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Methods

Methods: Things To Do “To” a Regression Object

bush1 <− glm ( p r e s04 ∼ p a r t y i d + sex + owngun , data=dat , f am i l y=
b i nom i a l ( l i n k=l o g i t ) )

pres04 Kerry, Bush

partyid Factor with 7 levels, SD → SR

sex Male, Female

owngun Yes, No
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Just for the Record, The Data Preparation Steps Were . . .

p r e s l e v <− l e v e l s ( dat $ p r e s04 )
dat $ p r e s04 [ dat $ p r e s04 %i n% p r e s l e v [ 3 : 1 0 ] ]<− NA
dat $ p r e s04 <− f a c t o r ( dat $ p r e s04 )
l e v e l s ( dat $ p r e s04 ) <− c ( ”Ker ry ” , ”Bush ”)
p l e v <− l e v e l s ( dat $ p a r t y i d )
dat $ p a r t y i d [ dat $ p a r t y i d %i n% p l e v [ 8 ] ] <− NA
dat $ p a r t y i d <− f a c t o r ( dat $ p a r t y i d )
l e v e l s ( dat $ p a r t y i d ) <− c ( ”St rong Dem. ” , ”Dem. ” , ” I n d . Near Dem. ” , ”

Independent ” , ” I n d . Near Repub. ” , ”Repub. ” , ”St rong Repub. ”)
dat $owngun [ dat $owngun == ”REFUSED”] <− NA
l e v e l s ( dat $ sex ) <− c ( ”Male ” , ”Female ”)
dat $owngun <− r e l e v e l ( dat $owngun , r e f=”NO”)
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First, Find Out What You Got I

a t t r i b u t e s ( bush1 )

$names
[ 1 ] ” c o e f f i c i e n t s ” ” r e s i d u a l s ”
[ 3 ] ” f i t t e d . v a l u e s ” ” e f f e c t s ”
[ 5 ] ”R” ”rank ”
[ 7 ] ”qr ” ”f am i l y ”
[ 9 ] ” l i n e a r . p r e d i c t o r s ” ”dev i an c e ”

[ 1 1 ] ”a i c ” ”n u l l . d e v i a n c e ”
[ 1 3 ] ” i t e r ” ”we i gh t s ”
[ 1 5 ] ”p r i o r . w e i g h t s ” ” d f . r e s i d u a l ”
[ 1 7 ] ” d f . n u l l ” ”y ”
[ 1 9 ] ”conve rged ” ”boundary ”
[ 2 1 ] ”model ” ”n a . a c t i o n ”
[ 2 3 ] ” c a l l ” ”fo rmu la ”
[ 2 5 ] ”terms ” ”data ”
[ 2 7 ] ” o f f s e t ” ”c o n t r o l ”
[ 2 9 ] ”method ” ”c o n t r a s t s ”
[ 3 1 ] ” x l e v e l s ”

$ c l a s s
[ 1 ] ”glm ” ”lm ”
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Understanding attributes

If you see $, it means you have an S3 object

That means you can just “take” values out of the object with the
dollar sign operator using commands like

bush1$ c o e f f i c i e n t s

( I n t e r c e p t ) par ty idDem.
−3.571 1 .910

p a r t y i d I n d . Near Dem. p a r t y i d I n d e p e nd e n t
1 .456 3 .464

p a r t y i d I n d . Near Repub. pa r t y i dRepub .
5 .468 6 .031

p a r t y i d S t r o n g Repub. sexFemale
7 .191 0 .049

owngunYES
0 .642
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R Core Team Warns against $ Access

A usage like this works

bush1$ c o e f f i c i e n t s

But it might not work in the future, if the internal contents of the
glm object were to change

We should instead use the ”extractor method”

c o e f f i c i e n t s ( bush1 )

Challenge: finding/remembering the extractor functions.

Especially difficult because some VERY important extractor
functions don’t show up using usual methods of searching for them
(AIC, coefficients)
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Double-Check the glm Object’s Class

Ask the object what class it is from

c l a s s ( bush1 )

[ 1 ] ”glm ” ”lm ”
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Ask R What Methods are declared to apply to a “glm”
Object I

methods ( c l a s s = ”glm ”)

[ 1 ] add1.g lm* anova .g lm
[ 3 ] c o n f i n t . g lm * c o o k s . d i s t a n c e . g lm *

[ 5 ] d e v i a n c e . g lm * drop1 .g lm*

[ 7 ] e f f e c t s . g l m * e x t r a c tA IC . g lm *

[ 9 ] f am i l y . g lm * f o rmu l a . g lm *

[ 1 1 ] i n f l u e n c e . g lm * l o g L i k . g lm *

[ 1 3 ] mode l . f r ame .g lm nobs .g lm*

[ 1 5 ] p r e d i c t . g lm p r i n t . g lm
[ 1 7 ] r e s i d u a l s . g l m r s t a nda r d . g lm
[ 1 9 ] r s t u d e n t . g lm summary.glm
[ 2 1 ] vcov .g lm* we i gh t s . g lm *

Non−v i s i b l e f u n c t i o n s a r e a s t e r i s k e d
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Check methods for “lm” class I

methods ( c l a s s = ”lm ”)

[ 1 ] add1. lm* a l i a s . l m *

[ 3 ] anova . lm ca se .names . lm *

[ 5 ] c o n f i n t . l m * c o o k s . d i s t a n c e . lm *

[ 7 ] d e v i a n c e . lm * d f b e t a . lm *

[ 9 ] d f b e t a s . lm * drop1 . lm*

[ 1 1 ] dummy.coef . lm* e f f e c t s . l m *

[ 1 3 ] e x t r a c tA IC . lm * f am i l y . lm *

[ 1 5 ] f o rmu l a . lm * h a t v a l u e s . lm
[ 1 7 ] i n f l u e n c e . l m * kappa. lm
[ 1 9 ] l a b e l s . l m * l o g L i k . lm *

[ 2 1 ] mode l . f r ame . lm mode l .ma t r i x . lm
[ 2 3 ] nobs . lm* p l o t . lm
[ 2 5 ] p r e d i c t . l m p r i n t . l m
[ 2 7 ] p r o j . lm * q r . lm *

[ 2 9 ] r e s i d u a l s . l m r s t a n d a r d . lm
[ 3 1 ] r s t u d e n t . lm s imu l a t e . lm *

[ 3 3 ] summary.lm v a r i a b l e . n ame s . lm *

[ 3 5 ] vcov . lm*

Non−v i s i b l e f u n c t i o n s a r e a s t e r i s k e d
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Looking Into the Class Hierarchy

Functions are always located inside packages. With R, several
packages are supplied and are automatically searched for methods.

Read the source code for some of your favorite functions.

lm
p r e d i c t . l m
glm
p r e d i c t . g lm

For functions in packages that are loaded, typing its name (without
telling R what package it lives in) will show its contents.
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Functions, Methods and Hidden Methods

Methods are ALSO FOUND if we ask for them explicitly with their
namespace (and two colons)..

s t a t s : : lm
s t a t s : : p r e d i c t . l m
s t a t s : : glm
s t a t s : : p r e d i c t . g lm

Result should be identical to previous code.

Hidden methods: Functions that are not “exported” by the package
writer remain hidden

functions used by package author, but they don’t want create
confusion by having users access them directly

You can see code for hidden methods if you use three colons.

s t a t s : : : c o n f i n t . l m
s t a t s : : : we i gh t s . g lm
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The First Method Used is usually summary() I

summary ( bush1 )

C a l l :
glm ( fo rmu la = pre s04 ∼ p a r t y i d + sex + owngun , f am i l y = b i nom i a l (

l i n k = l o g i t ) ,
data = dat )

Dev iance R e s i d u a l s :
Min 1Q Median 3Q Max

−2.941 −0.488 0 .163 0 .390 2 .683

C o e f f i c i e n t s :
Es t imate S td . E r r o r z v a l u e

( I n t e r c e p t ) −3.5712 0 .3934 −9.08
par ty idDem. 1 .9103 0 .3972 4 .81
p a r t y i d I n d . Near Dem. 1 .4559 0 .4348 3 .35
p a r t y i d I n d e p e nd e n t 3 .4642 0 .4105 8 .44
p a r t y i d I n d . Near Repub. 5 .4677 0 .5073 10 .78
pa r t y i dRepub . 6 .0307 0 .4502 13 .39
p a r t y i d S t r o n g Repub. 7 .1908 0 .6213 11 .57
sexFemale 0 .0488 0 .1928 0 .25
owngunYES 0 .6424 0 .1937 3 .32

Pr (>| z | )
( I n t e r c e p t ) < 2e−16 ***
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The First Method Used is usually summary() II

par ty idDem. 1 .5e−06 ***

p a r t y i d I n d . Near Dem. 0 .00081 ***

pa r t y i d I n d e p e nd e n t < 2e−16 ***

p a r t y i d I n d . Near Repub. < 2e−16 ***

pa r t y i dRepub . < 2e−16 ***

p a r t y i d S t r o n g Repub. < 2e−16 ***

sexFemale 0 .80006
owngunYES 0 .00091 ***

−−−
S i g n i f . codes : 0 ' *** ' 0 .001 ' ** ' 0 .01 ' * ' 0 .05 ' . ' 0 . 1 ' ' 1

( D i s p e r s i o n paramete r f o r b i n om i a l f am i l y taken to be 1)

Nu l l d e v i an c e : 1721 . 9 on 1242 deg r e e s o f f reedom
Re s i d u a l d e v i an c e : 764 . 0 on 1234 deg r e e s o f f reedom

(3267 o b s e r v a t i o n s d e l e t e d due to m i s s i n g n e s s )
AIC : 782

Number o f F i s h e r Sco r i ng i t e r a t i o n s : 6
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Summary Object I

Create a Summary Object

sb1 <− summary ( bush1 )
a t t r i b u t e s ( sb1 )

$names
[ 1 ] ” c a l l ” ”terms ” ”f am i l y ”
[ 4 ] ”d e v i an c e ” ”a i c ” ”c o n t r a s t s ”
[ 7 ] ” d f . r e s i d u a l ” ”n u l l . d e v i a n c e ” ” d f . n u l l ”

[ 1 0 ] ” i t e r ” ”n a . a c t i o n ” ”d e v i a n c e . r e s i d ”
[ 1 3 ] ” c o e f f i c i e n t s ” ”a l i a s e d ” ”d i s p e r s i o n ”
[ 1 6 ] ”d f ” ”c o v . u n s c a l e d ” ”c o v . s c a l e d ”

$ c l a s s
[ 1 ] ”summary.glm ”

My deviance is

sb1 $ dev i an c e

[ 1 ] 764



Regression Methods 16 / 72

Interrogate Models

The coef Enigma I

coef() is the same as coefficients()

Note the Bizarre Truth:

1 that the “coef” function returns something different when it is applied
to a model object

co e f ( bush1 )

( I n t e r c e p t ) par ty idDem.
−3.571 1 .910

p a r t y i d I n d . Near Dem. p a r t y i d I n d e p e nd en t
1 .456 3 .464

p a r t y i d I n d . Near Repub. pa r t y i dRepub .
5 .468 6 .031

p a r t y i d S t r o n g Repub. sexFemale
7 .191 0 .049

owngunYES
0 .642

Than is returned from a summary object.

co e f ( sb1 )
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The coef Enigma II

Est imate S td . E r r o r z v a l u e
( I n t e r c e p t ) −3.571 0 .39 −9.08
par ty idDem. 1 .910 0 .40 4 .81
p a r t y i d I n d . Near Dem. 1 .456 0 .43 3 .35
p a r t y i d I n d e p e nd en t 3 .464 0 .41 8 .44
p a r t y i d I n d . Near Repub. 5 .468 0 .51 10 .78
pa r t y i dRepub . 6 .031 0 .45 13 .39
p a r t y i d S t r o n g Repub. 7 .191 0 .62 11 .57
sexFemale 0 .049 0 .19 0 .25
owngunYES 0 .642 0 .19 3 .32

Pr (>| z | )
( I n t e r c e p t ) 1 .1e−19
par ty idDem. 1 .5e−06
p a r t y i d I n d . Near Dem. 8 .1e−04
pa r t y i d I n d e p e nd en t 3 .2e−17
p a r t y i d I n d . Near Repub. 4 .3e−27
pa r t y i dRepub . 6 .5e−41
p a r t y i d S t r o n g Repub. 5 .6e−31
sexFemale 8 .0e−01
owngunYES 9 .1e−04
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anova() I

You can apply anova() to just one model

That gives a “stepwise” series of comparisons (not very useful)

anova ( bush1 , t e s t=”Chi sq ”)

An a l y s i s o f Dev iance Table

Model : b i nomia l , l i n k : l o g i t

Response : p r e s04

Terms added s e q u e n t i a l l y ( f i r s t to l a s t )

Df Dev iance R e s i d . Df R e s i d . Dev Pr(>Chi )
NULL 1242 1722
p a r t y i d 6 947 1236 775 < 2e−16 ***

s ex 1 0 1235 775 0 .97862
owngun 1 11 1234 764 0 .00087 ***

−−−
S i g n i f . codes : 0 ' *** ' 0 .001 ' ** ' 0 .01 ' * ' 0 .05 ' . ' 0 . 1 ' ' 1
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But anova Very Useful to Compare 2 Models

Here’s the basic procedure:

1 Fit 1 big model, “mod1”

2 Exclude some variables to create a smaller model, “mod2”

3 Run anova() to compare:
anova(mod1, mod2, test=”Chisq”)

4 If resulting test statistic is far from 0, it means the big model really
is better and you should keep those variables in there.

Quick Reminder:

In an OLS model, this is would be an F test for the hypothesis that
the coefficients for omitted parameters are all equal to 0.

In a model estimated by maximum likelihood, it is a likelihood ratio
test with df= number of omitted parameters.
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But there’s an anova “Gotcha” I

> anova ( bush0 , bush1 , t e s t=”Chi sq ”)
E r r o r i n a n o v a . g lm l i s t ( c ( l i s t ( o b j e c t ) , d o t a r g s ) ,

d i s p e r s i o n = d i s p e r s i o n , :
models were not a l l f i t t e d to the same s i z e o f d a t a s e t

What the Heck?
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anova() Gotcha, cont.

Explanation: Listwise Deletion of Missing Values causes this.
Missings cause sample sizes to differ when variables change.

One Solution: Fit both models on same data.

1 Fit the “big model” (one with most variables)

mod1 <− glm ( y∼ x1+ x2 + x3 + (more v a r i a b l e s ) , data=dat ,
f am i l y=b i nom i a l )

2 Fit the “smaller Model” with the data extracted from the fit of the
previous model (model.frame(mod1), extractor for mod1$model) as
the data frame

mod2 <− glm ( y∼ x3 + ( some v a r i a b l e s ) , data=mode l . f r ame (
mod1) , f am i l y=b i nom i a l )

3 After that, anova() will work
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Example anova()

Here’s the big model

bush3 <− glm ( p r e s04 ∼ p a r t y i d + sex + owngun + rac e + w r k s l f +
r e a l i n c + po l v i ew s , data=dat , f am i l y=b i nom i a l ( l i n k=

l o g i t ) )

Here’s the small model

bush4 <− glm ( p r e s04 ∼ p a r t y i d + owngun + rac e + po l v i ew s ,
data=mode l . f r ame ( bush3 ) , f am i l y=b i nom i a l ( l i n k=l o g i t ) )
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anova(): The Big Reveal!

anova:

anova ( bush3 , bush4 , t e s t=”Chi sq ”)

An a l y s i s o f Dev iance Table

Model 1 : p r e s04 ∼ p a r t y i d + sex + owngun + rac e + w r k s l f +
r e a l i n c + po l v i ew s

Model 2 : p r e s04 ∼ p a r t y i d + owngun + rac e + po l v i ew s
R e s i d . Df R e s i d . Dev Df Dev iance Pr(>Chi )

1 1044 589
2 1047 593 −3 −4.1 0 .25

Conclusion: the big model is not statistically significantly better
than the small model

Same as: Can’t reject the null hypothesis that βj=0 for all omitted
parameters



Regression Methods 24 / 72

Interrogate Models

Interesting Use of anova

Consider the fit for “polviews” in bush3 (recall “extremely liberal” is
the reference category, the intercept)

label: lib. slt. lib. mod. sl. con. con. extr. con.

mle(β̂): 0.41 1.3 1.8* 2.5* 2.6* 3.1*
se: 0.88 0.83 0.79 0.83 0.84 1.2

* p ≤ 0.05

I wonder: are all “conservatives” the same? Do we really need
separate parameter estimates for those respondents?
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Use anova() To Test the Recoding

1 Make a New Variable for the New Coding

dat $ newpolv <− dat $ po l v i ew s
( l e vnpv <− l e v e l s ( dat $ newpolv ) )

[ 1 ] ”EXTREMELY LIBERAL ” ”LIBERAL ”
[ 3 ] ”SLIGHTLY LIBERAL ” ”MODERATE”
[ 5 ] ”SLGHTLY CONSERVATIVE” ”CONSERVATIVE”
[ 7 ] ”EXTRMLY CONSERVATIVE”

dat $ newpolv [ dat $ newpolv %i n% l e vnpv [ 5 : 7 ] ] <− l e vnpv [ 6 ]

Effect is to set slight and extreme conservatives into the
conservative category
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Better Check newpolv

dat $ newpolv <− f a c t o r ( dat $ newpolv )
t a b l e ( dat $ newpolv )

EXTREMELY LIBERAL LIBERAL
139 524

SLIGHTLY LIBERAL MODERATE
517 1683

CONSERVATIVE
1470
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Neat anova thing, cont.

1 Fit a new regression model, replacing polviews with newpolv

bush5 <− glm ( p r e s04 ∼ p a r t y i d + sex + owngun + rac e + w r k s l f +
r e a l i n c + newpolv , data=dat , f am i l y=b i nom i a l ( l i n k=l o g i t ) )

2 Use anova() to test:

anova ( bush3 , bush5 , t e s t=”Chi sq ”)

An a l y s i s o f Dev iance Table

Model 1 : p r e s04 ∼ p a r t y i d + sex + owngun + rac e + w r k s l f +
r e a l i n c + po l v i ew s

Model 2 : p r e s04 ∼ p a r t y i d + sex + owngun + rac e + w r k s l f +
r e a l i n c + newpolv

R e s i d . Df R e s i d . Dev Df Dev iance Pr(>Chi )
1 1044 589
2 1046 589 −2 −0.431 0 .81

Apparently, all conservatives really are alike :)

A similar test for liberals is left to the reader!
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drop1 Relieves Tedium

drop1() repeats the anova() procedure, removing each variable
one-at-a-time.

drop1 ( bush3 , t e s t=”Chi sq ”)

S i n g l e term d e l e t i o n s

Model :
p r e s04 ∼ p a r t y i d + sex + owngun + rac e + w r k s l f + r e a l i n c +

po l v i ew s
Df Dev iance AIC LRT Pr(>Chi )

<none> 589 627
p a r t y i d 6 951 977 362 < 2e−16 ***

s ex 1 589 625 0 0 .991
owngun 1 592 628 4 0 .050 .
r a c e 2 618 652 30 3 .6e−07 ***

w r k s l f 1 592 628 4 0 .054 .
r e a l i n c 1 589 625 0 0 .761
po l v i ew s 6 628 654 40 5 .7e−07 ***

−−−
S i g n i f . codes : 0 ' *** ' 0 .001 ' ** ' 0 .01 ' * ' 0 .05 ' . ' 0 . 1 ' ' 1

Recall “Chisq”⇔ L.L.R test.
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Variance-Covariance Matrix of β̂ I

bush1Vcov <− vcov ( bush1 )
round ( bush1Vcov , 3)

( I n t e r c e p t ) par ty idDem.
( I n t e r c e p t ) 0 .155 −0.130
par ty idDem. −0.130 0 .158
p a r t y i d I n d . Near Dem. −0.132 0 .130
p a r t y i d I n d e p e nd e n t −0.133 0 .130
p a r t y i d I n d . Near Repub. −0.137 0 .130
pa r t y i dRepub . −0.135 0 .130
p a r t y i d S t r o n g Repub. −0.134 0 .130
sexFemale −0.025 −0.001
owngunYES −0.019 0 .001

p a r t y i d I n d . Near Dem.
( I n t e r c e p t ) −0.132
par ty idDem. 0 .130
p a r t y i d I n d . Near Dem. 0 .189
p a r t y i d I n d e p e nd e n t 0 .130
p a r t y i d I n d . Near Repub. 0 .131
pa r t y i dRepub . 0 .130
p a r t y i d S t r o n g Repub. 0 .130
sexFemale 0 .003
owngunYES 0 .000

p a r t y i d I n d e p e nd e n t
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Variance-Covariance Matrix of β̂ II

( I n t e r c e p t ) −0.133
par ty idDem. 0 .130
p a r t y i d I n d . Near Dem. 0 .130
p a r t y i d I n d e p e nd e n t 0 .168
p a r t y i d I n d . Near Repub. 0 .131
pa r t y i dRepub . 0 .131
p a r t y i d S t r o n g Repub. 0 .130
sexFemale 0 .004
owngunYES 0 .001

p a r t y i d I n d . Near Repub.
( I n t e r c e p t ) −0.137
par ty idDem. 0 .130
p a r t y i d I n d . Near Dem. 0 .131
p a r t y i d I n d e p e nd e n t 0 .131
p a r t y i d I n d . Near Repub. 0 .257
pa r t y i dRepub . 0 .132
p a r t y i d S t r o n g Repub. 0 .131
sexFemale 0 .006
owngunYES 0 .007

pa r t y i dRepub .
( I n t e r c e p t ) −0.135
par ty idDem. 0 .130
p a r t y i d I n d . Near Dem. 0 .130
p a r t y i d I n d e p e nd e n t 0 .131
p a r t y i d I n d . Near Repub. 0 .132
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Variance-Covariance Matrix of β̂ III

pa r t y i dRepub . 0 .203
p a r t y i d S t r o n g Repub. 0 .131
sexFemale 0 .004
owngunYES 0 .006

p a r t y i d S t r o n g Repub.
( I n t e r c e p t ) −0.134
par ty idDem. 0 .130
p a r t y i d I n d . Near Dem. 0 .130
p a r t y i d I n d e p e nd e n t 0 .130
p a r t y i d I n d . Near Repub. 0 .131
pa r t y i dRepub . 0 .131
p a r t y i d S t r o n g Repub. 0 .386
sexFemale 0 .003
owngunYES 0 .004

sexFemale owngunYES
( I n t e r c e p t ) −0.025 −0.019
par ty idDem. −0.001 0 .001
p a r t y i d I n d . Near Dem. 0 .003 0 .000
p a r t y i d I n d e p e nd e n t 0 .004 0 .001
p a r t y i d I n d . Near Repub. 0 .006 0 .007
pa r t y i dRepub . 0 .004 0 .006
p a r t y i d S t r o n g Repub. 0 .003 0 .004
sexFemale 0 .037 0 .003
owngunYES 0 .003 0 .038
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Variance-Covariance Matrix of β̂ IV

These will match the “SE” column in the summary of bush1

s q r t ( d i ag ( vcov ( bush1 ) ) )

( I n t e r c e p t ) par ty idDem.
0 .3934 0 .3972

p a r t y i d I n d . Near Dem. p a r t y i d I n d e p e nd e n t
0 .4348 0 .4105

p a r t y i d I n d . Near Repub. pa r t y i dRepub .
0 .5073 0 .4502

p a r t y i d S t r o n g Repub. sexFemale
0 .6213 0 .1928

owngunYES
0 .1937
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Heteroskedasticity-consistent Standard Errors?

Variants of the Huber-White “heteroskedasticity-consistent” (slang:
robust) covarance matrix are available in “car” and “sandwich”.

hccm() in car works for linear models only

vcovHC in the “sandwich” package returns a matrix of estimates.
One should certainly read ?vcovHC and the associated literature.

l i b r a r y ( sandwich )
myvcovHC <− vcovHC ( bush1 )
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The heteroskedasticity consistent standard errors of the β̂
are:

t ( s q r t ( d i ag (myvcovHC) ) )

( I n t e r c e p t ) par ty idDem.
[ 1 , ] 0 .4013 0 .3988

p a r t y i d I n d . Near Dem. p a r t y i d I n d e p e nd e n t
[ 1 , ] 0 .4394 0 .4158

p a r t y i d I n d . Near Repub. pa r t y i dRepub .
[ 1 , ] 0 .5079 0 .4535

p a r t y i d S t r o n g Repub. sexFemale owngunYES
[ 1 , ] 0 .6262 0 .1946 0 .1941
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Compare those: I

The HC and
ordinary standard
errors are almost
identical:
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Multicollinearity Diagnostics I

VIF (Variance Inflation Factors) available in “car”

rockchalk has “mcDiagnose”

l i b r a r y ( r o c k ch a l k )
mcDiagnose ( bush1 )

The f o l l o w i n g a u x i l i a r y models a r e be i ng e s t ima t ed and r e t u r n e d
i n a l i s t :

pa r ty idDem. ∼ ` p a r t y i d I n d . Near Dem.` + pa r t y i d I n d e p e nd en t +
` p a r t y i d I n d . Near Repub. ` + pa r t y i dRepub . + ` p a r t y i d S t r o n g

Repub. ` +
sexFemale + owngunYES

<environment : 0 x3eb4560>
` p a r t y i d I n d . Near Dem.` ∼ par ty idDem. + pa r t y i d I n d e p e nd e n t +

` p a r t y i d I n d . Near Repub. ` + pa r t y i dRepub . + ` p a r t y i d S t r o n g
Repub. ` +

sexFemale + owngunYES
<environment : 0 x3eb4560>
pa r t y i d I n d e p e nd e n t ∼ par ty idDem. + ` p a r t y i d I n d . Near Dem.` +

` p a r t y i d I n d . Near Repub. ` + pa r t y i dRepub . + ` p a r t y i d S t r o n g
Repub. ` +

sexFemale + owngunYES
<environment : 0 x3eb4560>
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Multicollinearity Diagnostics II

` p a r t y i d I n d . Near Repub. ` ∼ par ty idDem. + ` p a r t y i d I n d . Near Dem.
` +
pa r t y i d I n d e p e nd e n t + pa r t y i dRepub . + ` p a r t y i d S t r o n g Repub. `

+
sexFemale + owngunYES

<environment : 0 x3eb4560>
pa r t y i dRepub . ∼ par ty idDem. + ` p a r t y i d I n d . Near Dem.` +

pa r t y i d I n d e p e nd e n t +
` p a r t y i d I n d . Near Repub. ` + ` p a r t y i d S t r o n g Repub. ` +

sexFemale +
owngunYES

<environment : 0 x3eb4560>
` p a r t y i d S t r o n g Repub. ` ∼ par ty idDem. + ` p a r t y i d I n d . Near Dem.` +

pa r t y i d I n d e p e nd e n t + ` p a r t y i d I n d . Near Repub. ` +
pa r t y i dRepub . +

sexFemale + owngunYES
<environment : 0 x3eb4560>
sexFemale ∼ par ty idDem. + ` p a r t y i d I n d . Near Dem.` +

pa r t y i d I n d e p e nd e n t +
` p a r t y i d I n d . Near Repub. ` + pa r t y i dRepub . + ` p a r t y i d S t r o n g

Repub. ` +
owngunYES

<environment : 0 x3eb4560>
owngunYES ∼ par ty idDem. + ` p a r t y i d I n d . Near Dem.` +

pa r t y i d I n d e p e nd e n t +
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Multicollinearity Diagnostics III

` p a r t y i d I n d . Near Repub. ` + pa r t y i dRepub . + ` p a r t y i d S t r o n g
Repub. ` +

sexFemale
<environment : 0 x3eb4560>
Drum r o l l p l e a s e !

And your R j Squareds a r e ( a u x i l i a r y Rsq )
par ty idDem. p a r t y i d I n d . Near Dem.

0 .39471 0 .31465
pa r t y i d I n d e p e nd e n t p a r t y i d I n d . Near Repub.

0 .26782 0 .22589
pa r t y i dRepub . p a r t y i d S t r o n g Repub.

0 .40933 0 .38675
sexFemale owngunYES

0 .02243 0 .03130
The Co r r e spond ing VIF , 1/ (1−R j∧2)

par ty idDem. p a r t y i d I n d . Near Dem.
1 .652 1 .459

p a r t y i d I n d e p e nd e n t p a r t y i d I n d . Near Repub.
1 .366 1 .292

pa r t y i dRepub . p a r t y i d S t r o n g Repub.
1 .693 1 .631

sexFemale owngunYES
1 .023 1 .032

B i v a r i a t e C o r r e l a t i o n s f o r d e s i g n mat r i x
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Multicollinearity Diagnostics IV

par ty idDem.
par ty idDem. 1 .00
p a r t y i d I n d . Near Dem. −0.17
p a r t y i d I n d e p e nd e n t −0.15
p a r t y i d I n d . Near Repub. −0.13
pa r t y i dRepub . −0.23
p a r t y i d S t r o n g Repub. −0.21
sexFemale 0 . 07
owngunYES −0.06

p a r t y i d I n d . Near Dem.
par ty idDem. −0.17
p a r t y i d I n d . Near Dem. 1 .00
p a r t y i d I n d e p e nd e n t −0.11
p a r t y i d I n d . Near Repub. −0.10
pa r t y i dRepub . −0.18
p a r t y i d S t r o n g Repub. −0.16
sexFemale −0.02
owngunYES −0.04

p a r t y i d I n d e p e nd e n t
par ty idDem. −0.15
p a r t y i d I n d . Near Dem. −0.11
p a r t y i d I n d e p e nd e n t 1 .00
p a r t y i d I n d . Near Repub. −0.08
pa r t y i dRepub . −0.15
p a r t y i d S t r o n g Repub. −0.14
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Multicollinearity Diagnostics V

sexFemale −0.03
owngunYES 0 .04

p a r t y i d I n d . Near Repub.
par ty idDem. −0.13
p a r t y i d I n d . Near Dem. −0.10
p a r t y i d I n d e p e nd e n t −0.08
p a r t y i d I n d . Near Repub. 1 . 00
pa r t y i dRepub . −0.13
p a r t y i d S t r o n g Repub. −0.12
sexFemale −0.04
owngunYES 0 .00

pa r t y i dRepub .
par ty idDem. −0.23
p a r t y i d I n d . Near Dem. −0.18
p a r t y i d I n d e p e nd e n t −0.15
p a r t y i d I n d . Near Repub. −0.13
pa r t y i dRepub . 1 . 00
p a r t y i d S t r o n g Repub. −0.22
sexFemale −0.04
owngunYES 0 .04

p a r t y i d S t r o n g Repub.
par ty idDem. −0.21
p a r t y i d I n d . Near Dem. −0.16
p a r t y i d I n d e p e nd e n t −0.14
p a r t y i d I n d . Near Repub. −0.12
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Multicollinearity Diagnostics VI

pa r t y i dRepub . −0.22
p a r t y i d S t r o n g Repub. 1 . 00
sexFemale −0.03
owngunYES 0 .11

sexFemale owngunYES
par ty idDem. 0 .07 −0.06
p a r t y i d I n d . Near Dem. −0.02 −0.04
p a r t y i d I n d e p e nd e n t −0.03 0 .04
p a r t y i d I n d . Near Repub. −0.04 0 .00
pa r t y i dRepub . −0.04 0 .04
p a r t y i d S t r o n g Repub. −0.03 0 .11
sexFemale 1 .00 −0.11
owngunYES −0.11 1 .00
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plot.lm (plot.glm) produces Diagnostics

Run plot() on the model object for a quick diagnostic analysis.
Example:

myolsmod <− lm ( y ∼ x , data=d a t o l s )
p l o t (myolsmod )
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Here’s a Scatterplot with OLS Fit
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Output from plot(myolsmod)
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Regression Methods 46 / 72

Interrogate Models

influence() Function Digs up the Diagnostics I

i b 1 <− i n f l u e n c e ( bush1 )
head ( i b1 $ hat )

1 4 5 9 10
0 .003941 0 .003941 0 .004117 0 .003941 0 .005226

11
0 .005226

head ( i b1 $ c o e f f i c i e n t s )

( I n t e r c e p t ) par ty idDem. p a r t y i d I n d . Near Dem.
1 −0.0052361 0 .005286 0 .0052149
4 −0.0052361 0 .005286 0 .0052149
5 −0.0059698 0 .005023 0 .0051036
9 −0.0052361 0 .005286 0 .0052149
10 −0.0005007 0 .019143 0 .0007462
11 0 .0001594 −0.006095 −0.0002376

pa r t y i d I n d e p e nd e n t p a r t y i d I n d . Near Repub.
1 0 .0052232 0 .0053054
4 0 .0052232 0 .0053054
5 0 .0051290 0 .0052763
9 0 .0052232 0 .0053054
10 0 .0006130 −0.0007269



Regression Methods 47 / 72

Interrogate Models

influence() Function Digs up the Diagnostics II

11 −0.0001952 0 .0002315
pa r t y i dRepub . p a r t y i d S t r o n g Repub. sexFemale

1 0 .0053094 5 .274e−03 −0.0004822
4 0 .0053094 5 .274e−03 −0.0004822
5 0 .0052130 5 .165e−03 0 .0009737
9 0 .0053094 5 .274e−03 −0.0004822
10 −0.0008014 −2.216e−04 0 .0080812
11 0 .0002552 7 .056e−05 −0.0025732

owngunYES
1 0 .000635
4 0 .000635
5 0 .000730
9 0 .000635
10 −0.010400
11 0 .003312

head ( i b1 $ s igma )

1 4 5 9 10 11
0 .7871 0 .7871 0 .7871 0 .7871 0 .7853 0 .7870

head ( i b1 $ d e v . r e s )
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Interrogate Models

influence() Function Digs up the Diagnostics III

1 4 5 9 10 11
−0.2413 −0.2413 −0.2355 −0.2413 1 .8942 −0.6031

head ( i b1 $ p e a r . r e s )

1 4 5 9 10 11
−0.1718 −0.1718 −0.1677 −0.1718 2 .2390 −0.4466
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Interrogate Models

influence.measures() A bigger collection of influence
measures I

From influence.measures, DFBETAS for each parameter, DFFITS,
covariance ratios, Cook’s distances and the diagonal elements of the hat
matrix.

imb1 <− i n f l u e n c e .m e a s u r e s ( bush1 )
a t t r i b u t e s ( imb1 )

$names
[ 1 ] ”i n fmat ” ” i s . i n f ” ” c a l l ”

$ c l a s s
[ 1 ] ” i n f l ”

co lnames ( imb1$ in fmat )

[ 1 ] ”d f b . 1 ” ”d f b . p rD . ” ”dfb.pIND ” ”d f b . p r t I ”
[ 5 ] ”dfb .p INR ” ”d f b . p rR . ” ”d fb .pSR . ” ”dfb.sxFm ”
[ 9 ] ”dfb.oYES ” ” d f f i t ” ”c o v . r ” ”cook .d ”

[ 1 3 ] ”hat ”
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Interrogate Models

influence.measures() A bigger collection of influence
measures II

head ( imb1$ in fmat )

d f b . 1 d f b . p rD . dfb.pIND d f b . p r t I
1 −0.016910 0 .01691 0 .0152357 0 .0161655
4 −0.016910 0 .01691 0 .0152357 0 .0161655
5 −0.019279 0 .01607 0 .0149105 0 .0158739
9 −0.016910 0 .01691 0 .0152357 0 .0161655
10 −0.001621 0 .06137 0 .0021851 0 .0019015
11 0 .000515 −0.01950 −0.0006943 −0.0006042

dfb .p INR d f b . p rR . d fb .pSR . dfb.sxFm
1 0 .0132875 0 .0149821 0 .0107838 −0.003177
4 0 .0132875 0 .0149821 0 .0107838 −0.003177
5 0 .0132145 0 .0147101 0 .0105602 0 .006417
9 0 .0132875 0 .0149821 0 .0107838 −0.003177
10 −0.0018248 −0.0022668 −0.0004541 0 .053377
11 0 .0005798 0 .0007202 0 .0001443 −0.016960

dfb.oYES d f f i t c o v . r cook .d hat
1 0 .004164 −0.01932 1 .0106 1 .303e−05 0 .003941
4 0 .004164 −0.01932 1 .0106 1 .303e−05 0 .003941
5 0 .004787 −0.01928 1 .0108 1 .297e−05 0 .004117
9 0 .004164 −0.01932 1 .0106 1 .303e−05 0 .003941
10 −0.068361 0 .17528 0 .9704 2 .941e−03 0 .005226
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influence.measures() A bigger collection of influence
measures III

11 0 .021721 −0.05569 1 .0083 1 .170e−04 0 .005226

summary ( imb1 )

P o t e n t i a l l y i n f l u e n t i a l o b s e r v a t i o n s o f
glm ( fo rmu la = pre s04 ∼ p a r t y i d + sex + owngun , f am i l y = b i nom i a l (

l i n k = l o g i t ) , data = dat ) :

d f b . 1 d f b . p rD . dfb.pIND d f b . p r t I d fb .p INR
10 0 .00 0 .06 0 .00 0 .00 0 .00
13 −0.03 0 .00 0 .00 0 .00 0 .01
54 0 .00 0 .06 0 .00 0 .00 0 .00
81 0 .22 −0.18 −0.17 −0.18 −0.15
118 0 .00 0 .06 0 .00 0 .00 0 .00
156 0 .00 0 .06 0 .00 0 .00 0 .00
189 0 .06 0 .06 0 .00 −0.01 −0.01
445 0 .00 0 .06 0 .00 0 .00 0 .00
589 0 .06 0 .06 0 .00 −0.01 −0.01
605 0 .00 0 .06 0 .00 0 .00 0 .00
664 0 .19 −0.19 −0.17 −0.18 −0.15
704 0 .05 0 .00 0 .11 −0.01 −0.01
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influence.measures() A bigger collection of influence
measures IV

833 0 .01 0 .00 0 .00 0 .00 0 .00
904 0 .20 −0.23 −0.21 −0.22 −0.17
986 −0.04 0 .00 0 .00 0 .00 0 .01
987 −0.01 0 .00 0 .12 0 .00 0 .00
1120 −0.04 0 .00 0 .00 0 .00 0 .01
1161 0 .06 0 .06 0 .00 −0.01 −0.01
1215 0 .05 0 .00 0 .11 −0.01 −0.01
1227 0 .01 0 .00 0 .00 0 .00 0 .00
1292 −0.04 0 .00 0 .00 0 .00 −0.21
1298 −0.01 0 .00 0 .12 0 .00 0 .00
1322 −0.01 0 .00 0 .12 0 .00 0 .00
1564 −0.05 0 .00 0 .13 0 .01 0 .01
1603 0 .19 −0.19 −0.17 −0.18 −0.15
1606 0 .02 0 .00 0 .00 0 .00 −0.22
1624 0 .00 0 .06 0 .00 0 .00 0 .00
1737 0 .02 0 .00 0 .00 0 .00 −0.22
1758 −0.05 0 .00 0 .13 0 .01 0 .01
1784 0 .01 0 .00 0 .00 0 .00 0 .00
1797 0 .00 0 .06 0 .00 0 .00 0 .00
1805 0 .01 0 .00 0 .00 0 .00 0 .00
1812 0 .01 0 .00 0 .00 0 .00 0 .00
1846 0 .00 0 .06 0 .00 0 .00 0 .00
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influence.measures() A bigger collection of influence
measures V

1943 −0.04 0 .00 0 .00 0 .00 −0.21
2002 −0.05 0 .00 0 .13 0 .01 0 .01
2029 0 .02 0 .00 0 .00 0 .00 −0.22
2097 −0.04 0 .00 0 .00 0 .00 −0.21
2119 0 .00 0 .06 0 .00 0 .00 0 .00
2126 0 .03 0 .00 0 .00 0 .00 −0.01
2143 0 .06 0 .06 0 .00 −0.01 −0.01
2146 0 .00 0 .00 0 .00 0 .00 0 .00
2174 0 .00 0 .06 0 .00 0 .00 0 .00
2259 0 .05 0 .00 0 .11 −0.01 −0.01
2315 −0.01 0 .00 0 .12 0 .00 0 .00
2327 0 .00 0 .06 0 .00 0 .00 0 .00
2405 0 .02 0 .00 0 .00 0 .00 −0.22
2486 0 .00 0 .00 0 .00 0 .00 0 .00
2487 0 .00 0 .00 0 .00 0 .00 0 .00
2508 −0.04 0 .00 0 .00 0 .00 −0.21
2616 −0.01 0 .00 0 .12 0 .00 0 .00
2651 −0.05 0 .00 0 .13 0 .01 0 .01
2817 0 .05 0 .00 0 .11 −0.01 −0.01
2823 −0.05 0 .00 0 .13 0 .01 0 .01
2832 0 .00 0 .06 0 .00 0 .00 0 .00
2855 0 .00 0 .06 0 .00 0 .00 0 .00
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influence.measures() A bigger collection of influence
measures VI

3057 0 .20 −0.23 −0.21 −0.22 −0.17
3078 0 .00 0 .06 0 .00 0 .00 0 .00
3180 0 .06 0 .06 0 .00 −0.01 −0.01
3212 0 .01 0 .00 0 .00 0 .00 0 .00
3282 0 .01 0 .00 0 .12 0 .00 0 .00
3334 0 .01 0 .00 0 .00 0 .00 0 .00
3415 0 .01 0 .00 0 .00 0 .00 0 .00
3454 0 .01 0 .00 0 .00 0 .00 0 .00
3510 0 .06 0 .06 0 .00 −0.01 −0.01
3548 0 .00 0 .00 0 .00 0 .00 −0.19
3564 0 .04 0 .00 0 .00 0 .00 −0.01
3718 0 .01 0 .00 0 .12 0 .00 0 .00
3769 −0.05 0 .00 0 .13 0 .01 0 .01
3823 −0.01 0 .00 0 .12 0 .00 0 .00
3890 −0.01 0 .00 0 .12 0 .00 0 .00
4113 0 .24 −0.22 −0.21 −0.22 −0.18
4199 0 .01 0 .00 0 .12 0 .00 0 .00
4225 0 .24 −0.22 −0.21 −0.22 −0.18
4239 0 .00 0 .06 0 .00 0 .00 0 .00
4274 0 .00 0 .06 0 .00 0 .00 0 .00
4334 0 .06 0 .06 0 .00 −0.01 −0.01
4364 0 .00 0 .00 0 .00 0 .00 0 .00
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Interrogate Models

influence.measures() A bigger collection of influence
measures VII

4436 0 .22 −0.18 −0.17 −0.18 −0.15
4471 0 .01 0 .00 0 .00 0 .00 0 .00

d f b . p rR . d fb . pSR . dfb.sxFm dfb.oYES d f f i t
10 0 .00 0 .00 0 .05 −0.07 0 .18
13 0 .01 −0.22 0 .06 0 .04 −0.29 *

54 0 .00 0 .00 0 .05 −0.07 0 .18
81 −0.17 −0.12 −0.07 −0.05 0 .22
118 0 .00 0 .00 0 .05 −0.07 0 .18
156 0 .00 0 .00 0 .05 −0.07 0 .18
189 −0.01 −0.01 −0.12 −0.08 0 .21
445 0 .00 0 .00 0 .05 −0.07 0 .18
589 −0.01 −0.01 −0.12 −0.08 0 .21
605 0 .00 0 .00 0 .05 −0.07 0 .18
664 −0.17 −0.12 0 .04 −0.05 0 .21
704 −0.01 0 .00 −0.10 −0.08 0 .24
833 0 .00 −0.22 −0.04 0 .03 −0.28 *

904 −0.19 −0.14 0 .05 0 .08 0 . 2 7 *

986 −0.12 0 .00 0 .09 0 .05 −0.23
987 0 .00 0 .00 0 .07 −0.07 0 .23
1120 −0.12 0 .00 0 .09 0 .05 −0.23
1161 −0.01 −0.01 −0.12 −0.08 0 .21
1215 −0.01 0 .00 −0.10 −0.08 0 .24
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Interrogate Models

influence.measures() A bigger collection of influence
measures VIII

1227 −0.12 0 .00 −0.06 0 .04 −0.22
1292 0 .01 0 .00 0 .09 0 .05 −0.33 *

1298 0 .00 0 .00 0 .07 −0.07 0 .23
1322 0 .00 0 .00 0 .07 −0.07 0 .23
1564 0 .01 0 .01 0 .09 0 .10 0 . 2 6 *

1603 −0.17 −0.12 0 .04 −0.05 0 .21
1606 0 .00 0 .00 −0.08 0 .04 −0.32 *

1624 0 .00 0 .00 0 .05 −0.07 0 .18
1737 0 .00 0 .00 −0.08 0 .04 −0.32 *

1758 0 .01 0 .01 0 .09 0 .10 0 . 2 6 *

1784 −0.12 0 .00 −0.06 0 .04 −0.22
1797 0 .00 0 .00 0 .05 −0.07 0 .18
1805 −0.12 0 .00 −0.06 0 .04 −0.22
1812 −0.12 0 .00 −0.06 0 .04 −0.22
1846 0 .00 0 .00 0 .05 −0.07 0 .18
1943 0 .01 0 .00 0 .09 0 .05 −0.33 *

2002 0 .01 0 .01 0 .09 0 .10 0 . 2 6 *

2029 0 .00 0 .00 −0.08 0 .04 −0.32 *

2097 0 .01 0 .00 0 .09 0 .05 −0.33 *

2119 0 .00 0 .00 0 .05 −0.07 0 .18
2126 −0.01 −0.18 −0.04 −0.06 −0.23
2143 −0.01 −0.01 −0.12 −0.08 0 .21
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Interrogate Models

influence.measures() A bigger collection of influence
measures IX

2146 −0.11 0 .00 0 .06 −0.08 −0.20
2174 0 .00 0 .00 0 .05 −0.07 0 .18
2259 −0.01 0 .00 −0.10 −0.08 0 .24
2315 0 .00 0 .00 0 .07 −0.07 0 .23
2327 0 .00 0 .00 0 .05 −0.07 0 .18
2405 0 .00 0 .00 −0.08 0 .04 −0.32 *

2486 0 .00 −0.18 0 .04 −0.05 −0.23
2487 −0.11 0 .00 0 .06 −0.08 −0.20
2508 0 .01 0 .00 0 .09 0 .05 −0.33 *

2616 0 .00 0 .00 0 .07 −0.07 0 .23
2651 0 .01 0 .01 0 .09 0 .10 0 . 2 6 *

2817 −0.01 0 .00 −0.10 −0.08 0 .24
2823 0 .01 0 .01 0 .09 0 .10 0 . 2 6 *

2832 0 .00 0 .00 0 .05 −0.07 0 .18
2855 0 .00 0 .00 0 .05 −0.07 0 .18
3057 −0.19 −0.14 0 .05 0 .08 0 . 2 7 *

3078 0 .00 0 .00 0 .05 −0.07 0 .18
3180 −0.01 −0.01 −0.12 −0.08 0 .21
3212 −0.12 0 .00 −0.06 0 .04 −0.22
3282 0 .00 0 .00 −0.09 0 .09 0 . 2 6 *

3334 −0.12 0 .00 −0.06 0 .04 −0.22
3415 −0.12 0 .00 −0.06 0 .04 −0.22
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Interrogate Models

influence.measures() A bigger collection of influence
measures X

3454 −0.12 0 .00 −0.06 0 .04 −0.22
3510 −0.01 −0.01 −0.12 −0.08 0 .21
3548 0 .00 0 .00 0 .07 −0.10 −0.30 *

3564 −0.11 0 .00 −0.06 −0.09 −0.20
3718 0 .00 0 .00 −0.09 0 .09 0 . 2 6 *

3769 0 .01 0 .01 0 .09 0 .10 0 . 2 6 *

3823 0 .00 0 .00 0 .07 −0.07 0 .23
3890 0 .00 0 .00 0 .07 −0.07 0 .23
4113 −0.20 −0.14 −0.08 0 .07 0 . 2 7 *

4199 0 .00 0 .00 −0.09 0 .09 0 . 2 6 *

4225 −0.20 −0.14 −0.08 0 .07 0 . 2 7 *

4239 0 .00 0 .00 0 .05 −0.07 0 .18
4274 0 .00 0 .00 0 .05 −0.07 0 .18
4334 −0.01 −0.01 −0.12 −0.08 0 .21
4364 −0.11 0 .00 0 .06 −0.08 −0.20
4436 −0.17 −0.12 −0.07 −0.05 0 .22
4471 −0.12 0 .00 −0.06 0 .04 −0.22

c o v . r cook .d hat
10 0 . 9 7 * 0 .00 0 .01
13 0 . 9 3 * 0 .03 0 .01
54 0 . 9 7 * 0 .00 0 .01
81 0 . 9 3 * 0 .02 0 .00
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Interrogate Models

influence.measures() A bigger collection of influence
measures XI

118 0 . 9 7 * 0 .00 0 .01
156 0 . 9 7 * 0 .00 0 .01
189 0 . 9 7 * 0 .00 0 .01
445 0 . 9 7 * 0 .00 0 .01
589 0 . 9 7 * 0 .00 0 .01
605 0 . 9 7 * 0 .00 0 .01
664 0 . 9 3 * 0 .01 0 .00
704 0 . 9 6 * 0 .01 0 .01
833 0 . 9 3 * 0 .03 0 .01
904 0 . 9 5 * 0 .01 0 .01
986 0 . 9 5 * 0 .01 0 .01
987 0 . 9 6 * 0 .01 0 .01
1120 0 . 9 5 * 0 .01 0 .01
1161 0 . 9 7 * 0 .00 0 .01
1215 0 . 9 6 * 0 .01 0 .01
1227 0 . 9 5 * 0 .01 0 .01
1292 0 . 9 7 * 0 .01 0 .02
1298 0 . 9 6 * 0 .01 0 .01
1322 0 . 9 6 * 0 .01 0 .01
1564 0 .98 0 .01 0 .01
1603 0 . 9 3 * 0 .01 0 .00
1606 0 . 9 7 * 0 .01 0 .01
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Interrogate Models

influence.measures() A bigger collection of influence
measures XII

1624 0 . 9 7 * 0 .00 0 .01
1737 0 . 9 7 * 0 .01 0 .01
1758 0 .98 0 .01 0 .01
1784 0 . 9 5 * 0 .01 0 .01
1797 0 . 9 7 * 0 .00 0 .01
1805 0 . 9 5 * 0 .01 0 .01
1812 0 . 9 5 * 0 .01 0 .01
1846 0 . 9 7 * 0 .00 0 .01
1943 0 . 9 7 * 0 .01 0 .02
2002 0 .98 0 .01 0 .01
2029 0 . 9 7 * 0 .01 0 .01
2097 0 . 9 7 * 0 .01 0 .02
2119 0 . 9 7 * 0 .00 0 .01
2126 0 . 9 1 * 0 .03 0 .00
2143 0 . 9 7 * 0 .00 0 .01
2146 0 . 9 4 * 0 .01 0 .00
2174 0 . 9 7 * 0 .00 0 .01
2259 0 . 9 6 * 0 .01 0 .01
2315 0 . 9 6 * 0 .01 0 .01
2327 0 . 9 7 * 0 .00 0 .01
2405 0 . 9 7 * 0 .01 0 .01
2486 0 . 9 1 * 0 .03 0 .00
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Interrogate Models

influence.measures() A bigger collection of influence
measures XIII

2487 0 . 9 4 * 0 .01 0 .00
2508 0 . 9 7 * 0 .01 0 .02
2616 0 . 9 6 * 0 .01 0 .01
2651 0 .98 0 .01 0 .01
2817 0 . 9 6 * 0 .01 0 .01
2823 0 .98 0 .01 0 .01
2832 0 . 9 7 * 0 .00 0 .01
2855 0 . 9 7 * 0 .00 0 .01
3057 0 . 9 5 * 0 .01 0 .01
3078 0 . 9 7 * 0 .00 0 .01
3180 0 . 9 7 * 0 .00 0 .01
3212 0 . 9 5 * 0 .01 0 .01
3282 0 .98 0 .01 0 .01
3334 0 . 9 5 * 0 .01 0 .01
3415 0 . 9 5 * 0 .01 0 .01
3454 0 . 9 5 * 0 .01 0 .01
3510 0 . 9 7 * 0 .00 0 .01
3548 0 . 9 6 * 0 .01 0 .01
3564 0 . 9 4 * 0 .01 0 .00
3718 0 .98 0 .01 0 .01
3769 0 .98 0 .01 0 .01
3823 0 . 9 6 * 0 .01 0 .01
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Interrogate Models

influence.measures() A bigger collection of influence
measures XIV

3890 0 . 9 6 * 0 .01 0 .01
4113 0 . 9 5 * 0 .02 0 .01
4199 0 .98 0 .01 0 .01
4225 0 . 9 5 * 0 .02 0 .01
4239 0 . 9 7 * 0 .00 0 .01
4274 0 . 9 7 * 0 .00 0 .01
4334 0 . 9 7 * 0 .00 0 .01
4364 0 . 9 4 * 0 .01 0 .00
4436 0 . 9 3 * 0 .02 0 .00
4471 0 . 9 5 * 0 .01 0 .01

Can get component columns directly with ’dfbetas’, ’dffits’, ’covratio’
and ’cooks.distance’.
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But if You Want dfbeta, Not dfbetas, Why Not Ask? I

dfb1 <− d fb e t a ( bush1 )
co lnames ( dfb1 )

[ 1 ] ”( I n t e r c e p t ) ”
[ 2 ] ”par ty idDem. ”
[ 3 ] ”p a r t y i d I n d . Near Dem. ”
[ 4 ] ”p a r t y i d I n d e p e nd en t ”
[ 5 ] ”p a r t y i d I n d . Near Repub. ”
[ 6 ] ”pa r t y i dRepub . ”
[ 7 ] ”p a r t y i d S t r o n g Repub. ”
[ 8 ] ”sexFemale ”
[ 9 ] ”owngunYES ”

head ( dfb1 )
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Interrogate Models

But if You Want dfbeta, Not dfbetas, Why Not Ask? II

( I n t e r c e p t ) par ty idDem. p a r t y i d I n d . Near Dem.
1 −0.0052361 0 .005286 0 .0052149
4 −0.0052361 0 .005286 0 .0052149
5 −0.0059698 0 .005023 0 .0051036
9 −0.0052361 0 .005286 0 .0052149
10 −0.0005007 0 .019143 0 .0007462
11 0 .0001594 −0.006095 −0.0002376

pa r t y i d I n d e p e nd e n t p a r t y i d I n d . Near Repub.
1 0 .0052232 0 .0053054
4 0 .0052232 0 .0053054
5 0 .0051290 0 .0052763
9 0 .0052232 0 .0053054
10 0 .0006130 −0.0007269
11 −0.0001952 0 .0002315

pa r t y i dRepub . p a r t y i d S t r o n g Repub. sexFemale
1 0 .0053094 5 .274e−03 −0.0004822
4 0 .0053094 5 .274e−03 −0.0004822
5 0 .0052130 5 .165e−03 0 .0009737
9 0 .0053094 5 .274e−03 −0.0004822
10 −0.0008014 −2.216e−04 0 .0080812
11 0 .0002552 7 .056e−05 −0.0025732

owngunYES
1 0 .000635
4 0 .000635
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But if You Want dfbeta, Not dfbetas, Why Not Ask? III

5 0 .000730
9 0 .000635
10 −0.010400
11 0 .003312

I wondered what dfbetas does. You can see for yourself. Look at the
code. Run:

> s t a t s : : : d f b e t a s . lm
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predict() with newdata

If you run this:
predict(bush5)

R calculates X β̂, a “linear predictor” value for each row in your
dataframe

See “?predict.glm.”

We ask for predicted probabilities like so
predict(bush5, type="response")

and you still get one prediction for each line in the data.
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Use predict to calculate with “for example” values

Create “example” dataframes and get probabilities for hypothetical
cases.

mydf <− # Pretend there are some commands , for example

Run that new example data frame through the predict function

p r e d i c t ( bush5 , newdata=mydf , t ype=”r e s pon s e ”)
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Interrogate Models

Termplot: Plotting The Linear Predictor

t e rmp l o t ( bush1 , terms=c ( ”p a r t y i d ”) )
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Interrogate Models

Termplot: Some of the Magic is Lost on a Logistic Model

t e rmp l o t ( bush1 , terms=c ( ”p a r t y i d ”) , p a r t i a l . r e s i d = T, se = T)
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Interrogate Models

Termplot: But If You Had Some Continuous Data, Watch
Out!

t e rmp l o t (myolsmod , terms=c ( ”x ”) , p a r t i a l . r e s i d = T, se = T)
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Interrogate Models

termplot() works because . . .

termplot doesn’t make calculations, it uses the “predict” method
associated with a model object.

predict is a generic method, it doesn’t do any work either!

Actual work gets done by methods for models, predict.lm or
predict.glm.

You can leave out the “terms” option, termplot will cycle through all
of the predictors in the model.
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Interrogate Models

Why Termplot is Not the End of the Story

Termplot draws X β̂, the linear predictor.

Maybe we want predicted probabilities instead.

Maybe we want predictions for certain case types: termplot

allows the predict implementation to decide which values of the
inputs will be used.

A regression expert will quickly conclude that a really great graph
may require direct use of the predict method for the model object.
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