After Fitting Regressions

Paul E. Johnson¹²

¹Department of Political Science

²Center for Research Methods and Data Analysis, University of Kansas

After Fitting Regressions

Paul E. Johnson¹²

¹Department of Political Science

²Center for Research Methods and Data Analysis, University of Kansas

Outline

2 Interrogate Models

Methods: Things To Do "To" a Regression Object

bush1 <- glm(pres04 ~ partyid + sex + owngun, data =dat, family=binomial(link=logit))

```
pres04 Kerry, Bush
partyid Factor with 7 levels, SD \rightarrow SR
sex Male, Female
owngun Yes, No
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Just for the Record, The Data Preparation Steps Were ...

preslev <- levels(dat\$pres04)dat\$pres04[dat\$pres04 %in% preslev[3:10]]<- NA dat\$pres04 <- factor(dat\$pres04)</pre> levels(dat\$pres04) <- c("Kerry", "Bush")</pre> plev <- levels(dat\$partyid)</pre> dat\$partyid [dat\$partyid %in% plev [8]] <- NA dat\$partyid <- factor(dat\$partyid)</pre> levels(dat\$partyid) <- c("Strong Dem.", "Dem.",</pre> Ind. Near Dem.", "Independent", "Ind. Near Repub.", "Repub.", "Strong Repub.") dat\$owngun[dat\$owngun == "REFUSED"] <- NA</pre> levels(dat\$sex) <- c("Male", "Female")</pre> dat\$owngun <- relevel(dat\$owngun, ref="NO")</pre>

First, Find Out What You Got

attributes(bush1)

```
$names
 [1] "coefficients"
                           "residuals"
 [3] "fitted.values"
                           "effects"
                           "rank"
 [5]
    "R"
    "qr"
 [7]
                           "family"
 [9] "linear.predictors" "deviance"
[11] "aic"
                           "null.deviance"
[13] "iter"
                           "weights"
                           "df.residual"
[15] "prior.weights"
[17] "df.null"
                           " v "
[19] "converged"
                           "boundary"
[21] "model"
                           "na.action"
[23] "call"
                           "formula"
    "terms"
                           "data"
[25]
```

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

First, Find Out What You Got ...

Understanding attributes

- If you see \$, it means you have an S3 object
- That means you can just "take" values out of the object with the dollar sign operator using commands like

bush1\$coefficients

(Intercept)	partyidDem.
-3.571	1.910
partyidInd. Near Dem.	partyidIndependent
1.456	3.464
partyidInd. Near Repub.	partyidRepub.
5.468	6.031
partyidStrong Repub.	sexFemale
7.191	0.049
owngunYES	
0.642	

That "crude" approach is discouraged. We should instead use "extractor methods"

Just Making Sure About the Object's Class

Ask the object what class it is from

class(bush1)

[1] "glm" "lm"

▲□▶▲圖▶▲≣▶▲≣▶ ■ ● ● ●

methods(class = "glm")

[1] add1.glm*
[3] confint.glm*
[5] deviance.glm*
[7] effects.glm*
[9] family.glm*
[11] influence.glm*
[13] model.frame.glm
[15] predict.glm
[17] residuals.glm
[19] rstudent.glm
[21] vcov.glm*

anova.glm cooks.distance.glm * drop1.glm * extractAIC.glm * formula.glm * logLik.glm * nobs.glm * print.glm rstandard.glm summary.glm weights.glm *

Non-visible functions are asterisked

11 / 104

Check methods for "Im" class

methods(class = "lm")

add1.lm* 1 anova.lm 3] confint.lm* 51 deviance.lm * 71 [9] dfbetas.lm* [11]dummy.coef.lm * extractAIC.lm* [13] formula.lm* [15][17]influence.lm * [19] labels.lm * [21] model.frame.lm [23] nobs.lm* [25] predict.lm [27] proj.lm*

alias.lm* case.names.lm* cooks.distance.lm * dfbeta.lm* drop1.lm* effects.lm* family.lm * hatvalues.lm kappa.lm logLik.lm* model.matrix.lm plot.lm print.lm gr.lm*

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Check methods for "Im" class ...

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Do You Wonder How "They" Do "That"?

At some point, you realize that the help page is not detailed enough. You may need to see the Actual Code

 Darth said "Use the Source, Luke!" If you want to know "what a function does", the best option is to download the ACTUAL SOURCE CODE and read it!

Can See Some Code Within an R Session

- In the "old days", you could easily see a function's "code" by typing its name (i.e., omit the parentheses).
 Ex: q used to show all of the steps in shutting down.
- Today, in R 2.11, when I type q I see:

Some Functions Still Show Their Code

Some very informative examples. Try:

- > lm #(or stats::lm)
- > glm #(or stats::glm)
- > termplot

Generic method output not so useful. Try:

- > predict
- > plot

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Looking Into the Class Hierarchy

- In many cases, you can only find what you need if you give the "function" name and the name of the "class" separated by a period.
- Try:
 - > predict.lm
 - > predict.glm
- Many methods are inside "namespaces" and you can't see their code without some extra effort.
 - namespace::method will often be useful
 - Three colons needed for "hidden methods" stats:::weights.glm
- Many times I have doublechecked this detailed posting by Prof. Brian Ripley on this question:

http:

//tolstoy.newcastle.edu.au/R/help/05/09/12506.html

The First Method Used is usually summary()

```
summary(bush1)
```

```
Call:
glm(formula = pres04 \sim partyid + sex + owngun)
   family = binomial(link = logit),
   data = dat)
Deviance Residuals:
  Min 10 Median
                                Max
                          3Q
-2.941 -0.488 0.163 0.390 2.683
Coefficients:
                      Estimate Std. Error z value
(Intercept)
                       -3.5712
                                  0.3934 -9.08
                        1.9103 0.3972 4.81
partyidDem.
partyidInd. Near Dem.
                    1.4559 0.4348 3.35
```

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>

glm2

The First Method Used is usually summary() ...

partyidIndependent	3.4642	0.4105	8.44
partyidInd. Near Repub.	5.4677	0.5073	10.78
partyidRepub.	6.0307	0.4502	13.39
partyidStrong Repub.	7.1908	0.6213	11.57
sexFemale	0.0488	0.1928	0.25
owngunYES	0.6424	0.1937	3.32
-	Pr(> z)		
(Intercept)	< 2e -16	* * *	
partyidDem.	1.5e-06	* * *	
partyidInd. Near Dem.	0.00081	* * *	
partyidIndependent	< 2e -16	* * *	
partyidInd. Near Repub.	< 2e -16	* * *	
partyidRepub.	< 2e -16	* * *	
partyidStrong Repub.	< 2e -16	* * *	
sexFemale	0.80006		
owngunYES	0.00091	* * *	
-			

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ④ ● ●

```
glm2

Interrogate Models
```

The First Method Used is usually summary() ...

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.
   0111
(Dispersion parameter for binomial family taken to
   be 1)
   Null deviance: 1721.9 on 1242 degrees of
       freedom
Residual deviance: 764.0 on 1234 degrees of
  freedom
 (3267 observations deleted due to missingness)
AIC: 782
Number of Fisher Scoring iterations: 6
```

Summary Object

Create a Summary Object

```
sb1 <- summary(bush1)
attributes(sb1)</pre>
```

```
$names
 [1] "call"
                       "terms"
                                          "family"
[4] "deviance"
                       "aic"
                                          "contrasts"
 [7] "df.residual"
                       "null.deviance"
                                          "df.null"
                                          ,,
[10] "iter"
                       "na.action"
   deviance.resid"
                                          "dispersion"
[13] "coefficients"
                       "aliased"
                       "cov.unscaled"
[16] "df"
                                         "cov.scaled"
$class
[1] "summary.glm"
```

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Summary Object ...

My deviance is

sb1\$deviance

[1] 764

The coef Enigma

- coef() is the same as coefficients()
- Note the Bizarre Truth:
 - that the "coef" function returns something different when it is applied to a model object

coef(bush1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The coef Enigma ...

5.468		6
.031		
Repub.		
7.191		0
.049		
gunYES		
0.642		
	5.468 .031 Repub. 7.191 .049 gunYES 0.642	5.468 .031 Repub. 7.191 .049 gunYES 0.642

Than is returned from a summary object.

coef(sb1)

		-
	Estimate Std.	Error
	z value	
		0 00
(Intercept)	-3.571	0.39
-9.08		
partyidDem.	1.910	0.40
4.81		
partyidInd. Near Dem.	1.456	0.43
3.35		
partvidIndependent	3.464	0.41
8.44		
partvidInd Near Repub	5 468	0 51
10.78	0.100	0.01
10.70	6 9 9 4	
partyıd Repub.	6.031	0.45
13.39		
partyidStrong Repub.	7.191	0.62
11.57		

The coef Enigma ...

sexFemale	0.049	0.19
0.25		
owngunYES	0.642	0.19
3.32		
	Pr(> z)	
(Intercept)	1.1e - 19	
partyidDem.	1.5e-06	
partyidInd. Near Dem.	8.1e-04	
partyidIndependent	3.2e-17	
partyidInd. Near Repub.	4.3e-27	
partyidRepub.	6.5e-41	
partyidStrong Repub.	5.6e-31	
sexFemale	8.0e-01	
owngunYES	9.1e-04	

- You can apply anova() to just one model
- That gives a "stepwise" series of comparisons (not very useful)

```
anova(bush1, test="Chisq")
```

```
Analysis of Deviance Table
Model: binomial, link: logit
Response: pres04
Terms added sequentially (first to last)
       Df Deviance Resid. Df Resid. Dev Pr(>
           Chi)
NULL
                        1242
                                  1722
partyid 6 947
                        1236
                                   775 < 2
   e-16 ***
```

But anova Very Useful to Compare 2 Models

Here's the basic procedure:

- 1 Fit 1 big model, "mod1"
- 2 Exclude some variables to create a smaller model, "mod2"
- 3 Run anova() to compare: anova(mod1, mod2, test="Chisq")
- If resulting test statistic is far from 0, it means the big model really is better and you should keep those variables in there.

Quick Reminder:

- In an OLS model, this is would be an F test for the hypothesis that the coefficients for omitted parameters are all equal to 0.
- In a model estimated by maximum likelihood, it is a likelihood ratio test with df= number of omitted parameters.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

But there's an anova "Gotcha"

```
> anova(bush0, bush1, test="Chisq")
Error in anova.glmlist(c(list(object), dotargs),
    dispersion = dispersion, :
    models were not all fitted to the same size of
        dataset
```

What the Heck?

anova() Gotcha, cont.

- Explanation: Listwise Deletion of Missing Values causes this. Missings cause sample sizes to differ when variables change.
- One Solution: Fit both models on same data.
 - Fit the "big model" (one with most variables) mod1 <- glm(y x1+ x2 + x3 + ..., data=dat, family=binomial)</p>
 - 2 Fit the "smaller Model" with the data extracted from the fit of the previous model (mod1\$model) as the data frame mod2 <- glm(y x3 + ..., data=mod1\$model, family=binomial)
 3 After that, anova() will work
- Hasten to add: more elaborate treatment of missingness is often called for.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Example anova()

Here's the big model

Here's the small model

```
bush4 <- glm(pres04 ~ partyid + owngun +
race + polviews , data=bush3$model, family
=binomial(link=logit))
```

anova(): The Big Reveal!

anova:

```
anova(bush3, bush4, test="Chisq")
```

Analysis of Deviance Table				
Model 1: pres04 \sim partyid + sex + owngun + race + wrkslf + realinc + polviews				
Model 2: pres04 \sim partyid + owngun + race + polyiews				
Resid. Df Resid. Dev Df Deviance Pr(>Chi)				
1 1044 589				
2 1047 593 -3 -4.1 0.25				

- Conclusion: the big model is not statistically significantly better than the small model
- Same as: Can't reject the null hypothesis that $\beta_j=0$ for all omitted parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Interesting Use of anova

 Consider the fit for "polviews" in bush3 (recall "extremely liberal" is the reference category, the intercept)

label:	lib.	slt. lib.	mod.	sl. con.	con.	extr. con.
$mle(\hat{\beta})$:	0.41	1.3	1.8*	2.5*	2.6*	3.1*
se:	0.88	0.83	0.79	0.83	0.84	1.2
* ~ < 0.00						

* *p* ≤ 0.05

I wonder: are all "conservatives" the same? Do we really need separate parameter estimates for those respondents?

Use anova() To Test the Recoding

1 Make a New Variable for the New Coding

dat\$newpolv <- dat\$polviews
(levnpv <- levels(dat\$newpolv))</pre>

[1]	"EXTREMELY LIBERAL"	"LIBERAL"
[3]	"SLIGHTLY LIBERAL"	"MODERATE"
[5]	"SLGHTLY CONSERVATIVE"	"CONSERVATIVE"
[7]	"EXTRMLY CONSERVATIVE"	

Effect is to set slight and extreme conservatives into the conservative category

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Better Check newpolv

```
dat$newpolv <- factor(dat$newpolv)
table(dat$newpolv)</pre>
```

LIBERAL	
524	
MODERATE	
1683	
	LIBERAL 524 MODERATE 1683

Neat anova thing, cont.

1 Fit a new regression model, replacing polviews with newpolv

```
bush5 <- glm(pres04 ~ partyid + sex + owngun +
race + wrkslf + realinc + newpolv , data=
dat, family=binomial(link=logit))
```

2 Use anova() to test:

anova(bush3, bush5, test="Chisq")

```
Analysis of Deviance Table

Model 1: pres04 ~ partyid + sex + owngun + race

+ wrkslf + realinc + polviews

Model 2: pres04 ~ partyid + sex + owngun + race

+ wrkslf + realinc + newpolv

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1044 589

2 1046 589 -2 -0.431 0.81
```

- Annovanthy all concernatives yeally are alife y)

drop1 Relieves Tedium

drop1() repeats the anova() procedure, removing each variable one-at-a-time.

```
drop1(bush3, test="Chisq")
```

```
Single term deletions
Model:
pres04 \sim partyid + sex + owngun + race + wrkslf
   + realinc + polviews
        Df Deviance AIC LRT Pr(>Chi)
              589 627
<none>
partyid
            951 977 362 < 2e-16 ***
        6
        1
            589 625 0 0.991
sex
owngun 1
           592 628 4 0.050.
        2 618 652 30 3.6e-07 ***
race
wrkslf 1 592 628 4 0.054.
realinc 1 589 625 0 0.761
        6
                      40 5.7e-07 ***
polviews
              628 654
```
glm2 L Interrogate Models

Termplot: Plotting The Linear Predictor

termplot(bush1,terms=c("partyid"))

glm2 L Interrogate Models

Termplot: Some of the Magic is Lost on a Logistic Model

termplot(bush1,terms=c("partyid"), partial.resid = T, se = T)

glm2

Termplot: But If You Had Some Continuous Data, Watch Out!

termplot(myolsmod, terms=c("x"), partial.resid = T , se = T)

termplot() works because ...

- termplot doesn't make calculations, it uses the "predict" method associated with a model object.
- predict is a generic method, it doesn't do any work either!
- Actual work gets done by methods for models, predict.lm or predict.glm.
- You can leave out the "terms" option, termplot will cycle through all of the predictors in the model.

Why Termplot is Not the End of the Story

- Termplot draws $X\hat{\beta}$, the linear predictor.
- Maybe we want predicted probabilities instead.
- Maybe we want predictions for certain case types: termplot allows the predict implementation to decide which values of the inputs will be used.
- A regression expert will quickly conclude that a really great graph may require direct use of the predict method for the model object.

predict() with newdata

- If you run this: predict(bush5)
 R calculates Xβ̂, a "linear predictor" value for each row in your dataframe
- See "?predict.glm."
- We ask for predicted probabilities like so predict(bush5, type="response") and you still get one prediction for each line in the data.

Use predict to calculate with "for example" values

 Create "example" dataframes and get probabilities for hypothetical cases.

> mydf <- # Pretend there are some commands #to create an example data frame

Run that new example data frame through the predict function > predict(bush5, newdata=mydf, type="response"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Create the New Data Frame

nd <- bush5\$model colnames(nd)

[1]	"pres04"	"partyid"	"sex"	"owngun"
[5]	"race"	"wrkslf"	"realinc"	"newpolv"

mynewdf <- expand.grid(levels(nd\$partyid), levels(</pre> nd\$newpolv)) colnames(mynewdf) <- c("partyid", "newpolv") mynewdf\$sex <- levels(nd\$sex)[1]</pre> mynewdf wngun <- levels (nd wngun) [1] mynewdf\$race <- levels(nd\$race)[1]</pre> mynewdf\$ wrkslf <- levels (nd\$ wrkslf) [1]</pre> mynewdf\$realinc <- mean(nd\$realinc)</pre> mynewdf\$newpred <- predict(bush5, newdata=mynewdf, type="response") levels(mynewdf\$newpolv) <- c("Ex.L","L","SL","M","</pre> C")

Make Table of Predicted Probabilities

library(gdata)
newtab <- aggregate.table(mynewdf\$newpred, by1=
 mynewdf\$partyid, by2=mynewdf\$newpolv, FUN=1)</pre>

	Ex.L	L	SL	Μ	С
Strong Dem.	0.0073	0.0110	0.0260	0.0435	0.0906
Dem.	0.0270	0.0402	0.0912	0.1460	0.2724
Ind. Near Dem.	0.0183	0.0273	0.0631	0.1029	0.2008
Independent	0.0936	0.1346	0.2716	0.3884	0.5818
Ind. Near Repub.	0.3194	0.4141	0.6289	0.7427	0.8634
Repub.	0.5268	0.6264	0.8008	0.8726	0.9375
Strong Repub.	0.7791	0.8416	0.9272	0.9559	0.9794

Or Perhaps You Would Like A Figure?

Political Party Identification

How Could You Make That Figure?

```
prebynewpol <- unstack(mynewdf, newpred~newpolv)
matplot(prebynewpol,type="l",xaxt="n",xlab="
Political Party Identification", ylab="Pred.
Prob(Bush)")
axis(1, at=1:7, labels=c("SD","D","ID","I","IR","R
","SR"))
legend("topleft", legend=c("Extreme Liberal","
Liberal","Slight Liberal","Moderate","
Conservative"),col=1:5,lty=1:5)</pre>
```

vcov(bush1)

	(Intercept)	partyidDem.
(Intercept)	0.15475	-0.1302192
partyidDem.	-0.13022	0.1577463
partyidInd. Near Dem.	-0.13230	0.1300411
partyidIndependent	-0.13296	0.1300573
partyidInd. Near Repub.	-0.13678	0.1302007
partyidRepub.	-0.13514	0.1301957
partyidStrong Repub.	-0.13388	0.1301365
sexFemale	-0.02524	-0.0005279
owngunYES	-0.01892	0.0010382
	partyidInd.	Near Dem.
(Intercept)		-0.1323024
partyidDem.		0.1300411
partyidInd. Near Dem.		0.1890942

partyidIndependent	0.1304249
partyidInd. Near Repub.	0.1305706
partyidRepub.	0.1304179
partyidStrong Repub.	0.1303894
sexFemale	0.0033138
owngunYES	0.0002006
	partyidIndependent
(Intercept)	-0.132959
partyidDem.	0.130057
partyidInd. Near Dem.	0.130425
partyidIndependent	0.168499
partyidInd. Near Repub.	0.130774
partyidRepub.	0.130579
partyidStrong Repub.	0.130499
sexFemale	0.003767
owngunYES	0.001017
	partyidInd. Near Repub.
	<ロ> <週> <週> <見> <見> <見> <見> =

(Intercept)	-0.136777
partyidDem.	0.130201
partyidInd. Near Dem.	0.130571
partyidIndependent	0.130774
partyidInd. Near Repub.	0.257308
partyidRepub.	0.131613
partyidStrong Repub.	0.131170
sexFemale	0.005551
owngunYES	0.006971
	partyidRepub.
(Intercept)	-0.135138
partyidDem.	0.130196
partyidInd. Near Dem.	0.130418
partyidIndependent	0.130579
partyidInd. Near Repub.	0.131613
partyidRepub.	0.202702
partyidStrong Repub.	0.130920
	(日) (四) (日) (日) (日)

200

æ

sexFemale	0.003812
owngunYES	0.005802
	partyidStrong Repub.
(Intercept)	-0.133884
partyidDem.	0.130136
partyidInd. Near Dem.	0.130389
partyidIndependent	0.130499
partyidInd. Near Repub.	0.131170
partyidRepub.	0.130920
partyidStrong Repub.	0.386045
sexFemale	0.003435
owngunYES	0.003547
	sexFemale owngunYES
(Intercept)	-0.0252418 -0.0189238
partyidDem.	-0.0005279 0.0010382
partyidInd. Near Dem.	0.0033138 0.0002006
partyidIndependent	0.0037667 0.0010175
	▲日 > ▲檀 > ▲ 南 > ▲ 南 >

200

2

partyidInd. Near Repub.	0.0055510	0.0069708
partyidRepub.	0.0038122	0.0058016
partyidStrong Repub.	0.0034348	0.0035474
sexFemale	0.0371676	0.0032171
owngunYES	0.0032171	0.0375305

These will match the "SE" column in the summary of bush1

sqrt(diag(vcov(bush1)))

(Intercept)	partyidDem.
0.3934	0.3972
partyidInd. Near Dem.	partyidIndependent
0.4348	0.4105
partyidInd. Near Repub.	partyidRepub.
0.5073	0.4502
partyidStrong Repub.	sexFemale
partyidind. Near Dem. 0.4348 partyidind. Near Repub. 0.5073 partyidStrong Repub.	partyldindependent 0.4105 partyidRepub. 0.4502 sexFemale

glm2 Interrogate Models

0.1928	0.6213	28	
	owngunYES		
	0.1937		

Heteroskedasticity-consistent Standard Errors?

Variants of the Huber-White "heteroskedasticity-consistent" (slang: robust) covarance matrix are available in "car" and "sandwich".

- hccm() in car works for linear models only
- vcovHC in the "sandwich" package returns a matrix of estimates.
 One should certainly read ?vcovHC and the associated literature.

```
library(sandwich)
myvcovHC <- vcovHC(bush1)</pre>
```

The heteroskedasticity consistent standard errors of the $\hat{\beta}$ are:

```
t(sqrt(diag(myvcovHC)))
```

	(Intercept)	partyidDem.	
[1,]	0.4013	0.3988	
	partyidInd.	Near Dem. partyidIn	dependent
[1,]		0.4394	0.4158
	partyidInd.	Near Repub. partyid	Repub.
[1,]		0.5079	0.4535
	partyidStron	g Repub. sexFemale	owngunYES
[1,]		0.6262 0.1946	0.1941

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Compare those:

plot(sqrt(diag(myvcovHC)),sqrt(diag(vcov(bush1))))

The HC and ordinary standard errors are almost identical:

Tons of Diagnostic Information

Run plot() on the model object for a quick view. Example: plot(myolsmod)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Tough to read the glm plot, IMHO...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

influence() Function Digs up the Diagnostics

ib1 <- influence(bush1)
colnames(ib1)</pre>

NULL

str(ib1)

List of 5 \$ hat : Named num [1:1243] 0.00394 0.00394 0.00412 0.00394 0.00523- attr, "names")= chr [1:1243] "1" "4" "5" "9" ...coefficients : num[1 : 1243, 1 : 9] - 0.005236 - 0.005236 - 0.00597 -0.005236 - 0.000501.... - attr(*, "dimnames") = Listof2.... : chr [1:1243] "1" "4" "5" "9": chr[1 : 9]" (Intercept)"" partyidDem."" partyidInd.NearDem."" partyidIndependen sigma : Named num [1:1243] 0.787 0.787 0.787 0.787 0.785attr(*, "names")= chr [1:1243] "1" "4" "5" "9" glm2 Interrogate Models

influence() Function Digs up the Diagnostics ...

 $\begin{array}{l} ...dev.res: Namednum [1:1243] - 0.241 - 0.241 - 0.236 - \\ 0.2411.894..... - attr(*," names") = chr [1:1243]"1""4""5""9"... \\ pear.res: Named num [1:1243] -0.172 -0.172 -0.168 -0.172 2.239 \\- attr(*, "names") = chr [1:1243]"1""4""5""9" ... \end{array}$

summary(ib1)

	Length	Class	Mode
hat	1243	-none-	numeric
coefficients	11187	-none-	numeric
sigma	1243	-none-	numeric
dev.res	1243	-none-	numeric
pear.res	1243	-none-	numeric

influence.measures() A bigger collection of influence measures

From influence.measures, DFBETAS for each parameter, DFFITS, covariance ratios, Cook's distances and the diagonal elements of the hat matrix.

```
imb1 <- influence.measures(bush1)
attributes(imb1)</pre>
```

```
$names
[1] "infmat" "is.inf" "call"
$class
[1] "infl"
```

colnames(imb1\$infmat)

influence.measures() A bigger collection of influence measures ...

head (imb1\$infmat)

	dfb.1_	dfb.prD.	dfb.pIND	dfb.prtl	
1	-0.016910	0.01691	0.0152357	0.0161655	
4	-0.016910	0.01691	0.0152357	0.0161655	
5	-0.019279	0.01607	0.0149105	0.0158739	
9	-0.016910	0.01691	0.0152357	0.0161655	
10	-0.001621	0.06137	0.0021851	0.0019015	
11	0.000515	-0.01950	-0.0006943	-0.0006042	

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < ()

influence.measures() A bigger collection of influence measures ...

	dfb.pINR	dfb.pr	R. d	fb.pSR.	dfb.sxFm
1	0.0132875	0.01498	21 0.0	107838	-0.003177
4	0.0132875	0.01498	21 0.0	107838	-0.003177
5	0.0132145	0.01471	01 0.0	105602	0.006417
9	0.0132875	0.01498	21 0.0	107838	-0.003177
10	-0.0018248	-0.00226	668 -0.0	0004541	0.053377
11	0.0005798	0.00072	.02 0.0	001443	-0.016960
	dfb.oYES	dffit	cov.r	cool	<mark>k.d</mark> hat
1	dfb.oYES 0.004164	dffit -0.01932	cov.r 1.0106	coo 1.303e-	<.d hat 05 0.003941
1 4	dfb.oYES 0.004164 0.004164	dffit -0.01932 -0.01932	cov.r 1.0106 1.0106	cook 1.303e- 1.303e-	<pre><.d hat 05 0.003941 05 0.003941</pre>
1 4 5	dfb.oYES 0.004164 0.004164 0.004787	dffit -0.01932 -0.01932 -0.01928	cov.r 1.0106 1.0106 1.0108	cook 1.303e- 1.303e- 1.297e-	<pre><.d hat 05 0.003941 05 0.003941 05 0.003941</pre>
1 4 5 9	dfb.oYES 0.004164 0.004164 0.004787 0.004164	dffit -0.01932 -0.01932 -0.01928 -0.01932	cov.r 1.0106 1.0106 1.0108 1.0106	cook 1.303e- 1.303e- 1.297e- 1.303e-	(.dhat.050.003941.050.003941.050.004117.050.003941
1 4 5 9 10	dfb.oYES 0.004164 0.004164 0.004787 0.004164 -0.068361	dffit -0.01932 -0.01932 -0.01932 -0.01932 0.17528	cov.r 1.0106 1.0106 1.0108 1.0106 0.9704	cook 1.303e- 1.303e- 1.297e- 1.303e- 2.941e-	(.dhat.050.003941.050.003941.050.004117.050.003941.030.005226

influence.measures() A bigger collection of influence measures ...

Can get component columns directly with 'dfbetas', 'dffits', 'covratio' and 'cooks.distance'.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

```
glm2

Interrogate Models
```

But if You Want dfbeta, Not dfbetas, Why Not Ask?

```
dfb1 <- dfbeta(bush1)
colnames(dfb1)</pre>
```

```
[1]
   "(Intercept)"
[2]
  "partyidDem."
[3]
  "partyidInd. Near Dem."
  "partyidIndependent"
[4]
[5]
   "partyidInd. Near Repub."
[6]
  "partyidRepub."
[7]
  "partyidStrong Repub."
[8]
  "sexFemale"
[9]
   "owngunYES"
```

head(dfb1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

But if You Want dfbeta, Not dfbetas, Why Not Ask? ...

_				
	(Intercept) p	artyidDem.	partyidInd.	Near Dem.
1	-0.0052361	0.005286		0.0052149
4	-0.0052361	0.005286		0.0052149
5	-0.0059698	0.005023		0.0051036
9	-0.0052361	0.005286		0.0052149
10	-0.0005007	0.019143		0.0007462
11	0.0001594	-0.006095		-0.0002376
	partyidIndepe	ndent part	yidInd. Near	Repub.
1	0.00	52232	0.0	053054
4	0.00	52232	0.0	053054
5	0.00	51290	0.0	052763
9	0.00	52232	0.0	053054
10	0.00	06130	-0.	0007269
11	-0.00	01952	0.0	002315
	partyidRepub.	partyidStr	ong Repub.	sexFemale
1	0.0053094		5.274e-03	-0.0004822

|▲□▶▲圖▶▲≣▶▲≣▶ = 善 のへの

glm2

But if You Want dfbeta, Not dfbetas, Why Not Ask? ...

4	0.0053094	5.274e-03 -0.0004822
5	0.0052130	5.165e-03 0.0009737
9	0.0053094	5.274e-03 -0.0004822
10	-0.0008014	-2.216e-04 0.0080812
11	0.0002552	7.056e-05 -0.0025732
	owngunYES	
1	0.000635	
4	0.000635	
5	0.000730	
9	0.000635	
10	-0.010400	
11	0.003312	

I wondered what dfbetas does. You can see for yourself. Look at the code. Run:

> stats ::: dfbetas.lm

You Will Want to Use LATEX After You See This

glm2

Output

- How do you get regression tables out of your project?
- Do you go through error-prone copying, pasting, typing, tabling, etc?
- What if your software could produce a finished publishable table?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Years ago, I wrote a function "outreg"
- This command:

```
outreg(bush1, tight=F, modelLabels=c("Bush
Logistic"))
```

Produces the output on the next slide

	Bush Logistic	
	Estimate	(S.E.)
(Intercept)	-3.571*	(0.393)
partyidDem.	1.91*	(0.397)
partyidInd. Near Dem.	1.456*	(0.435)
partyidIndependent	3.464*	(0.41)
partyidInd. Near Repub.	5.468*	(0.507)
partyidRepub.	6.031*	(0.45)
partyidStrong Repub.	7.191*	(0.621)
sexFemale	0.049	(0.193)
owngunYES	0.642*	(0.194)
N	1243	
Deviance	763.996	
$-2LLR(Model\chi^2)$	957.944*	
* <i>p</i> ≤ 0.05		

▲ロト ▲園ト ▲差ト ▲差ト 三差 - のへで

Polish that up

- you can beautify the variable labels, either by specifying them in the outreg command or editing the table output.
- outreg produces Latex that looks like this in the R session output.

```
\begin { center }
 \begin{tabular}{*{3}{1}}
\ hline
      &\multicolumn{2}{c}Bush Logistic} \\
                    & Estimate & (S.E.) \setminus
\ hline
\ hline
  (Intercept) & -3.571* & (0.393) \setminus partyidDem. & 1.91* & (0.397) \setminus partyidDem.
  partyidInd. Near Dem. & 1.456* & (0
      .435) \\
  partyidIndependent & 3.464* & (0.41)
  partyidInd. Near Repub. & 5.468* &
     (0 507) \setminus
```


Sorry, I had to split this manually across 3 slides :(

▲□▶ ▲圖▶ ▲≣▶ ★≣▶ = 三 - の�?

	bush1 Estimate (S.E.)	bush4 Estimate (S.E.)	bush5 Estimate (S.E.)
(Intercept)	-3.571*	-4.196*	-4.861*
	(0.393)	(0.854)	(0.96)
partyidDem.	1.91*	1.356*	1.324*
	(0.397)	(0.424)	(0.423)
partyidInd. Near Dem.	1.456*	0.937*	0.925*
	(0.435)	(0.461)	(0.464)
partyidIndependent	3.464*	2.613*	2.637*
	(0.41)	(0.442)	(0.444)
partyidInd. Near Repub.	5.468*	4.114*	4.151*
	(0.507)	(0.538)	(0.54)
partyidRepub.	6.031*	4.985*	5.015*
	(0.45)	(0.479)	(0.483)
partyidStrong Repub.	7.191*	5.999*	6.168*
	(0.621)	(0.738)	(0.742)
sexFemale	0.049	-	-0.006
	(0.193)		(0.224)
owngunYES	0.642*	0.417	0.449*
	(0.194)	(0.221)	(0.224)
raceBLACK		-2.067*	-2.11*
		(0.45)	(0.45)
raceOTHER		-0.483	-0.497
		(0.391)	(0.394)
polviewsLIBERAL		0.303	
		(0.866)	
polviewsSLIGHTLY LIBERAL	•	1.173	, etc. Jec
	•		지문에 지문에 문

R Packages for Producing Regression Output

- memisc: works well, further from final form than outreg
- xtable: incomplete output, but latex or HTML works
- apsrtable: very similar to outreg
- Hmisc "latex" function

glm2

Output

```
library(xtable)
tabout1 <- xtable(bush1)
print(tabout1, type="latex")</pre>
```

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-3.5712	0.3934	-9.08	0.0000
partyidDem.	1.9103	0.3972	4.81	0.0000
partyidInd. Near Dem.	1.4559	0.4348	3.35	0.0008
partyidIndependent	3.4642	0.4105	8.44	0.0000
partyidInd. Near Repub.	5.4677	0.5073	10.78	0.0000
partyidRepub.	6.0307	0.4502	13.39	0.0000
partyidStrong Repub.	7.1908	0.6213	11.57	0.0000
sexFemale	0.0488	0.1928	0.25	0.8001
owngunYES	0.6424	0.1937	3.32	0.0009

If you Can't Shake the MS Word "Habit"

glm2

Output

The best you can do is HTML output, which you can copy paste-special into a document.

print(xtable(summary(bush1)), type="HTML")

```
<!-- html table generated in R 2.15.0 by xtable 1</pre>
   .7-0 package -->
<!-- Thu Jun 7 00:59:30 2012 -->
<TABLE border=1>
<TR> <TH> </TH> </TH> Estimate </TH> </TH> Std.
    Error \langle TH \rangle \langle TH \rangle z value \langle TH \rangle \langle TH \rangle Pr(\&gt |z|)
    </TH> </TR>
  <TR> <TD align="right"> (Intercept) </TD> <TD
      align="right"> -3.5712 </TD> <TD align="right"
      "> 0.3934 </TD> <TD align="right"> -9.08 </TD
      > <TD align="right"> 0.0000 </TD> </TR>
  <TR> <TD align="right"> partyidDem. </TD> <TD
      align="right"> 1.9103 </TD> <TD align="right"
      > 0.3972 </TD> <TD align="right"> 4.81 </TD>
```

library (memisc)
mtable(bush1, bush4, bush5)

```
Calls:
bush1: glm(formula = pres04 \sim partyid + sex +
   owngun, family = binomial(link = logit),
    data = dat)
bush4: glm(formula = pres04 \sim partyid + owngun +
   race + polviews, family = binomial(link = logit
    data = bush3 model)
bush5: glm(formula = pres04 \sim partyid + sex +
   owngun + race + wrkslf +
    realinc + newpolv, family = binomial(link = \frac{1}{2}
        logit), data = dat)
                                     ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
```

	bush
	ł
	ł
(Intercept) -3.571*** -4.196*** -4.861***	

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ヨ ● の Q @


```
46
partyid: Independent/Strong Dem.
   3.464 *** 2.613 *** 2.637 ***
                                     (日) (四) (日) (日) (日)
```

```
partyid: Ind. Near Repub./Strong Dem.
   5.468 *** 4.114 *** 4.151 ***
                                                          .53
                                     人口 医水黄 医水黄 医水黄素 化甘油
```

partyid: Repub./Strong Dem. 6.031*** 4.985*** 5.015*** (0 .54)

partyid: Strong Repub./Strong Dem. 7.191*** 5.999*** 6.168***

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ヨ ● の Q @


```
race: BLACK/WHITE
   -2.067 * * * -2.110 * * *
race: OTHER/WHITE
   -0.483 -0.497
```

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

96 / 104

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Aldrich-Nelson R-sq.	0 425	0 4 5 2
0.454	0.435	0.455
McFadden R-sq.	0.	556
0.597 0.600		
	0.5	37
0.563 0.564		

```
Nagelkerke R-sq.
                                    0.717
                                             0
  .751 0.753
phi
   1.000 1.000
                    1.000
Likelihood-ratio
   957.944 879.756 883.424
p
   0.000 0.000
                     0.000
Log-likelihood
   -381.998 -296.361 -294.527
Deviance
   763.996 592.722 589.054
```

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─ 臣 ─

BIC	781.996	624.722	623.054	
N	828.124	704.224	707.525	
	1243	1063	1063	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

memisc toLatex

toLatex(mtable(bush1))	
(Intercept)	-3.571***
	(0.393)
partyid: Dem./Strong Dem.	1.910***
	(0.397)
partyid: Ind. Near Dem./Strong Dem.	1.456***
	(0.435)
partyid: Independent/Strong Dem.	3.464***
	(0.410)
partyid: Ind. Near Repub./Strong Dem.	5.468***
	(0.507)
partyid: Repub./Strong Dem.	6.031***
	(0.450)
partyid: Strong Repub./Strong Dem.	7.191***
	(0.621)
sex: Female/Male	0.049
	(0.193)
owngun: YES/NO	0.642***
	(0.194)
Aldrich-Nelson R-sq.	0.435
McEadden R-sa	

Relable Levels to Truncate Output

- We could have to edit that output A LOT
- Hack the Labels down

glm2

Output

levels(dat\$partyid) <- c("SD","D","ID","I","IR
 ","R","SR")
levels(dat\$polviews) <- c("EL","L","SL","M","
 SC","C","EC")
levels(dat\$newpolv) <- c("EL","L","SL","M","C"
)
levels(dat\$wrkslf) <- c("Yes","No")</pre>

Re-run the models

```
bush1 <- glm(pres04 ~ partyid + sex + owngun,
    data=dat, family=binomial(link=logit))
bush3 <- glm(pres04 ~ partyid + sex + owngun
    + race + wrkslf + realinc + polviews ,
    data=dat, family=binomial(link=logit))
bush4 <- glm(pres04 ~ partyid + owngun +
    race + polviews , data=bush3$model, family ~
```

toLatex(mtable(bush1, bush4, bush5))

	bush1	bush4	bush5	
(Intercept)	-3.571***	-4.196***	-4.861***	
	(0.393)	(0.854)	(0.960)	
partyid: D/SD	1.910***	1.356**	1.324**	
	(0.397)	(0.424)	(0.423)	
partyid: ID/SD	1.456***	0.937*	0.925*	
	(0.435)	(0.461)	(0.464)	
partyid: I/SD	3.464***	2.613***	2.637***	
	(0.410)	(0.442)	(0.444)	
partyid: I/SDR	5.468***	4.114***	4.151***	
	(0.507)	(0.538)	(0.540)	
partyid: R/SD	6.031***	4.985***	5.015***	
	(0.450)	(0.479)	(0.483)	
partyid: SR/SD	7.191***	5.999***	6.168***	
	(0.621)	(0.738)	(0.742)	
sex: Female/Male	0.049		-0.006	
	(0.193)		(0.224)	
owngun: YES/NO	0.642***	0.417	0.449*	
	(0.194)	(0.221)	(0.224)	
race: BLACK/WHITE		-2.067***	-2.110^{***}	
		(0.450)	(0.450)	
race: OTHER/WHITE		-0.483	-0.497	
		(0.391)	(0.394)	
polviews: L/EL		0.303		
		(0.866)		
polviews: SL/EL		1.173		
		(0.819)		
polviews: M/EL		1.761* ► ◄ 🗇	▶ ★ 문 ▶ ★ 문 ▶ - 문 - ダ	200