◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

R Regression Methods Interrogate R Output Objects

Paul E. Johnson

Center for Research Methods and Data Analysis University of Kansas

2012

Outline

1 Methods

2 Interrogate Models

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ⊇ ○ ○ ○ ○

Methods: Things To Do "To" a Regression Object

bush1 <- glm(pres04 ~ partyid + sex + owngun, data=dat, family= binomial(link=logit))

pres04 Kerry, Bush partyid Factor with 7 levels, $SD \rightarrow SR$ sex Male, Female owngun Yes, No

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Just for the Record, The Data Preparation Steps Were ...

```
preslev <- levels(dat$pres04)
dat$pres04[dat$pres04 %in% preslev[3:10]]<- NA
dat$pres04 <-- factor(dat$pres04)
levels(dat$pres04) <-- c("Kerry", "Bush")
plev <- levels(dat$partyid)
dat$partyid[dat$partyid %in% plev[8]] <- NA
dat$partyid <- factor(dat$partyid)
levels(dat$partyid) <- c("Strong Dem.", "Dem.", "Ind. Near Dem.", "
Independent", "Ind. Near Repub.", "Repub.", "Strong Repub.")
dat$owngun[ dat$owngun == "REFUSED"] <- NA
levels(dat$sex) <- c("Male", "Female")
dat$owngun <- relevel(dat$owngun, ref="NO")</pre>
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Regression	Methods
Metho	-le

First, Find Out What You Got I

attributes (bush1)

\$nan	nes	
[1]	"coefficients"	"residuals"
[3]	"fitted.values"	"effects"
[5]	"R"	"rank"
[7]	"qr"	"family"
[9]	"linear.predictors"	"deviance"
[11]	"aic"	"null.deviance"
[13]	"iter"	"weights"
[15]	"prior.weights"	"df.residual"
[17]	"df.null"	"y "
[19]	"converged"	"boundary"
[21]	"model"	"na.action"
[23]	"call"	"formula"
[25]	"terms"	"data"
[27]	"offset"	"control"
[29]	"method"	"contrasts"
[31]	"xlevels"	
\$cla	155	
[1]	"glm" "lm"	

Understanding attributes

- If you see \$, it means you have an S3 object
- That means you can just "take" values out of the object with the dollar sign operator using commands like

bush1\$coefficients

(Intercept)	nartvidDem	
-3 571	1 910	
partyidInd. Near Dem.	partyidIndependent	
1.456	3.464	
partyidInd. Near Repub.	partyidRepub.	
5.468	6.031	
partyidStrong Repub.	sexFemale	
7.191	0.049	
owngunYES		
0.642		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

```
Regression Methods
```

R Core Team Warns against \$ Access

A usage like this works

bush1\$coefficients

- But it might not work in the future, if the internal contents of the glm object were to change
- We should instead use the "extractor method"

coefficients(bush1)

- Challenge: finding/remembering the extractor functions.
- Especially difficult because some VERY important extractor functions don't show up using usual methods of searching for them (AIC, coefficients)

Double-Check the glm Object's Class

Ask the object what class it is from

```
class(bush1)
```

[1] "glm" "lm"

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ask R What Methods are declared to apply to a "glm" Object I

```
methods(class = "glm")
```

[1]	add1.glm*	anova.glm
[3]	confint.glm*	cooks.distance.glm*
[5]	deviance.glm*	drop1.glm*
[7]	effects.glm*	extractAIC.glm*
[9]	family.glm*	formula.glm*
[11]	influence.glm *	logLik.glm*
[13]	model.frame.glm	nobs.glm*
[15]	predict.glm	print.glm
[17]	residuals.glm	rstandard.glm
[19]	rstudent.glm	summary.glm
[21]	vcov.glm*	weights.glm*
N	on-visible functions	are asterisked

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Check methods for "Im" class I

methods (class = "lm")

[1]	add1.lm*	alias.lm*
[3]	anova.lm	case.names.lm*
[5]	confint.lm*	cooks.distance.lm*
[7]	deviance.lm*	dfbeta.lm*
[9]	dfbetas.lm*	drop1.lm*
[11]	dummy.coef.lm*	effects.lm*
[13]	extractAIC.lm*	family.lm*
[15]	formula.lm*	hatvalues.lm
[17]	influence.lm*	kappa.lm
[19]	labels.lm*	logLik.lm*
[21]	model.frame.lm	model.matrix.lm
[23]	nobs.lm*	plot.lm
[25]	predict.lm	print.lm
[27]	proj.lm *	qr.lm*
[29]	residuals.lm	rstandard.lm
[31]	rstudent.lm	simulate.lm*
[33]	summary.lm	variable.names.lm*
[35]	vcov.lm*	
N	on-visible functions	are actericked

▲□▶▲□▶▲≧▶▲≧▶ 差 のへ⊙

Looking Into the Class Hierarchy

- Functions are always located inside packages. With R, several packages are supplied and are automatically searched for methods.
- Read the source code for some of your favorite functions.

```
lm
predict.lm
glm
predict.glm
```

For functions in packages that are loaded, typing its name (without telling R what package it lives in) will show its contents.

```
Regression Methods
```

Functions, Methods and Hidden Methods

Methods are ALSO FOUND if we ask for them explicitly with their namespace (and two colons)..

```
stats :: lm
stats :: predict.lm
stats :: glm
stats :: predict.glm
```

Result should be identical to previous code.

- Hidden methods: Functions that are not "exported" by the package writer remain hidden
- functions used by package author, but they don't want create confusion by having users access them directly
- You can see code for hidden methods if you use three colons.

```
stats ::: confint.lm
stats ::: weights.glm
```

The First Method Used is usually summary() I

```
summary(bush1)
```

```
Call
glm(formula = pres04 \sim partyid + sex + owngun, family = binomial(
    link = logit),
    data = dat)
Deviance Residuals.
  Min
            1Q Median
                            3Q
                                    Max
-2.941 - 0.488 0.163
                         0.390
                                  2.683
Coefficients:
                         Estimate Std. Error z value
(Intercept)
                         -35712
                                      0 3934
                                               -9.08
partyidDem.
                          1.9103
                                      0.3972
                                                4.81
partvidInd. Near Dem.
                        1.4559
                                      0.4348
                                                3 35
                                                8 4 4
partvidIndependent
                        3 4642
                                      0 4105
partyidInd. Near Repub. 5.4677
                                      0.5073
                                               10.78
partyidRepub.
                          6.0307
                                      0.4502
                                               13.39
                         7.1908
                                      0.6213
                                               11.57
partyidStrong Repub.
sexFemale
                          0.0488
                                      0.1928
                                                0.25
                                                3 32
owngunYES
                          0 6424
                                      0 1937
                        \Pr(|z|)
(Intercept)
                         < 2e-16 ***
                                                ・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト
                                                                     ж
```

The First Method Used is usually summary() II

```
partyidDem.
                       1.5e - 06 * * *
partyidInd. Near Dem. 0.00081 ***
partvidIndependent
                     < 2e-16 ***
partyidInd. Near Repub. < 2e-16 ***
partvidRepub.
                       < 2e-16 ***
partyidStrong Repub. < 2e-16 ***
sexFemale
                       0.80006
owngunYES
                        0 00091 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 1721.9 on 1242 degrees of freedom
Residual deviance: 764.0 on 1234 degrees of freedom
  (3267 observations deleted due to missingness)
AIC: 782
Number of Fisher Scoring iterations: 6
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary Object I

Create a Summary Object

```
sb1 <- summary(bush1)
attributes(sb1)</pre>
```


My deviance is

sb1\$deviance

[1] 764

```
Regression Methods
```

The coef Enigma I

- coef() is the same as coefficients()
- Note the Bizarre Truth:
 - that the "coef" function returns something different when it is applied to a model object

coef(bush1)

(Inter	cept)	partyidDem.	
-	-3.571	1.910	
partyidInd. Near	r Dem.	partyidIndependent	
	1.456	3.464	
partyidInd. Near F	Repub.	partyidRepub.	
	5.468	6.031	
partyidStrong F	Repub.	sexFemale	
	7.191	0.049	
owng	gunYES		
	0.642		

Than is returned from a summary object.

coef(sb1)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

The coef Enigma II

	Estimate	Std.	Error	z	value	
(Intercept)	-3.571		0.39		-9.08	
partyidDem.	1.910		0.40		4.81	
partyidInd. Near Dem.	1.456		0.43		3.35	
partyidIndependent	3.464		0.41		8.44	
partyidInd. Near Repub.	5.468		0.51		10.78	
partyidRepub.	6.031		0.45		13.39	
partyidStrong Repub.	7.191		0.62		11.57	
sexFemale	0.049		0.19		0.25	
owngunYES	0.642		0.19		3.32	
	Pr(> z)					
(Intercept)	1.1e-19					
partyidDem.	1.5e-06					
partyidInd. Near Dem.	8.1e-04					
partyidIndependent	3.2e-17					
partyidInd. Near Repub.	4.3e-27					
partyidRepub.	6.5e-41					
partyidStrong Repub.	5.6e-31					
sexFemale	8.0e-01					
owngunYES	9.1e-04					

anova() |

- You can apply anova() to just one model
- That gives a "stepwise" series of comparisons (not very useful)

```
anova(bush1, test="Chisq")
```

```
Analysis of Deviance Table
Model: binomial, link: logit
Response: pres04
Terms added sequentially (first to last)
       Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL
                      1242
                                1722
partyid 6 947
                    1236
                                 775 < 2e - 16 * * *
       1
             0
                    1235 775 0.97862
sex
owngun 1
             11
                                 764 0.00087 ***
                     1234
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

But anova Very Useful to Compare 2 Models

Here's the basic procedure:

- 1 Fit 1 big model, "mod1"
- 2 Exclude some variables to create a smaller model, "mod2"
- 3 Run anova() to compare: anova(mod1, mod2, test="Chisq")
- If resulting test statistic is far from 0, it means the big model really is better and you should keep those variables in there.

Quick Reminder:

- In an OLS model, this is would be an F test for the hypothesis that the coefficients for omitted parameters are all equal to 0.
- In a model estimated by maximum likelihood, it is a likelihood ratio test with df= number of omitted parameters.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

But there's an anova "Gotcha" I

```
> anova(bush0, bush1, test="Chisq")
Error in anova.glmlist(c(list(object), dotargs),
dispersion = dispersion, :
models were not all fitted to the same size of dataset
```

What the Heck?

anova() Gotcha, cont.

- Explanation: Listwise Deletion of Missing Values causes this. Missings cause sample sizes to differ when variables change.
- One Solution: Fit both models on same data.
 - 1 Fit the "big model" (one with most variables)

```
mod1 <- \mbox{ glm} \left( y \sim \ x1 + \ x2 \ + \ x3 \ + \ \left( \mbox{more variables} \right) , \ data=dat , family=binomial \right)
```

2 Fit the "smaller Model" with the data extracted from the fit of the previous model (model.frame(mod1), extractor for mod1\$model) as the data frame

```
mod2 <- glm(y~ x3 + (some variables), data=model.frame(
    mod1), family=binomial)</pre>
```

3 After that, anova() will work

Example anova()

Here's the big model

```
bush3 <- glm(pres04 ~ partyid + sex + owngun + race + wrkslf +
realinc + polviews , data=dat, family=binomial(link=
logit))
```

Here's the small model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

anova(): The Big Reveal!

anova:

```
anova (bush3, bush4, test="Chisq")
```

```
Analysis of Deviance Table

Model 1: pres04 ~ partyid + sex + owngun + race + wrkslf +

realinc + polviews

Model 2: pres04 ~ partyid + owngun + race + polviews

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1044 589

2 1047 593 -3 -4.1 0.25
```

- Conclusion: the big model is not statistically significantly better than the small model
- Same as: Can't reject the null hypothesis that β_j=0 for all omitted parameters

 Consider the fit for "polviews" in bush3 (recall "extremely liberal" is the reference category, the intercept)

label:	lib.	slt. lib.	mod.	sl. con.	con.	extr. con.
$mle(\hat{\beta})$:	0.41	1.3	1.8*	2.5*	2.6*	3.1*
se:	0.88	0.83	0.79	0.83	0.84	1.2
* - < 0.05						

* *p* ≤ 0.05

I wonder: are all "conservatives" the same? Do we really need separate parameter estimates for those respondents?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 Make a New Variable for the New Coding

```
dat$newpolv <- dat$polviews
(levnpv <- levels(dat$newpolv))</pre>
```

[1]	"EXTREMELY LIBERAL"	"LIBERAL"
[3]	"SLIGHTLY LIBERAL"	"MODERATE"
[5]	"SLGHTLY CONSERVATIVE"	"CONSERVATIVE"
[7]	"EXTRMLY CONSERVATIVE"	

dat\$newpolv[dat\$newpolv %in% levnpv[5:7]] <- levnpv[6]

Effect is to set slight and extreme conservatives into the conservative category

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへで

Better Check newpolv

dat\$newpolv <- factor(dat\$newpolv)
table(dat\$newpolv)</pre>

EXTREMELY LIBERAL	LIBERAL	
139	524	
SLIGHTLY LIBERAL	MODERATE	
517	1683	
CONSERVATIVE		
1470		

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Neat anova thing, cont.

1 Fit a new regression model, replacing polviews with newpolv

```
bush5 <- glm(pres04 ~ partyid + sex + owngun + race + wrkslf +
realinc + newpolv , data=dat, family=binomial(link=logit))
```

2 Use anova() to test:

```
anova (bush3, bush5, test="Chisq")
```

```
Analysis of Deviance Table

Model 1: pres04 ~ partyid + sex + owngun + race + wrkslf +

realinc + polviews

Model 2: pres04 ~ partyid + sex + owngun + race + wrkslf +

realinc + newpolv

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1044 589

2 1046 589 -2 -0.431 0.81
```

- Apparently, all conservatives really are alike :)
- A similar test for liberals is left to the reader!

drop1 Relieves Tedium

drop1() repeats the anova() procedure, removing each variable one-at-a-time.

```
drop1(bush3, test="Chisq")
```

```
Single term deletions
Model ·
pres04 \sim partyid + sex + owngun + race + wrkslf + realinc +
    polviews
        Df Deviance AIC LRT Pr(>Chi)
<none>
               589 627
partyid 6
               951 \ 977 \ 362 \ < 2e - 16 \ ***
     1
               589 625 0 0.991
sex
owngun 1
             592 628 4 0.050 .
    2
               618 652 30 3.6e-07 ***
race
wrkslf 1
             592 628 4 0.054 .
realinc 1
             589 625 0 0.761
polviews
         6
               628 654 40 5 7e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Recall "Chisq" \Leftrightarrow L.L.R test.

Variance-Covariance Matrix of $\hat{\beta}$ I

bush1Vcov <- vcov(bush1)
round(bush1Vcov, 3)</pre>

	(Intercept)	partyidDem.	
(Intercept)	0.155	-0.130	
partyidDem.	-0.130	0.158	
partyidInd. Near Dem.	-0.132	0.130	
partyidIndependent	-0.133	0.130	
partyidInd. Near Repub.	-0.137	0.130	
partyidRepub.	-0.135	0.130	
partyidStrong Repub.	-0.134	0.130	
sexFemale	-0.025	-0.001	
owngunYES	-0.019	0.001	
Ŭ	partyidInd.	Near Dem.	
(Intercept)		-0.132	
partyidDem.		0.130	
partyidInd. Near Dem.		0.189	
partyidIndependent		0.130	
partyidInd. Near Repub.		0.131	
partyidRepub.		0.130	
partyidStrong Repub.		0.130	
sexFemale		0.003	
owngunYES		0.000	
	partyidIndep	endent	

200

æ

Variance-Covariance Matrix of \hat{eta} II

(Intercept)	-0.133
partyldDem.	0.150
partyidInd. Near Dem.	0.130
partyidIndependent	0.168
partyidInd. Near Repub.	0.131
partyidRepub.	0.131
partyidStrong Repub.	0.130
sexFemale	0.004
owngunYES	0.001
3	partyidInd. Near Repub.
(Intercept)	-0.137
partyidDem.	0.130
partyidInd. Near Dem.	0.131
partyidIndependent	0.131
partyidInd. Near Repub.	0.257
partyidRepub.	0.132
partyidStrong Repub.	0.131
sexFemale	0.006
owngunYES	0.007
	partyidRepub.
(Intercept)	-0.135
partyidDem.	0.130
partyidInd. Near Dem.	0.130
partvidIndependent	0.131
partyidInd. Near Repub.	0.132

(日本) (四本) (田本) (田本) (日本)

Variance-Covariance Matrix of \hat{eta} III

partyidRepub.	0.20	3	
partyidStrong Repub.	0.13	1	
sexFemale	0.00	4	
owngunYES	0.00	6	
	partyidStron	g Repub.	
(Intercept)		-0.134	
partyidDem.		0.130	
partyidInd. Near Dem.		0.130	
partyidIndependent		0.130	
partyidInd. Near Repub.		0.131	
partyidRepub.		0.131	
partyidStrong Repub.		0.386	
sexFemale		0.003	
owngunYES		0.004	
	sexFemale ow	ngunYES	
(Intercept)	-0.025	-0.019	
partyidDem.	-0.001	0.001	
partyidInd. Near Dem.	0.003	0.000	
partyidIndependent	0.004	0.001	
partyidInd. Near Repub.	0.006	0.007	
partyidRepub.	0.004	0.006	
partyidStrong Repub.	0.003	0.004	
sexFemale	0.037	0.003	
owngunYES	0.003	0.038	

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Variance-Covariance Matrix of $\hat{\beta}$ IV

These will match the "SE" column in the summary of bush1

sqrt(diag(vcov(bush1)))

(Intercept)	partyidDem.	
0.3934	0.3972	
partyidInd. Near Dem.	partyidIndependent	
0.4348	0.4105	
partyidInd. Near Repub.	partyidRepub.	
0.5073	0.4502	
partyidStrong Repub.	sexFemale	
0.6213	0.1928	
owngunYES		
0.1937		

Heteroskedasticity-consistent Standard Errors?

Variants of the Huber-White "heteroskedasticity-consistent" (slang: robust) covarance matrix are available in "car" and "sandwich".

- hccm() in car works for linear models only
- vcovHC in the "sandwich" package returns a matrix of estimates.
 One should certainly read ?vcovHC and the associated literature.

```
library(sandwich)
myvcovHC <- vcovHC(bush1)</pre>
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The heteroskedasticity consistent standard errors of the $\hat{\beta}$ are:

t(sqrt(diag(myvcovHC)))

(Intercept) partyidDem. [1,] 0.4013 0.3988 partyidInd. Near Dem. partyidIndependent [1,] 0.4394 0.4158 partyidInd. Near Repub. partyidRepub. [1,]0 5079 0 4535 partvidStrong Repub. sexFemale owngunYES 0 6262 [1,] 0.1946 0.1941

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Compare those: I


```
Regression Methods
```

Multicollinearity Diagnostics I

- VIF (Variance Inflation Factors) available in "car"
- rockchalk has "mcDiagnose"

```
library (rockchalk)
mcDiagnose (bush1)
```

```
The following auxiliary models are being estimated and returned
    in a list
partyidDem. \sim `partyidInd. Near Dem.` + partyidIndependent +
     partyidInd. Near Repub. + partyidRepub. + `partyidStrong
        Repub. +
    sexFemale + owngunYES
<environment: 0x3eb4560>
`partyidInd. Near Dem.` \sim partyidDem. + partyidIndependent +
    `partyidInd. Near Repub.` + partyidRepub. + `partyidStrong
        Repub. +
    sexFemale + owngunYES
<environment: 0x3eb4560>
partyidIndependent \sim partyidDem. + `partyidInd. Near Dem.` +
     partyidInd. Near Repub. + partyidRepub. + `partyidStrong
        Repub. +
    sexFemale + owngunYES
<environment: 0x3eb4560>
                                           ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @
```
Multicollinearity Diagnostics II

```
partvidInd. Near Repub. \sim partvidDem. + \rho partvidInd. Near Dem.
    partyidIndependent + partyidRepub. + `partyidStrong Repub.`
        +
    sexFemale + owngunYES
<environment: 0x3eb4560>
partyidRepub. ~ partyidDem. + `partyidInd. Near Dem.` +
    partyidIndependent +
    `partyidInd. Near Repub.` + `partyidStrong Repub.` +
        sexFemale +
    owngunYES
<environment: 0x3eb4560>
`partyidStrong Repub.` \sim partyidDem. + `partyidInd. Near Dem.` +
    partyidIndependent + `partyidInd. Near Repub.` +
         partyidRepub. +
    sexFemale + owngunYES
<environment: 0x3eb4560>
sexFemale \sim partyidDem. + `partyidInd. Near Dem.` +
    partyidIndependent +
    `partyidInd. Near Repub.` + partyidRepub. + `partyidStrong
         Repub. \ +
    owngunYES
<environment: 0x3eb4560>
owngunYES \sim partyidDem. + `partyidInd. Near Dem.` +
    partvidIndependent +
                                           ▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ヨ ● の Q @
```

37 / 72

```
partvidInd. Near Repub. + partvidRepub. + partvidStrong
        Repub. +
    sexFemale
<environment: 0x3eb4560>
Drum roll please!
And your R_i Squareds are (auxiliary Rsq)
            partyidDem.
                           partyidInd. Near Dem.
                0 39471
                                         0 31465
     partyidIndependent partyidInd. Near Repub.
                0 26782
                                         0 22589
          partyidRepub.
                           partyidStrong Repub.
                0.40933
                                         0.38675
              sexFemale
                                       owngunYES
                0.02243
                                         0 03130
The Corresponding VIF, 1/(1-R_j^2)
            partyidDem. partyidInd.
                                       Near Dem.
                  1 652
                                           1 4 5 9
     partyidIndependent
                        partyidInd. Near Repub.
                  1 366
                                           1 292
          partvidRepub.
                           partvidStrong Repub.
                  1.693
                                           1.631
              sexFemale
                                       owngunYES
                  1.023
                                           1.032
Bivariate Correlations for design matrix
```

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Multicollinearity Diagnostics IV

partyidDem. partyidInd. Near Dem. partyidIndependent partyidInd. Near Repub. partyidRepub.	partyidDem. 1.00 -0.17 -0.15 -0.13 -0.23
partyidStrong Repub.	-0.21
owngunYES	-0.06
	partyidInd. Near Dem.
partyidDem.	-0.17
partyidInd. Near Dem.	1.00
partyidIndependent	-0.11
partyidInd. Near Repub.	-0.10
partyidRepub.	-0.18
partyidStrong Repub.	-0.16
sexFemale	-0.02
owngunYES	-0.04
nartyidDom	partyldindependent 0.15
partyiden. Dartyidend Near Dem	-0.15
partyidindependent	1 00
partyidInd. Near Repub.	-0.08
partyidRepub.	-0.15
partyidStrong Repub.	-0.14
	(ロ)、(四)、(三)、(三)、(三)、(三)、(三)、(三)、(三)、(三)、(三)、(三

Multicollinearity Diagnostics V

sexFemale		_0.03			
owngunVES		0.04			
lowing and ES	manufathal N	0.04 Ann Danub			
	partyldind. N	ear Repub.			
partyidDem.		-0.13			
partyidInd. Near Dem.		-0.10			
partyidIndependent		-0.08			
partyidInd. Near Repub.		1.00			
partyidRepub.		-0.13			
partvidStrong Repub.		-0.12			
sexFemale		-0.04			
owngunYES		0.00			
owngun ES	party id Papub	0.00			
a substitut Discus	partyrukepub.				
partyidDem.	-0.23				
partyidind. Near Dem.	-0.18				
partyidIndependent	-0.15				
partyidInd. Near Repub.	-0.13				
partyidRepub.	1.00				
partvidStrong Repub.	-0.22				
sexFemale	-0.04				
owngunYES	0.04				
owngan i 20	nartvidStrong	Repub			
n a starid D a m	partyrustrong	0.01			
partyidDem.		-0.21			
partyidind. Near Dem.		-0.10			
partyidIndependent		-0.14			
partyidInd. Near Repub.		-0.12			
		< □ ▶ <	@ ▶ ★ ≧ ▶ ★ ≧ ▶	- 2	900

partyidRepub. partyidStrong Repub.		-0.22 1.00	
sexFemale		-0.03	
owngunYES		0.11	
	sexFemale	owngunYES	
partyidDem.	0.07	-0.06	
partyidInd. Near Dem.	-0.02	-0.04	
partyidIndependent	-0.03	0.04	
partyidInd. Near Repub.	-0.04	0.00	
partyidRepub.	-0.04	0.04	
partyidStrong Repub.	-0.03	0.11	
sexFemale	1.00	-0.11	
owngunYES	-0.11	1.00	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

plot.Im (plot.glm) produces Diagnostics

Run plot() on the model object for a quick diagnostic analysis. Example:

```
myolsmod <- lm(y \sim x, data=datols)
plot(myolsmod)
```


Here's a Scatterplot with OLS Fit

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 ののの

Output from plot(myolsmod)

э

-

Output from plot.glm Difficult To Read

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

influence() Function Digs up the Diagnostics I

ib1 <- influence(bush1)
head(ib1\$hat)</pre>

1	4	5	9	10
0.003941	0.003941	0.004117	0.003941	0.005226
11				
0.005226				

```
head(ib1$coefficients)
```

	(Intercept)	partyidDem.	partyidInd.	Near Dem.		
1	-0.0052361	0.005286		0.0052149		
4	-0.0052361	0.005286		0.0052149		
5	-0.0059698	0.005023		0.0051036		
9	-0.0052361	0.005286		0.0052149		
10	-0.0005007	0.019143		0.0007462		
11	0.0001594	-0.006095		-0.0002376		
	partyidIndep	endent party	yidInd. Near	Repub.		
1	0.0	052232	0.0	053054		
4	0.0	052232	0.0	053054		
5	0.0	051290	0.0	052763		
9	0.0	052232	0.0	053054		
10	0.0	006130	- 0 .	0007269		
				•	ロマメロマメロマ	- 2

influence() Function Digs up the Diagnostics II

14.4	0.000	01050	0000015	
111	-0.000	J1952 U	0002315	
	partyidRepub.	partyidStrong Repub.	sexFemale	
1	0.0053094	5.274e-03	-0.0004822	
4	0.0053094	5.274e-03	-0.0004822	
5	0.0052130	5.165e-03	0.0009737	
9	0.0053094	5.274e-03	-0.0004822	
10	-0.0008014	-2.216e-04	0.0080812	
11	0.0002552	7.056e-05	-0.0025732	
	owngunYES			
1	0.000635			
4	0.000635			
5	0.000730			
9	0.000635			
10	-0.010400			
11	0.003312			

head(ib1\$sigma)

1 4 5 9 10 11 0.7871 0.7871 0.7871 0.7871 0.7853 0.7870

head(ib1\$dev.res)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

influence() Function Digs up the Diagnostics III

1	4	5	9	10	11
-0.2413	-0.2413	-0.2355	-0.2413	1.8942	-0.6031

head(ib1\$pear.res)

1	4	5	9	10	11
-0.1718	-0.1718	-0.1677	-0.1718	2.2390	-0.4466

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

influence.measures() A bigger collection of influence measures |

From influence.measures, DFBETAS for each parameter, DFFITS, covariance ratios, Cook's distances and the diagonal elements of the hat matrix.

```
imb1 <- influence.measures(bush1)
attributes(imb1)</pre>
```

```
$names
[1] "infmat" "is.inf" "call"
$class
[1] "infl"
```

colnames(imb1\$infmat)

```
[1] "dfb.1_" "dfb.prD." "dfb.pIND" "dfb.prtI"
[5] "dfb.pINR" "dfb.prR." "dfb.pSR." "dfb.sxFm"
[9] "dfb.oYES" "dffit" "cov.r" "cook.d"
[13] "hat"
```

▲□▶▲□▶▲□▶▲□▶ □ ● ●

influence.measures() A bigger collection of influence measures II

head(imb1\$infmat)

		dfb.1_	dfb.prD.	dfb.pIND	dfb	.prtl	
	1	-0.016910	0.01691	0.0152357	0.016	51655	
	4	-0.016910	0.01691	0.0152357	0.016	51655	
	5	-0.019279	0.01607	0.0149105	0.015	58739	
	9	-0.016910	0.01691	0.0152357	0.016	51655	
	10	-0.001621	0.06137	0.0021851	0.001	L9015	
	11	0.000515	-0.01950	-0.0006943	-0.000	06042	
		dfb.pINR	dfb.pr	R. dfb.p	SR. di	fb.sxFm	
	1	0.0132875	0.01498	21 0.0107	838 -0	0.003177	
	4	0.0132875	0.01498	21 0.0107	838 -0	0.003177	
	5	0.0132145	0.01471	01 0.0105	602 0.	.006417	
	9	0.0132875	0.01498	21 0.0107	838 -0	.003177	
	10	-0.0018248	-0.00226	668 -0.0004	541 0	.053377	
	11	0.0005798	0.00072	02 0.0001	443 -0	0.016960	
		dfb.oYES	dffit	cov.r	cook.d	ha	t
	1	0.004164	-0.01932	1.0106 1.3	03e-05	0.00394	L
	4	0.004164	-0.01932	1.0106 1.3	03e-05	0.00394	L
	5	0.004787	-0.01928	1.0108 1.2	97e-05	0.004117	7
	9	0.004164	-0.01932	1.0106 1.3	03e-05	0.00394	L
	10	-0.068361	0.17528	0.9704 2.9	41e-03	0.005226	5
1							

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

influence.measures() A bigger collection of influence measures III

11 0.021721 -0.05569 1.0083 1.170e-04 0.005226

summary(imb1)

entially	influent	ial obser	vations o	f	
glm (form	ula = pres	s04 \sim par	tyid + se>	<pre>< + owngun,</pre>	family = binomial(
link	= logit)	, da	ta = dat)	:	
dfb.1_	dfb.prD.	dfb.pIND	dfb.prtl	dfb.pINR	
0.00	0.06	0.00	0.00	0.00	
-0.03	0.00	0.00	0.00	0.01	
0.00	0.06	0.00	0.00	0.00	
0.22	-0.18	-0.17	-0.18	-0.15	
0.00	0.06	0.00	0.00	0.00	
0.00	0.06	0.00	0.00	0.00	
0.06	0.06	0.00	-0.01	-0.01	
0.00	0.06	0.00	0.00	0.00	
0.06	0.06	0.00	-0.01	-0.01	
0.00	0.06	0.00	0.00	0.00	
0.19	-0.19	-0.17	-0.18	-0.15	
0.05	0.00	0.11	-0.01	-0.01	
	entially glm (form. link dfb.1_ 0.00 -0.03 0.00 0.22 0.00 0.00 0.00 0.06 0.00 0.06 0.00 0.19 0.05	entially influent glm(formula = pre: link = logit) dfb.1_ dfb.prD. 0.00 0.06 -0.03 0.00 0.00 0.06 0.22 -0.18 0.00 0.06 0.00 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.00 0.06 0.19 -0.19 0.05 0.00	entially influential observ glm(formula = pres04 ~ parv link = logit), da dfb.1_ dfb.prD. dfb.plND 0.00 0.06 0.00 -0.03 0.00 0.00 0.00 0.06 0.00 0.22 -0.18 -0.17 0.00 0.06 0.00 0.00 0.06 0.00 0.19 -0.19 -0.17 0.05 0.00 0.11	entially influential observations o glm(formula = pres04 ~ partyid + se) link = logit), data = dat) dfb.1_ dfb.prD. dfb.plND dfb.prtl 0.00 0.06 0.00 0.00 -0.03 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.22 -0.18 -0.17 -0.18 0.00 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.00 -0.01 0.00 0.06 0.00 -0.01 0.00 0.06 0.00 -0.01 0.00 0.06 0.00 0.00 0.19 -0.19 -0.17 -0.18 0.05 0.00 0.11 -0.01	entially influential observations of glm(formula = pres04 ~ partyid + sex + owngun, link = logit), data = dat): dfb.1_ dfb.prD. dfb.plND dfb.prtl dfb.plNR 0.00 0.06 0.00 0.00 0.00 -0.03 0.00 0.00 0.00 0.01 0.00 0.06 0.00 0.00 0.00 0.22 -0.18 -0.17 -0.18 -0.15 0.00 0.06 0.00 0.00 0.00 0.06 0.06 0.00 -0.01 -0.01 0.00 0.06 0.00 -0.01 -0.01 0.00 0.06 0.00 -0.01 -0.01 0.00 0.06 0.00 0.00 0.00 0.19 -0.19 -0.17 -0.18 -0.15 0.05 0.00 0.11 -0.01

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

influence.measures() A bigger collection of influence measures IV

833	0.01	0.00	0.00	0.00	0.00	
904	0.20	-0.23	-0.21	-0.22	-0.17	
986	-0.04	0.00	0.00	0.00	0.01	
987	-0.01	0.00	0.12	0.00	0.00	
1120	-0.04	0.00	0.00	0.00	0.01	
1161	0.06	0.06	0.00	-0.01	-0.01	
1215	0.05	0.00	0.11	-0.01	-0.01	
1227	0.01	0.00	0.00	0.00	0.00	
1292	-0.04	0.00	0.00	0.00	-0.21	
1298	-0.01	0.00	0.12	0.00	0.00	
1322	-0.01	0.00	0.12	0.00	0.00	
1564	-0.05	0.00	0.13	0.01	0.01	
1603	0.19	-0.19	-0.17	-0.18	-0.15	
1606	0.02	0.00	0.00	0.00	-0.22	
1624	0.00	0.06	0.00	0.00	0.00	
1737	0.02	0.00	0.00	0.00	-0.22	
1758	-0.05	0.00	0.13	0.01	0.01	
1784	0.01	0.00	0.00	0.00	0.00	
1797	0.00	0.06	0.00	0.00	0.00	
1805	0.01	0.00	0.00	0.00	0.00	
1812	0.01	0.00	0.00	0.00	0.00	
1846	0.00	0.06	0.00	0.00	0.00	

influence.measures() A bigger collection of influence measures V

2002 - 0.05 0.00 0.13 0.01 0.01 2029 0.02 0.00 0.00 - 0.22	
2023 0.02 0.00 0.00 0.00 0.22	
2097 -0.04 0.00 0.00 0.00 -0.21	
2119 0.00 0.06 0.00 0.00 0.00	
2126 0.03 0.00 0.00 0.00 -0.01	
2143 0.06 0.06 0.00 -0.01 -0.01	
2146 0.00 0.00 0.00 0.00 0.00	
2174 0.00 0.06 0.00 0.00 0.00	
2259 0.05 0.00 0.11 -0.01 -0.01	
2315 -0.01 0.00 0.12 0.00 0.00	
2327 0.00 0.06 0.00 0.00 0.00	
2405 0.02 0.00 0.00 0.00 -0.22	
2486 0.00 0.00 0.00 0.00 0.00	
2487 0.00 0.00 0.00 0.00 0.00	
2508 -0.04 0.00 0.00 0.00 -0.21	
2616 -0.01 0.00 0.12 0.00 0.00	
2651 -0.05 0.00 0.13 0.01 0.01	
2817 0.05 0.00 0.11 -0.01 -0.01	
2823 -0.05 0.00 0.13 0.01 0.01	
2832 0.00 0.06 0.00 0.00 0.00	
2855 0.00 0.06 0.00 0.00 0.00	

influence.measures() A bigger collection of influence measures VI

3057	0.20	-0.23	-0.21	-0.22	-0.17	
3078	0.00	0.06	0.00	0.00	0.00	
3180	0.06	0.06	0.00	-0.01	-0.01	
3212	0.01	0.00	0.00	0.00	0.00	
3282	0.01	0.00	0.12	0.00	0.00	
3334	0.01	0.00	0.00	0.00	0.00	
3415	0.01	0.00	0.00	0.00	0.00	
3454	0.01	0.00	0.00	0.00	0.00	
3510	0.06	0.06	0.00	-0.01	-0.01	
3548	0.00	0.00	0.00	0.00	-0.19	
3564	0.04	0.00	0.00	0.00	-0.01	
3718	0.01	0.00	0.12	0.00	0.00	
3769	-0.05	0.00	0.13	0.01	0.01	
3823	-0.01	0.00	0.12	0.00	0.00	
3890	-0.01	0.00	0.12	0.00	0.00	
4113	0.24	-0.22	-0.21	-0.22	-0.18	
4199	0.01	0.00	0.12	0.00	0.00	
4225	0.24	-0.22	-0.21	-0.22	-0.18	
4239	0.00	0.06	0.00	0.00	0.00	
4274	0.00	0.06	0.00	0.00	0.00	
4334	0.06	0.06	0.00	-0.01	-0.01	
4364	0.00	0.00	0.00	0.00	0.00	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

influence.measures() A bigger collection of influence measures VII

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4436	0.22	-0.18	-0.17	-0.18	-0.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4471	0.01	0.00	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		dfb.pı	R. dfb.pSF	R. dfb.sxF	m dfb.oYE	S dffit
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0.00	0.00	0.05	-0.07	0.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	0.01	-0.22	0.06	0.04	-0.29_*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	0.00	0.00	0.05	-0.07	0.18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	81	-0.17	-0.12	-0.07	-0.05	0.22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	118	0.00	0.00	0.05	-0.07	0.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	156	0.00	0.00	0.05	-0.07	0.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	189	-0.01	-0.01	-0.12	-0.08	0.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	445	0.00	0.00	0.05	-0.07	0.18
	589	-0.01	-0.01	-0.12	-0.08	0.21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	605	0.00	0.00	0.05	-0.07	0.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	664	-0.17	-0.12	0.04	-0.05	0.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	704	-0.01	0.00	-0.10	-0.08	0.24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	833	0.00	-0.22	-0.04	0.03	-0.28_*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	904	-0.19	-0.14	0.05	0.08	0.27_*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	986	-0.12	0.00	0.09	0.05	-0.23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	987	0.00	0.00	0.07	-0.07	0.23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1120	-0.12	0.00	0.09	0.05	-0.23
1215 -0.01 0.00 -0.10 -0.08 0.24	1161	-0.01	-0.01	-0.12	-0.08	0.21
	1215	-0.01	0.00	-0.10	-0.08	0.24

influence.measures() A bigger collection of influence measures VIII

-0.12	0.00	-0.06	0.04	-0.22
0.01	0.00	0.09	0.05	-0.33_*
0.00	0.00	0.07	-0.07	0.23
0.00	0.00	0.07	-0.07	0.23
0.01	0.01	0.09	0.10	0.26_*
-0.17	-0.12	0.04	-0.05	0.21
0.00	0.00	-0.08	0.04	-0.32_*
0.00	0.00	0.05	-0.07	0.18
0.00	0.00	-0.08	0.04	-0.32_*
0.01	0.01	0.09	0.10	0.26_*
-0.12	0.00	-0.06	0.04	-0.22
0.00	0.00	0.05	-0.07	0.18
-0.12	0.00	-0.06	0.04	-0.22
-0.12	0.00	-0.06	0.04	-0.22
0.00	0.00	0.05	-0.07	0.18
0.01	0.00	0.09	0.05	-0.33_*
0.01	0.01	0.09	0.10	0.26_*
0.00	0.00	-0.08	0.04	-0.32_*
0.01	0.00	0.09	0.05	-0.33_*
0.00	0.00	0.05	-0.07	0.18
-0.01	-0.18	-0.04	-0.06	-0.23
-0.01	-0.01	-0.12	-0.08	0.21
	$\begin{array}{c} -0.12\\ 0.01\\ 0.00\\ 0.00\\ 0.01\\ -0.17\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.01\\ -0.12\\ -0.12\\ 0.00\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\ 0.01\\ 0.00\\ -0.01\\ -0.01\\ -0.01\end{array}$	$\begin{array}{ccccc} -0.12 & 0.00 \\ 0.01 & 0.00 \\ 0.00 & 0.00 \\ 0.00 & 0.00 \\ 0.01 & 0.01 \\ -0.17 & -0.12 \\ 0.00 & 0.00 \\ 0.00 & 0.00 \\ 0.00 & 0.00 \\ 0.01 & 0.01 \\ -0.12 & 0.00 \\ 0.00 & 0.00 \\ -0.12 & 0.00 \\ -0.12 & 0.00 \\ -0.12 & 0.00 \\ 0.00 & 0.00 \\ 0.01 & 0.00 \\ 0.01 & 0.01 \\ 0.00 & 0.00 \\ 0.01 & 0.00 \\ 0.01 & 0.00 \\ 0.01 & 0.00 \\ 0.00 & 0.00 \\ -0.01 & -0.18 \\ -0.01 & -0.01 \\ \end{array}$	$\begin{array}{ccccccc} -0.12 & 0.00 & -0.06 \\ 0.01 & 0.00 & 0.09 \\ 0.00 & 0.00 & 0.07 \\ 0.00 & 0.00 & 0.07 \\ 0.01 & 0.01 & 0.09 \\ -0.17 & -0.12 & 0.04 \\ 0.00 & 0.00 & -0.08 \\ 0.00 & 0.00 & 0.05 \\ 0.00 & 0.00 & -0.08 \\ 0.01 & 0.01 & 0.09 \\ -0.12 & 0.00 & -0.06 \\ 0.00 & 0.00 & 0.05 \\ -0.12 & 0.00 & -0.06 \\ -0.12 & 0.00 & -0.06 \\ 0.00 & 0.00 & 0.05 \\ 0.01 & 0.01 & 0.09 \\ 0.01 & 0.01 & 0.09 \\ 0.01 & 0.01 & 0.09 \\ 0.00 & 0.00 & -0.08 \\ 0.01 & 0.00 & -0.08 \\ 0.01 & 0.00 & 0.09 \\ 0.00 & 0.00 & -0.08 \\ 0.01 & 0.00 & 0.09 \\ 0.00 & 0.00 & 0.05 \\ -0.01 & -0.18 & -0.04 \\ -0.01 & -0.01 & -0.12 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

<ロト < 課 > < 注 > < 注 > のQC

influence.measures() A bigger collection of influence measures IX

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2315 0.00 0.00 0.07 -0.07 0.23 2327 0.00 0.00 0.05 -0.07 0.18	
2327 0.00 0.00 0.05 -0.07 0.18	
0.405 0.00 0.00 0.04 0.00	
2405 0.00 0.00 -0.08 0.04 -0.32_*	
2486 0.00 -0.18 0.04 -0.05 -0.23	
2487 -0.11 0.00 0.06 -0.08 -0.20	
2508 0.01 0.00 0.09 0.05 -0.33_*	
2616 0.00 0.00 0.07 -0.07 0.23	
2651 0.01 0.01 0.09 0.10 0.26_*	
2817 -0.01 0.00 -0.10 -0.08 0.24	
2823 0.01 0.01 0.09 0.10 0.26_*	
2832 0.00 0.00 0.05 -0.07 0.18	
2855 0.00 0.00 0.05 -0.07 0.18	
3057 -0.19 -0.14 0.05 0.08 0.27_*	
3078 0.00 0.00 0.05 -0.07 0.18	
3180 -0.01 -0.01 -0.12 -0.08 0.21	
3212 -0.12 0.00 -0.06 0.04 -0.22	
3282 0.00 0.00 -0.09 0.09 0.26_*	
3334 -0.12 0.00 -0.06 0.04 -0.22	
3415 -0.12 0.00 -0.06 0.04 -0.22	

influence.measures() A bigger collection of influence measures X

3454	-0.12	0.00	-0.06	0.04	-0.22
3510	-0.01	-0.01	-0.12	-0.08	0.21
3548	0.00	0.00	0.07	-0.10	-0.30_*
3564	-0.11	0.00	-0.06	-0.09	-0.20
3718	0.00	0.00	-0.09	0.09	0.26_*
3769	0.01	0.01	0.09	0.10	0.26_*
3823	0.00	0.00	0.07	-0.07	0.23
3890	0.00	0.00	0.07	-0.07	0.23
4113	-0.20	-0.14	-0.08	0.07	0.27_*
4199	0.00	0.00	-0.09	0.09	0.26_*
4225	-0.20	-0.14	-0.08	0.07	0.27_*
4239	0.00	0.00	0.05	-0.07	0.18
4274	0.00	0.00	0.05	-0.07	0.18
4334	-0.01	-0.01	-0.12	-0.08	0.21
4364	-0.11	0.00	0.06	-0.08	-0.20
4436	-0.17	-0.12	-0.07	-0.05	0.22
4471	-0.12	0.00	-0.06	0.04	-0.22
	cov.r	cook.d	hat		
10	0.97_*	0.00	0.01		
13	0.93_*	0.03	0.01		
54	0.97_*	0.00	0.01		
81	0.93_*	0.02	0.00		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

influence.measures() A bigger collection of influence measures XI

118	0.97_*	0.00	0.01
156	0.97_*	0.00	0.01
189	0.97_*	0.00	0.01
445	0.97_*	0.00	0.01
589	0.97_*	0.00	0.01
605	0.97_*	0.00	0.01
664	0.93_*	0.01	0.00
704	0.96_*	0.01	0.01
833	0.93_*	0.03	0.01
904	0.95_*	0.01	0.01
986	0.95_*	0.01	0.01
987	0.96_*	0.01	0.01
1120	0.95_*	0.01	0.01
1161	0.97_*	0.00	0.01
1215	0.96_*	0.01	0.01
1227	0.95_*	0.01	0.01
1292	0.97_*	0.01	0.02
1298	0.96_*	0.01	0.01
1322	0.96_*	0.01	0.01
1564	0.98	0.01	0.01
1603	0.93_*	0.01	0.00
1606	0.97_*	0.01	0.01

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ● ●

influence.measures() A bigger collection of influence measures XII

1624	0.97_*	0.00	0.01
1737	0.97_*	0.01	0.01
1758	0.98	0.01	0.01
1784	0.95_*	0.01	0.01
1797	0.97_*	0.00	0.01
1805	0.95_*	0.01	0.01
1812	0.95_*	0.01	0.01
1846	0.97_*	0.00	0.01
1943	0.97_*	0.01	0.02
2002	0.98	0.01	0.01
2029	0.97_*	0.01	0.01
2097	0.97_*	0.01	0.02
2119	0.97_*	0.00	0.01
2126	0.91_*	0.03	0.00
2143	0.97_*	0.00	0.01
2146	0.94_*	0.01	0.00
2174	0.97_*	0.00	0.01
2259	0.96_*	0.01	0.01
2315	0.96_*	0.01	0.01
2327	0.97_*	0.00	0.01
2405	0.97_*	0.01	0.01
2486	0.91_*	0.03	0.00

<ロ> <四> <四> <三> <三> <三> <三> <三</p>

influence.measures() A bigger collection of influence measures XIII

2487	0.94_*	0.01	0.00
2508	0.97_*	0.01	0.02
2616	0.96_*	0.01	0.01
2651	0.98	0.01	0.01
2817	0.96_*	0.01	0.01
2823	0.98	0.01	0.01
2832	0.97_*	0.00	0.01
2855	0.97_*	0.00	0.01
3057	0.95_*	0.01	0.01
3078	0.97_*	0.00	0.01
3180	0.97_*	0.00	0.01
3212	0.95_*	0.01	0.01
3282	0.98	0.01	0.01
3334	0.95_*	0.01	0.01
3415	0.95_*	0.01	0.01
3454	0.95_*	0.01	0.01
3510	0.97_*	0.00	0.01
3548	0.96_*	0.01	0.01
3564	0.94_*	0.01	0.00
3718	0.98	0.01	0.01
3769	0.98	0.01	0.01
3823	0.96_*	0.01	0.01

influence.measures() A bigger collection of influence measures XIV

```
3890
      0.96_*
              0.01
                      0.01
4113
      0.95 * 0.02
                      0.01
4199
      0.98
             0.01
                      0.01
4225
      0.95 \times 0.02
                      0.01
4239
     0.97_*
             0.00
                      0.01
4274
     0.97_* 0.00
                      0.01
4334
     0.97_* 0.00
                      0.01
4364
      0.94 *
             0.01
                      0.00
4436
      0.93_*
             0.02
                      0.00
4471
      0.95 *
             0.01
                      0.01
```

Can get component columns directly with 'dfbetas', 'dffits', 'covratio' and 'cooks.distance'.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

But if You Want dfbeta, Not dfbetas, Why Not Ask? I

```
dfb1 <- dfbeta(bush1)
colnames(dfb1)
```

```
    "(Intercept)"
    "partyidDem."
    "partyidInd. Near Dem."
    "partyidIndependent"
    "partyidInd. Near Repub."
    "partyidRepub."
    "partyidStrong Repub."
    "sexFemale"
    owngunYES"
```

head(dfb1)

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э.

But if You Want dfbeta, Not dfbetas, Why Not Ask? II

	(Intercept)	partyidDem.	partyidInd.	Near Dem.	
1	-0.0052361	0.005286		0.0052149	
4	-0.0052361	0.005286		0.0052149	
5	-0.0059698	0.005023		0.0051036	
9	-0.0052361	0.005286		0.0052149	
10	-0.0005007	0.019143		0.0007462	
11	0.0001594	-0.006095		-0.0002376	
	partyidIndepe	endent part	yidInd. Near	Repub.	
1	0.00	052232	0.	0053054	
4	0.00	052232	0.	0053054	
5	0.00	051290	0.	0052763	
9	0.00	052232	0.	0053054	
10	0.00	006130	-0	.0007269	
11	-0.0	001952	0.	0002315	
	partyidRepub	. partyidStr	ong Repub.	sexFemale	
1	0.005309	4	5.274e-03	-0.0004822	
4	0.005309	4	5.274e-03	-0.0004822	
5	0.005213	0	5.165e-03	0.0009737	
9	0.005309	4	5.274e-03	-0.0004822	
10	-0.000801	4	-2.216e-04	0.0080812	
11	0.000255	2	7.056e-05	-0.0025732	
	owngunYES				
1	0.000635				
4	0.000635				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

But if You Want dfbeta, Not dfbetas, Why Not Ask? III

5	0.000730
9	0.000635
10	-0.010400
11	0.003312

I wondered what dfbetas does. You can see for yourself. Look at the code. Run:

> stats:::dfbetas.lm

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

predict() with newdata

- If you run this: predict(bush5)
 R calculates Xβ̂, a "linear predictor" value for each row in your dataframe
- See "?predict.glm."
- We ask for predicted probabilities like so predict(bush5, type="response") and you still get one prediction for each line in the data.

Use predict to calculate with "for example" values

 Create "example" dataframes and get probabilities for hypothetical cases.

mydf <- # Pretend there are some commands, for example

Run that new example data frame through the predict function

predict(bush5, newdata=mydf, type="response")

Termplot: Plotting The Linear Predictor

termplot(bush1,terms=c("partyid"))

Regression Methods

Termplot: Some of the Magic is Lost on a Logistic Model

termplot(bush1,terms=c("partyid"), partial.resid = T, se = T)

Termplot: But If You Had Some Continuous Data, Watch Out!

termplot(myolsmod, terms=c("x"), partial.resid = T, se = T)

termplot() works because ...

- termplot doesn't make calculations, it uses the "predict" method associated with a model object.
- predict is a generic method, it doesn't do any work either!
- Actual work gets done by methods for models, predict.lm or predict.glm.
- You can leave out the "terms" option, termplot will cycle through all of the predictors in the model.

Why Termplot is Not the End of the Story

- Termplot draws $X\hat{\beta}$, the linear predictor.
- Maybe we want predicted probabilities instead.
- Maybe we want predictions for certain case types: termplot allows the predict implementation to decide which values of the inputs will be used.
- A regression expert will quickly conclude that a really great graph may require direct use of the predict method for the model object.