Paul E. Johnson¹ <pauljohn@ku.edu>

¹Department of Political Science

²Center for Research Methods and Data Analysis, University of Kansas

2013

Outline

- Introduction
- 2 Data
- Outreg
- Plots
 - Categorical modx
 - Numeric moderator
- 5 Free Lunch
- **6** Conclusions
- Guessing

ockchalk 2/81 K.U.

Outline

- Introduction
- 2 Data
- Outreg
- 4 Plots
 - Categorical modx
 - Numeric moderator
- Free Lunch
- 6 Conclusions
- Guessing


```
Thanks to Ray DiGiacomo, Jr & OC RUG for organizing Downloads:

http://pj.freefaculty.org/guides {all my lectures on anything}

.../Rcourse/rockchalk-2013 {this lecture, source code, LyX doc, etc}
```

http://pj.freefaculty.org/R: Rtips, links to other R stuff

rockchalk 4/81 K.U.

Why Make a Package?

- Avoid a riot after an influx of 40 MA-bound behavioral scientists into my regression class
 - Honestly, I'd rather teach R programming, but
 - I can understand the view that statistics exists apart from R
- Package has "convenience" functions for

Me preparing lectures
Them doing papers (with nice looking graphs!)

I had distributed functions before, but never made a package

What do you expect in rockchalk?

- Functions for difficult/tedious/hard-to-teach chores
- Verbose documentation, (too) many examples
- vignettes
 - "rockchalk": Dicussion & demonstration of package
 - "Rchaeology": Deep insights into R programming I accumulate while working on the package
 - "Rstyle": The style manual I wish R Core would adopt
- Hidden value added: the examples folder in the package install directory includes some special educational R examples (look for noWords-001.R and centeredRegression.R)

Where is the hard work in version 1.8?

- predictOMatic(). Flexible way to demonstrate marginal effects of predictors. Goal: make it easy to understand regression as a translation of inputs into predicted values (and uncertainty)
- Scan fitted regressions, create newdata objects with possible predictor values ("divider" algorithms to create focal values for consideration).

ockchalk 7/81 K.U.

Outline

- Introduction
- 2 Data
- Outreg
- 4 Plots
 - Categorical modx
 - Numeric moderator
- Free Lunch
- Conclusions
- Guessing

Make a Presentable Table Describing The Data

- Assignment: create a summary table for your research article
- R's summary()
 - does not include diversity estimates
 - does not separate numeric from factor variables in the report
 - does not provide output in a usable format
- rockchalk summarize()
 - does

ockchalk 9 / 81 K.U.

Example

```
(datsum <- summary(dat))
```

```
educ
                                                        religion
    income
                                                                       gender
                                          age
       : -56816
                          . 2 00
                                    Min.
                                            : 9.00
                                                                    female:532
Min
                  Min.
                                                          :177
1st Qu.: -2225
                  1st Qu.: 8.00
                                    1st Qu.:19.00
                                                     iewish: 87
                                                                        :468
                                                                    male
Median : 10565
                  Median :10.00
                                    Median :22.00
                                                     muslem: 94
Mean
       · 10473
                  Mean
                          :10.02
                                    Mean
                                            :22.04
                                                     other:294
3rd Qu.: 23772
                  3rd Qu.:12.00
                                    3rd Qu.:25.00
                                                     prot
                                                            :169
Max.
       : 77189
                  Max.
                          :21.00
                                            :37.00
                                                           :105
                                    Max.
                                                     roman
NA 's
       :80
                  NA 's
                          :40
                                                     NA 's
                                                            · 74
```

 Can you wrestle that into a paper? I can't! It has text and values combined

```
datsum[ ,1]

"Min. :-56816 " "1st Qu.: -2225 " "Median : 10565 " "Mean : 10473 " "3rd Qu.: 23772 " "Max. : 77189 " "NA's :80 "
```

 Default output from summarize separates numerics & factors, alphabetizes

Example ...

```
datsum2 <- summarize (dat)
```

The result object datsum2 is a list with 2 parts, a numeric matrix part and a factor variable display.

• The numerics are a matrix, easy to take rows or columns to put into a paper

datsum2\$numerics

	age	educ	income
0%	9.000	2.000	-56820
25%	19.000	8.000	-2225
50%	22.000	10.000	10570
75%	25.000	12.000	23770
100%	37.000	21.000	77190
mean	22.040	10.020	10470
sd	4.556	3.056	19630
var	20.760	9.337	385400000
NA 's	0.000	40.000	80
N	1000.000	1000.000	1000

Example ...

• The factors are a separate list

datsum2\$factors

```
gender
                                  religion
female
             : 532.000
                         other
                                      : 294.0000
male
               468.000
                         cath
                                      : 177.0000
NA s
                                      : 169.0000
               0.000
                         prot
entropy
           : 0.997
                         roman
                                   : 105.0000
                         (All Others): 181.0000
normedEntropy: 0.997
N
             :1000.000
                         NA s
                                      : 74.0000
                         entropy : 2.4414
                         normedEntropy:
                                          0.9445
                         N
                                      :1000.0000
```

- Indicators of central tendency and dispersion are included in both displays
- Try summarizeNumerics() and summarizeFactors() to get just one or the other.

ockchalk 12 / 81 K.U.

Sidenote: recoding a factor

- Note the religion variable has levels "cath" and "roman", which was a data entry error. Catholic and Roman Catholic represent the same idea
- Did you ever try to write R code to fix that (without killing yourself)?
- Try rockchalk::combineLevels():

```
dat$religion2 <- combineLevels(dat$religion,
      c("cath", "roman"), "cath")</pre>
```

The original levels cath jewish muslem other prot roman have been replaced by jewish muslem other prot cath


```
table (dat $religion 2 , dat $religion , dnn = c("religion 2", "religion"))
```

```
religion
religion2 cath jewish muslem other prot roman
jewish 0 87 0 0 0 0
muslem 0 0 94 0 0 0
other 0 0 0 294 0 0
prot 0 0 0 0 169 0
cath 177 0 0 0 0 105
```


rockchalk 14 / 81 K.U.

Outline

- Introduction
- 2 Data
- Outreg
- Plots
 - Categorical modx
 - Numeric moderator
- Free Lunch
- Conclusions
- Guessing

Need a Nice Looking Regression Table?

- Each student should not invent a unique report format for regressions.
- MS Word users especially tempted to "finger paint" with fonts and formats.
- Solution: provide usable LATEX tables (added benefit: bait to get them to use LATEX)
- rockchalk-1.8 provides HTML backend as well (compromise with reality)

16 / 81 K.U.

For many years, outreg was a function in search of a package

- Dave Armstrong (then at U. Maryland student) gave me the outreg idea 10 years ago
- I wrote up a function that more-or-less worked, distributed it, revised it as my R programming skills improved
- I didn't know there was "outreg" module for Stata....

rockchalk 17/81 K.U.

I fit a regression using a subset of the American National Election Study 2004 (ICPSR), which I called "mydta1"

```
\begin{array}{lll} mod1age <& -lm(th.bush.kerry \sim V043250\,,\ data = \\ & mydta1) \\ outreg(mod1age,\ tight = FALSE,\ modelLabels = \\ & c("Age\ as\ Predictor")) \end{array}
```


rockchalk 18 / 81 K.U.

Produces this LaTeX Markup

```
\begin{tabular}{*{3}{1}}
\ hline
                 &\multicolumn{2}{c}{Age as Predictor}
                 &Estimate &(S.E.) \\
\ hline
\ hline
 (Intercept)
                \& -6.841
                             & (4.596) \\
                  & 0.184* & (0.092) \\
 V043250
\ hline
N
                   &1191
                  &53.885
RMSF
R^2
                 &0.003
\ hline
\ hline
\mbox{multicolumn} \{2\}\{1\}\{\$\} \ p \ le \ 0.05\
\end{tabular}
```


	Age as Predictor		
	Estimate	(S.E.)	
(Intercept)	-6.841	(4.596)	
V043250	0.184*	(0.092)	
N	1191		
RMSE	53.885		
R^2	0.003		

^{*}p < 0.05

My terminology:

tight = FALSE $\Rightarrow \hat{\beta}$ and $std.err(\hat{\beta})$ are side by side

tight = TRUE $\Rightarrow \hat{\beta}$ and $std.err(\hat{\beta})$ are vertically aligned.


```
## Run a new regression
mod2age <- Im(th.bush.kerry ~ V043250 +
    V041109A, data = mydta1)
## Put 2 regressions in same table
outreg(list(mod1age, mod2age), tight = TRUE,
    modelLabels = c("Age Only", "Age With
    Gender"))</pre>
```

NB: tight = TRUE

Output To LaTEX

	Age Only	Age With Gender
	Estimate	Estimate
	(S.E.)	(S.E.)
(Intercept)	-6.841	4.628
	(4.596)	(6.527)
V043250	0.184*	0.191*
	(0.092)	(0.092)
V041109A		-7.713*
		(3.123)
N	1191	1191
RMSE	53.885	53.77
R^2	0.003	0.008
adj R^2	0.003	0.007
< 0.0F		

^{*}p ≤ 0.05

ockchalk 22 / 81 K.U.

```
outreg(list("Age Only" = mod1age, "Age With
   Gender" = mod2age), tight = FALSE)
```

Perhaps more coherent usage: keep labels with models in a list

rockchalk 23 / 81 K.U.

Output To LaTEX

	Age Only		Age With Gender	
	Estimate	(S.E.)	Estimate	(S.E.)
(Intercept)	-6.841	(4.596)	4.628	(6.527)
V043250	0.184*	(0.092)	0.191*	(0.092)
V041109A			-7.713*	(3.123)
N	1191		1191	
RMSE	53.885		53.77	
R^2	0.003		0.008	
adj R^2	0.003		0.007	

 $[*]p \le 0.05$


```
outreg(list("Age Only" = modlage, "Age With
   Gender'' = mod2age), tight = TRUE,
   varLabels = list("V043250" = "Age",
   V041109A'' = "Gender")
```

Quotation marks optional before equal sign in list; this works too

```
outreg(list("Age Only" = modlage, "Age With
   Gender'' = mod2age), tight = FALSE,
   varLabels = list(V043250 = "Age",
   V041109A = "Gender"))
```

Not necessary to provide new labels for all variables

My Beautiful Table with Lovely Variable Labels

	Age Only		Age With Gender	
	Estimate	(S.E.)	Estimate	(S.E.)
(Intercept)	-6.841	(4.596)	4.628	(6.527)
Age	0.184*	(0.092)	0.191*	(0.092)
Gender			-7.713*	(3.123)
N	1191		1191	
RMSE	53.885		53.77	
R^2	0.003		0.008	
adj R^2	0.003		0.007	

 $[*]p \le 0.05$

Quick R style comment: My opinion

- Students often have urge to rename variables in the analysis itself, to create new dat\$gender and dat\$age
- I urge them to resist the temptation
- In a team setting, everybody has same input variables with names like V234234, cooperation is frustrated when everybody renames everything
- However, in output, no reader wants to see V234234

ockchalk 27 / 81 K.U.

What is this Good For?

- Good-enough tables in lectures & term papers
- Possible to "script" together a lot of separate estimates for a lot of different datasets
- Especially when the students start to think they know everything, show I'm still smarter than you:
 - http://pj.freefaculty.org/R/gloating/test2
 - http://pj.freefaculty.org/guides/stat/Regression/ Multicollinearity/Multicollinearity-1-lecture.pdf

28 / 81 K.U.

- I get more emails about outreg() than any of the other functions. People want more and more features.
- Compromises so far allow customization of:
 - model "header" labels and variable names
 - the selection of "goodness of fit" indicators in the bottom of the table
 - choice of alpha levels (Previously, I first refused p-values, then insisted only 0.05).
 - HTML output (next slide)

29 / 81

outreg can create html file output

- This is a brand new feature in outreg 1.8 (June, 2013)
 - outreg2HTML() receives outreg results and converts into Web markup.
 - Wrestle that into Word however you like.
 - open the html document File -> Open
 - view the html document in a web browser, copy & paste manually into word (use paste Special HTML).
 - Not as nice looking or as automatic as LATEX, but I may try harder in future

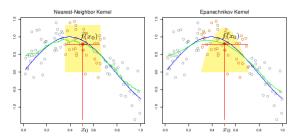
ockchalk 30 / 81 K.U.

HTML output

```
or1 <- outreg(list(mod1age, mod2age), tight =
    TRUE, modelLabels = c("Age Only", "Age
    With Gender"))
outreg2HTML(or1, file = "or1-test.html")</pre>
```

That creates a file, "or1-test.html". See if your web browser can open it. See if Word can open that. I uploaded a copy you can inspect: http://pj.freefaculty.org/R/or1-test.html

Outline

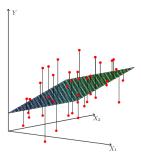

- Introduction
- 2 Data
- Outreg
- Plots
 - Categorical modx
 - Numeric moderator
- Free Lunch
- Conclusions
- Guessing

I want it to be easy to make scatterplots with Predicted Values

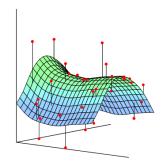
192 6. Kernel Smoothing Methods

FIGURE 6.1. In each panel 100 pairs x_i , y_i are generated at random from the blue curve with Gaussian errors: $Y = \sin(4X) + \varepsilon$, $X \sim U[0, 1]$, $\varepsilon \sim N(0, 1/3)$. In the left panel the green curve is the result of a 30-nearest-neighbor running-mean

T. Hastie, R. Tibshirani, J. Friedman, *Elements of Statistical Learning: Data Mining, Inference, And Prediction, 2ed* (Springer,



Especially in 3D


3.2 Linear Regression Models and Least Squares

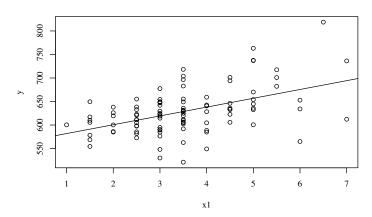
2.6 Statistical Models, Supervised Learning and Function Approxim

FIGURE 3.1. Linear least squares fitting with $X \in \mathbb{R}^2$. We seek the linear function of X that minimizes the sum of squared residuals from Y.

rockchalk 34 / 81 K.U.

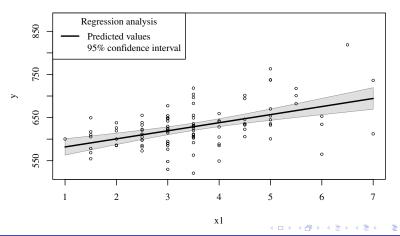
abline is an R staple

Everybody has done this. (Right?)


```
mod1 < -lm(y \sim x1, data = dat)
plot(y \sim x1, data = dat)
abline (mod1)
```


35 / 81

abline



ockchalk 36 / 81 K.U.

I'd rather look at this plot

```
ps1 <- plotSlopes(mod1, plotx = "x1",
  interval = "confidence")</pre>
```


ockchalk 37 / 81 K.U.

abline's fatal flaws

Suppose the regression model is

• Common answer: abline is an epic fail.

I have taught this "easy 3 step procedure" many times

- Step 1. Create a "newdata" data frame that has values of the x's for which we want to calculate predictions.
- Step 2. Use that newdata object (say, ndat) with the regression model's predict method, with syntax like

```
p1 <- predict (mod1, newdata = ndat)
```

or, if confidence intervals are desired,

```
p2 <- predict(mod1, newdata = ndat,
  interval = "confidence")
```

Frustratingly, p1 and p2 are returned as different object types

Step 3. Wrestle those predicted values into a plot

A sophisticated R user should learn to do that

- I've taught that (look for notes in http://pj.freefaculty.org/R/WorkingExamples), but it is too difficult
- I needed to create plots and calculate correlations as described in Applied Multiple Regression, by Cohen, Cohen, West, and Aiken, (Routledge, 2002). Students needed lots of R help, some calculations not trivial.
- plotSlopes() is the "simple-slope" routine ala CCWA, it was improvised in an emergency, plotCurves() & plotPlane() used same terminology for consistency.

ockchalk 40 / 81 K.U.

Syntax

- User fits m1, a multiple regression
- Then gives that to plotSlopes(), with arguments

plotx: The name of the variable on the horizontal axis

modx: The name of a "moderator" variable on which predicted values may depend.

modxVals: Values of the moderator for which "simple slopes" are desired

- Other arguments to will be passed through to plot() and predict()
- See the rockchalk vignette.

Difference between plotSlopes and plotCurves

- plotSlopes(): for linear models
 - Allows interactions (unlike termplot())
 - Output object can be passed to rockchalk function testSlopes()
- plotCurves(): for nonlinear models (lm() or glm()).
 - Complete drop-in replacement for plotSlopes()
 - Nonlinear formulae in the predictors (succeeds where termplot fails)
 - Does not create object suitable for testSlopes()

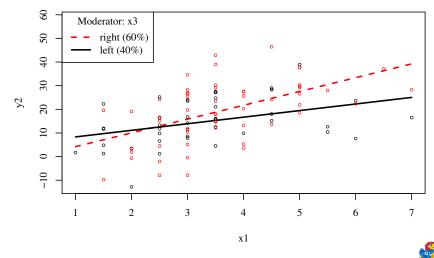
ockchalk 42 / 81 K.U.

Example: moderator is an R factor

- x3 is a predictor with values "left" and "right"
- If there are more predictors, they will be set to their central values (mean or mode) for calculation of predicted values

```
mod1 <- lm (y2 \sim x1*x3, data = dat) \\ ps1 <- plotSlopes (mod1, plotx = "x1", modx = "x3")
```


ockchalk 43/81 K.U.

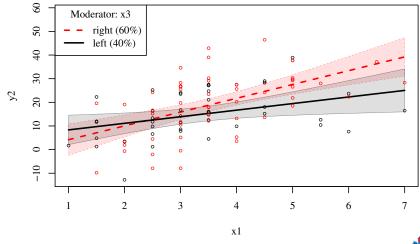

	Example Interaction	
	Estimate	(S.E.)
(Intercept)	5.549	(4.199)
×1	2.785*	(1.172)
x3right	-7.197	(6.104)
x1:x3right	3.055	(1.644)
N	100	
RMSE	10.312	
R^2	0.277	
adj R^2	0.254	
< 0.0E		

 $[*]p \le 0.05$

2 lines, one for each value of modx

ockchalk 45 / 81 K.U.

Add confidence interval

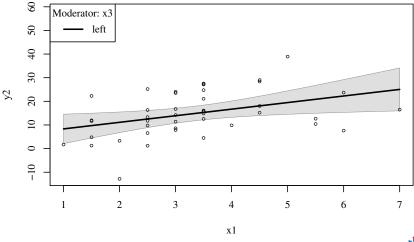

```
ps2 <- plotSlopes(mod1, plotx = "x1", modx =
   "x3", interval = "confidence")</pre>
```


ockchalk 46/81 K.U.

Add confidence interval

rockchalk 47/81 K.U.

Plot a particular group

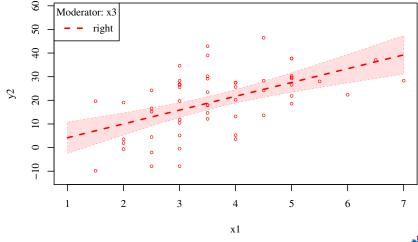

```
ps3a <- plotSlopes(mod1, plotx = "x1", modx =
    "x3", modxVals = c("left"), interval = "
    confidence")</pre>
```


ockchalk 48/81 K.U.

Plot of values for "left" group

ockchalk 49 / 81 K.U.

Plot of values for "right" group


```
ps3b <- plotSlopes(mod1, plotx = "x1", modx =
    "x3", modxVals = c("right"), interval = "
    confidence")</pre>
```


rockchalk 50 / 81

Note my hard work to keep colors consistent

rockchalk 51/81 K.U.

What if the modx variable is numeric?

- When modx is numeric, then particular values need to be chosen for plotting
- Originally, I thought users would explicitly specify values, modxVals
- Have received many user requests, rockchalk 1.8 offers a variety of selection methods.

ockchalk 52 / 81 K.U.

What if the modx variable is numeric?

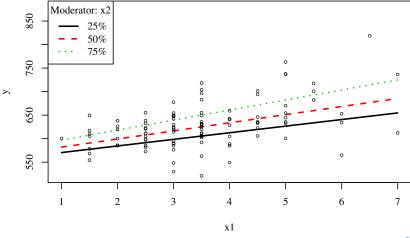
- psychologists generally prefer mean std.dev., mean, mean + std.dev. (or more standard deviations)
- other fields prefer quantiles, such as the 25%, 50% and 75%
- User selects either particular values or a "divider algorithm" to get this done

rockchalk 53 / 81 K.U.

0000000000000000

Defaults

```
mod2 <- lm(y \sim x1*x2, data = dat)

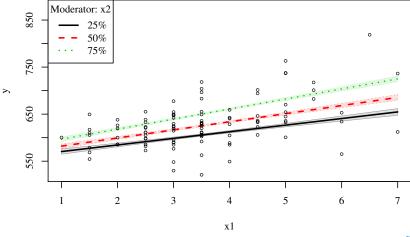

ps5 <- plotSlopes(mod2, plotx = "x1", modx = "x2")
```

The default will select the 3 middle quartiles

plotSlopes with numeric modx

ockchalk 55 / 81 K.U.

Add confidence intervals

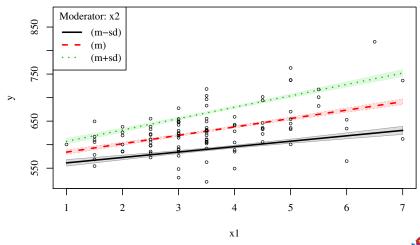

```
ps5 <- plotSlopes(mod2, plotx = "x1", modx =
   "x2", interval = "confidence")</pre>
```


ockchalk 56/81 K.U.

plotSlopes with confidence intervals

ockchalk 57 / 81 K.U.

Change the algorithm to chose modx values


```
ps7 <- plotSlopes(mod2, plotx = "x1", modx =
    "x2", modxVals = "std.dev.", interval = "
    confidence")</pre>
```

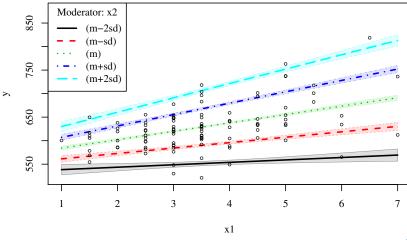
0000000000000000

rockchalk 58 / 81 K.U.

ockchalk 59 / 81 K.U.

0000000000000000

Want a lot of lines? n = 5


```
ps8 <- plotSlopes(mod2, plotx = "x1", modx =
   "x2", modxVals = "std.dev.", n = 5,
   interval = "confidence")</pre>
```

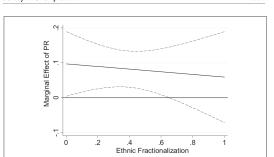

rockchalk 60 / 81 K.U.

5 lines

o<mark>ckchalk 61/81 K.</mark>U.

Conclusion about plotSlopes

- If you don't want a plot, but rather just the newdata matrix and the predicted values, please look at newdata() and predictOMatic().
- plotCurves() can do all of that stuff, and it works with nonlinear models and glm
- Have studied extension to other regression packages.
 - package writers are inconsistent, don't provide predict methods.
 - Conf. Intervals for glm objects controversial


Analyzing Interaction effects

Selway and Tembleman

Selway & Templeman (2012) "Myth of Consocionalism?" Comparative Political Studies

Model has PR*EthnicFractionalization

1559

Figure 1. Marginal effect of PR on *Political_Deaths* across levels of ethnic fractionalization

The "marginal effect" is the slope $(\hat{\beta}_{PR} + \hat{\beta}_{EF,PR}EF_i)PR_i$

0000000000000

testSlopes

- plotSlopes()creates an output object that allows a 'simple-slopes' analysis of statistical significance.
- If modx is

categorical: simply calculates the slope of the relationship and tests whether it is different from 0 numeric: calculates a Johnson-Neyman analysis: for which values of modx would the slope of plotx be different from 0?

• J-N: if the fitted model is $\hat{y}_i = \hat{\beta}_0 + (\hat{\beta}_1 + \hat{\beta}_3 \times 2_i) \times 1_i$, for which values of $x \cdot 2_i$ is $(\hat{\beta}_1 + \hat{\beta}_3 \times 2_i)$ statistically significantly different from 0?

0000000000000000

testSlopes

```
ps5ts <- testSlopes(ps5)</pre>
```

```
Values of x2 OUTSIDE this interval:

lo hi
42.79481 45.87360
cause the slope of (b1 + b2*x2)x1 to be
statistically significant
```


A method for testSlopes objects (plot.testSlopes)

plot (ps5ts)

rockchalk is an S3 type R package.

If you are uncertain about the significance of S3 and the term "method", I strongly recommend you get a copy of Friedrich Leisch, "Creating R Packages: A Tutorial" (available in CRAN contributed documentation) which has many excellent insights!

rockchalk 66 / 81 K.U.

0000000000000000

plot of a testSlopes object

Note: intended verbosity of labels & legend

Outline

- Introduction
- 2 Data
- Outreg
- 4 Plots
 - Categorical modx
 - Numeric moderator
- 5 Free Lunch
- 6 Conclusions
- Guessing

Mean-Center, Residual-Centered Regressions

- Start with Im (y ~ x1 * x2 + x3, data = dat)
- which implies lm (y x1 + x2 + x1:x2 + x3, data = dat)
- Should it matter if we replace x1 with
 - mean centered values, x1c = (x1 mean(x1)) by fitting Im(y x1c + x2 + x1c:x2 + x3, data = dat)
- Or if we replace x1:x2 by with the
 - "residual centered" value of the interaction term, which is the residual from this regresision? $Im((x1*x2) \sim x1 + x2, data = dat)$

69 / 81 K.U.

Several authorities say those changes may be important

- Cohen, Cohen, Aichen & West (2002) strongly endorse mean-centering
- Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the Merits of Orthogonalizing Powered and Product Terms: Implications for Modeling Interactions Among Latent Variables. Structural Equation Modeling, 13(4), 497-519.

rockchalk 70 / 81 K.U.

- standardize() calculates centered & scaled values of all variables and re-fits the model.
- meanCenter() adjusts predictors by subtracting observed means
- residualCenter() calculates one variant of orthogonal regression
- rockchalk supplies print(), predict() and summary() methods for these functions

Fit some big multiple regression

m1 <-
$$Im (someDV \sim x1 + x2 + x3 * x4, data = dat)$$

Center only the interactive predictors

$$m1 < -lm(someDV \sim x1 + x2 + x3c*x4c, data = dat)$$

 $m1mc < -meanCenter(m1)$

ends up fitting

$$Im (someDV \sim x1 + x2 + x3c + x4c + x3c:x4c, data = dat)$$

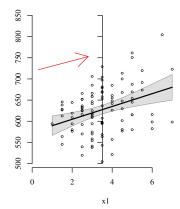
Mean-Center

Center all predictors

ends up fitting

$$Im (someDV \sim x1c + x2c + x3c + x4c + x3c:x4c, data = dat)$$

Center also the DV


ends up fitting

$$Im \big(someDVc \, \sim \, x1c \, + \, x2c \, + \, x3c \, + \, x4c \, + \, x3c : x4c \, , \\ data \, = \, dat \, \big)$$

Why this is fool's gold

- Changing a predictor column from X_i to X_i - 5 cannot improve statistical precision.
- It simply re-positions the Y axis.
 - Slope same, standard error of slope same
 - Intercept is "bigger"
 - Predicted value at Y axis is more precise, due to hour-glass shape of CI

I was not so sure about residual centering

• The residualCenter() function leaves the linear terms in the model unchanged, but re-constructs interactive variables, replacing x3:x4 with the residual from $lm(x3*x4 \sim x3+x4)$, which I'm calling "x3.X.x4"

m1rc <- Im(someDV
$$\sim$$
 x1 + x2 + x3 + x4 + x5 + x6 + x5.X.x6, data = dat)

- This is one way to create truly orthogonal columns. Before introduction of QR decomposition, it might have actually been a good way to do so
- Requires some serious fancy coding to make interactions like x3*x4*x5 work correctly (see also predict.mcreg())

Alternatives seem better, but they are not actually different

- The predicted values are identical
- See the rockchalk vignette, which gives a full argument.
- In directory with this presentation, find the small example file curve-example-1.R

ockchalk 76 / 81 K.U.

Outline

- Introduction
- 2 Data
- Outreg
- 4 Plots
 - Categorical modx
 - Numeric moderator
- Free Lunch
- **6** Conclusions
- Guessing

ockchalk 77 / 81 K.U.

Other functions worth mentioning

- mcDiagnose: splattering of multicollinearity diagnostics
- getDeltaRsquare, getPartialCor: partial and semi-partial correlations
- See the rockchalk vignette, which gives a full argument.
- In directory with this presentation, find the small example file curve-example-1.R

ockchalk 78 / 81 K.U.

Outline

- - Categorical modx
 - Numeric moderator
- 6 Conclusions
- Guessing

79/81

What makes package building easier?

roxygen2 (Hadley Wickham, Peter Danenberg, Manuel Eugster).

Usual R development: one writes R files, and documentation files in a separate directory. Very inconvenient to keep documents in sync with R code.

roxygen2 approach: put documentation in the R files, use functions to extract & format the documents.

ockchalk 80 / 81 K.U.

Am I competing with "car", "rms", "memisc", "texreg", etc?

- No. "car" and "rms" are established industry leading packages that support widely sold textbooks. Those authors are "up there", I'm "down here."
- No.
 - I'm filling in perceived gaps to create convenience
- Yes. Perhaps I think their
 - jargon is difficult (tough for me ⇒impossible for students)
 - their functions are clumsy, or
 - I think their source code is not clear

ockchalk 81 / 81 K.U.