves away from the
mean, as x− µ grows greater, we are less and less likely to observe
that point. For this to be true, we need this to be positive.
Otherwise, probability would grow as x− µ grows.

(x− µ)T Σ−1(x− µ) > 0. (11)

This seems obvious to me. Suppose Σ = I, so this reduces to the
(Pythagorean) distance between x and µ

(x−µ)T (x−µ) = (x1−µ1)2 + (x2−µ2)2 + . . .+ (xp−µp)2 (12)

That’s a sum of squared things, it has to be 0 or greater.

The Σ−1 matrix puts weights on the deviations, but it should not
be able to turn the distance between x and µ into a negative
number. The closest two things can be is the same location.

There’s a theorem that says if Σ is positive definite, then Σ−1 is
also PD
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Check if a matrix is PD: Eigen Decomposition

We insist that Σ is symmetric.

We need a way to find out if it is PD. This turns out to be tricky
because of numerical rounding error.

In pencil and paper math, there is a theorem says that a matrix is
PD if and only if all of its eigenvalues are positive.

Recognizing that eigenvalues are approximated in computers, R and
Stata use the same approach. A tolerance value is used as follows

λj < −tol |λ1|. (13)

If λj is so far negative that it is below −tol|λ1|, then we conclude
the matrix is not PD.
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Background info on the eigenvalues and eigenvectors

The eigenvalues (λj) and eigenvectors vj of Σ are paired in this
weird way.

Σvj = λjvj (14)

The vector vj that can be thought of as a rescaled thing coming out of
Σ. Er, the scaling effect of Σ can be equaled by a simple multiplicative
rescaling by λj .

Eigenvector matrix: collect the eigenvectors, side by side:

V =


v11 v1p

v21
... v2p

vp1 vpp

 (15)
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Background info on the eigenvalues and eigenvectors ...

Interesting property. The Eigenvalues are “orthogonal” to one
another.

vT
1 · v2 = 0 (16)

We usually scale eigenvectors these so that vT
i · vi = 1,

Which implies this interesting property

VT V = I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1

 (17)

And thus the inverse of the orthogonal matrix V is very easy to
calculate: it is the transpose

VT = V−1 (18)
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Background info on the eigenvalues and eigenvectors ...

Anyway, given the vector of eigenvalues (λ1, λ2, . . . , λp), in pencil
and paper math, λj > 0 ∀j.

Numerically, we say if λj is just a little bit negative, we will act as if
that is roundoff error, and it is re-assigned as 0.
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If all eigenvalues are greater than 0, Cholesky root

Cholesky works for SQUARE, PD matrices only.

Σ = RT × R =


r11 0 0 0 0
r12 r22 0 0 0
r13 r23 r33 0 0

. . . 0
r1p r1p r3p rpp




r11 r12 r13 . . . r1p

r22 r23 r2p

r33
. . .

rpp

 .
(19)

If you require the diagonal elements are positive, this is a UNIQUE
triangular square root

We usually see people using the lower triangular part of the Cholesky
as the scaling matrix

S = RT (20)

Other square roots exist, as we see next

Recall Cholesky is not guaranteed to exist if Σ is not strictly PD.
SPD is not sufficient.



MVN 15 / 28

If an eigenvalue is equal to 0, it is not PD, must use Eigen
decomposition

ΣV = Vdiag(λ)
ΣVVT = Vdiag(λ)VT

Σ = Vdiag(λ)VT . (21)

The function diag places a vector’s values along the diagonal:

diag(λ) =


λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λp

 . (22)
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If an eigenvalue is equal to 0, it is not PD, must use Eigen
decomposition ...

Since λj ≥ 0, a real-valued square root of each eigenvalue exists,
and we can write this as a product using diag(λ)1/2:

diag(λ) =


√
λ1 0 0 0
0

√
λ2 0 0

0 0
. . . 0

0 0 0
√
λp



√
λ1 0 0 0
0

√
λ2 0 0

0 0
. . . 0

0 0 0
√
λp

 = diag(λ)1/2diag(λ)1/2

(23)

This allows us to revise (21) into a format that helps us to see that
we have square root of Σ:

Σ = Vdiag(λ)1/2 diag(λ)1/2VT .

Vdiag(λ)1/2(Vdiag(λ)1/2)T (24)
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If an eigenvalue is equal to 0, it is not PD, must use Eigen
decomposition ...

The scaling matrix will be

S = Vdiag(λ)1/2 (25)

because SST = ST S = Σ.
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The $100,000 Question

How can the two completely different scaling matrices lead to equally
good MVN draws?

S =


r11 0 0 0
r12 r22 0 0

. . . 0
r1p r1p rpp

 , or


√
λ1v11

√
λ2v12

√
λpv1p√

λ1v21
√
λ2v22

√
λpv2p

. . .√
λ1vp1

√
λ2vp2

√
λpvpp

 ,

(26)

I accept that because
ST S = SST = Σ, using either matrix
Generally speaking, matrix square roots are not unique.
Theorem: Given a symmetric Σ for which a square root S exists
(ST S = Σ), and given V is orthonormal, then VS is also a square
root.
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The $100,000 Question ...

Proof. Recall VVT = I.

(VS)T (VS) = ST VT VS = ST S. (27)
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Here’s a question: what is the statistical distribution of an
empirically standardized variable

In stats 101, they say calculate the mean and standard deviation and
then calculate

xi − x̄
s

(28)

That result has empirical mean 0 and empirical standard deviation 1.

Did you ever notice that a column of those scores is no longer iid?

In Stata and R, there is a way to use that same idea to standardize a
whole matrix of MVN draws, so the observed mean is 0 and the
observed variance is I. From there, we can re-scale that so it has
observed mean µ and variance whatever you say, Σ.

The Stata documentation cautions users that the return from that is
not MVN, but rather it is simply data with sufficient statistics that
match the user’s request (corr2data)

But what is it?
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Afterthought: Variance of X

I got this far without using the QR or SVD decompositions. They
are used in the paper

I’ll throw in an example here to show that these are used to
calculate XT X efficiently.
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The QR Decomposition

A data matrix X might be prone to roundoff error when used in
calculations. The proneness to error is summarized by its condition
value, the ratio of its greatest and smallest singular values (SVD)
defined below.

Golub and Van Loan point out that if the condition number of X is
κ, then the condition number of XT X is κ2.

Hence, calculations for linear models do not (any longer) actually
form the product XT X.

How can we get covariance without forming that matrix, you ask?

The theoretical quantity (XT X) can be calculated in a much more
numerically accurate way with the QR decomposition.

The “thin” version of the QR decomposition is

X = QR. (29)
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The QR Decomposition ...

R is an upper triangular matrix.

R =


r11 r12 . . . r1p

0 r22 r2p

0 0
. . .

0 0 0 rpp

 (30)

This turns out to be a numerically more accurate version of the
Cholesky triangle and Cholesky calculations today usually rely on the
QR decomposition.
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The QR Decomposition ...

The matrix Q is n× p orthogonal columns

Q =



Q p columns
orthogonal

n rows


. (31)

Orthogonality implies Q−1Q = QT Q = I
The R produced by QR is, theoretically, equivalent to the Cholesky
decomposition of (XT X), with the possible exception that the
diagonal elements in some of the rows in R from QR are not
positive and signs of those rows need to be reversed.



MVN 25 / 28

The QR Decomposition ...

Where numeric “covariance matrices” come from: To avoid explicitly
forming (XT X), we replace X with QR:

XT X = (QR)T QR = RT QT QR = RT R. (32)

If a calculation calls for (XT X)−1, then, we can replace that with
(RT R)−1. However, we would not explicitly calculate (RT R) and
invert that product. Instead, we note, theoretically

(RT R)−1 = R−1R−1T

(33)

It is necessary to calculate R−1, but that is a simpler, more stable
calculation because the lower left side of R is full of 0’s. The inverse
of an upper triangular matrix will also be upper triangular, so the
benefits of this simplification continue.
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The SVD Decomposition

The thin singular value decomposition (SVD) of X is a product of 3
matrices.

X = UDVT . (34)

U p columns
orthogonal

n rows


 δ1 0 0

0
. . . 0

0 0 δp


 VT p columns

p rows

 .

(35)
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The SVD Decomposition ...

The columns of U and V are orthogonal. That affords
simplifications such as UT U = I and VT = V−1 . The matrix D is
a p× p diagonal matrix of the so-called “singular values”, δi.

D = diag(δ1, δ2, . . . , δp) =


δ1 0 0
0 δ2 0

. . .

0 0 δp

 (36)

To see the simplifying benefit of the SVD, replace X with UDVT .

XT X = (UDVT )T UDVT = VDUT UDVT

= (DVT )T DVT = (VD)(VD)T (37)
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The SVD Decomposition ...

The square root of XT X is thus seen to be VD(or(DVT )T ,
depending on how you want to group things. So the SVD based
candidate for a square root of XT X is

S = Vdiag(δ) (38)

The SVD approach is similar in personality to the eigenvalue
decomposition of XT X. If numerical linear algebra were “perfectly
accurate”, then the eigen method in equation (25), Vdiag(λ)1/2,
would be identical to the SVD solution Vdiag(δ). Consequently, we
see that, on a theoretical level, the singular values are the squares of
the eigen values.


