
ffi-2 1 / 35

Fake Foreign Interface (FFI-2)

Paul E. Johnson1 2

1Department of Political Science

2Center for Research Methods and Data Analysis, University of Kansas

2012

ffi-2 2 / 35

Outline

1 General

2 Helpful R Functions

3 Writing Scripts From R

ffi-2 3 / 35
General

Outline

1 General

2 Helpful R Functions

3 Writing Scripts From R

ffi-2 4 / 35
General

What this Lecture is About

Some R packages masquerade as usages of the foreign
function interface.
They follow this approach. From R:

Write a text file of program syntax for the other
program
Use R commands to interact with the operating
system

Call a compiler on that syntax if necessary
Run the program in a separate shell
That other program must write results on disk

Use R to harvest the results from the disk file
Examples: OpenBUGS (BUGS code), SabreR
(Fortran), MPlusAutomation

ffi-2 5 / 35
Helpful R Functions

Outline

1 General

2 Helpful R Functions

3 Writing Scripts From R

ffi-2 6 / 35
Helpful R Functions

paste and paste0: Combine text with values

Read ?paste
creates text strings that can be written into files
can interleave text with values from the R session

> A ← 18
> B ← 0 . 1
> myStr ← paste ("A i s : " , A, "B i s : " , B)
> myStr
[1] "A i s : 18 B i s : 0 . 1 "

ffi-2 7 / 35
Helpful R Functions

paste and paste0: Combine text with values

Default paste will insert one blank space between
arguments

can be controlled by argument sep=”” (sep equals
quoted nothing!)
or the new paste0 function, which is the same as
paste, except it does not insert spaces.

paste is vectorized. For example:
> B ← c (0 .1 , 0 .2 , 0 . 3)
> paste (" Combining A: " , A, " and B: " , B)
[1] " Combining A: 18 and B: 0 . 1 " " Combining A:

18 and B: 0 . 2 "
[3] " Combining A: 18 and B: 0 . 3 "

ffi-2 8 / 35
Helpful R Functions

gsub: for replacing text strings

Read ?gsub. gsub can replace a string with a value in
a text variable.
> st r 1 ← "mary had a l i t t l e t i g e r "
> gsub (" t i g e r " , " lamb " , s t r 1)
[1] "mary had a l i t t l e lamb "

The second argument need not be a character string.
It can also be an R variable name.

ffi-2 9 / 35
Helpful R Functions

gsub: for replacing text strings

Consider a tedious usage of paste:
> myStr ← paste ("A i s : " , A, "And A i s s t i l l : " ,

A, " a f t e r we look at A, which i s " , A)
> myStr
[1] "A i s : 18 And A i s s t i l l : 18 a f t e r we look

at A, which i s 18 "

That’s a silly example, but many projects that write
code for Mplus or SAS need to get some value and put
it in text in several different places.

ffi-2 10 / 35
Helpful R Functions

gsub: for replacing text strings

Consider this less tedious alternative, which uses a
“marker” VALA for the value of A
> myStr2 ← "A i s : VALA And A i s s t i l l : VALA

a f t e r we look at A, which i s VALA"
> myStr3 ← gsub ("VALA" , A, myStr2)
> myStr3
[1] "A i s : 18 And A i s s t i l l : 18 a f t e r we look

at A, which i s 18 "

Generally, if a paste command repeatedly has to insert
the same value, I believe it is smarter to use gsub than
it is to write tedious paste code.

ffi-2 11 / 35
Helpful R Functions

cat: for writing files
Read ?cat
because ... is first, all arguments after that must be
NAMED.
file = “some-good-name.txt”

file must be a valid character string for the output file
name

append = TRUE or FALSE
append arguments controls whether an existing file
will be erased and replaced when cat runs.

sep = “\n”
can simplify the entry of information by inserting a
blank line after each element.

I’ve never needed to change the fill or label options.

ffi-2 12 / 35
Helpful R Functions

cat: for writing files

Simplest possible example:
> cat (" Hel lo , my name i s \n Paul . Who \n are \n

you " , f i l e=" p r a c t i c e . t x t ")

The output file will look like this:
Hello , my name i s
Paul . Who
are
you

Note
Effect of “\n” (new line)
indentation of lines 2-4 due to spaces I typed in after
“\n” (possibly an accident on my part!)

ffi-2 13 / 35
Helpful R Functions

Two more convenient ways to get new lines

Method 1: use sep=”\n”
cat (" Hel lo , my name i s " , " Paul . Who" , " are " , " you

" , sep=" \n " , f i l e=" p r a c t i c e 2 . t x t "))

The output file will look like this:
Hello , my name i s
Paul . Who
are
you

ffi-2 14 / 35
Helpful R Functions

Two more convenient ways to get new lines

Method 2:
myMessage ← ’ Hel lo , my name i s
Paul . Who
are
you ’
cat (myMessage , f i l e = " p r a c t i c e 3 . t x t ")

The output file will be identical to the result from
Method 1.
In my opinion, this approach is more readable.

ffi-2 15 / 35
Writing Scripts From R

Outline

1 General

2 Helpful R Functions

3 Writing Scripts From R

ffi-2 16 / 35
Writing Scripts From R

We want to write an Mplus script file

Here’s an example of an Mplus command file that receives
a file called “rundata.dat”.
TITLE :

A l t e rna t i v e Fit I nd i c e s

DATA:
FILE IS " rundata .dat " ;

VARIABLE:
NAMES ARE y1−y6 c l u s t e r ;
USEVARIABLES ARE y1−y6 ;

MODEL:
F1 BY y1−y3∗ . 7 ;
F2 BY y4−y6∗ . 7 ;

ffi-2 17 / 35
Writing Scripts From R

We want to write an Mplus script file ...

y1−y6∗ . 51 ;
F1@1.0 ;
F2@1.0 ;
F1 WITH F2∗ . 3 ;

OUTPUT:
STDYX;

ffi-2 18 / 35
Writing Scripts From R

Write that From R

The work of writing that file from R is quite simple, of
course, if nothing needs to be changed.
Make a giant quoted string variable, including the carriage
returns in the obvious way, and cat it out.
mpprog ← ’
TITLE :

A l t e rna t i v e Fit I nd i c e s ;

DATA:
FILE IS " rundata .dat " ;

VARIABLE:
NAMES ARE y1−y6 c l u s t e r ;
USEVARIABLES ARE y1−y6 ;

ffi-2 19 / 35
Writing Scripts From R

Write that From R ...

MODEL:
F1 BY y1−y3∗ . 7 ;
F2 BY y4−y6∗ . 7 ;
y1−y6∗ . 51 ;
F1@1.0 ;
F2@1.0 ;
F1 WITH F2∗ . 3 ;

OUTPUT:
STDYX;

’
cat (mpprog , f i l e = "myMplus.inp ")

Note: No need for “\n” when the string is multi-line.

ffi-2 20 / 35
Writing Scripts From R

That is MUCH better than a long set of cat
commands

One of my students figured out that this “works”, and then
he taught all of the other students to follow the same
tedious style. This ugly style of coding is surprising
attractive to R novices:
myFile ← "MyMplusCode.inp "
cat ("TITLE : \n " , f i l e = myFile)
cat (" A l t e rna t i v e Fit I nd i c e s ; \n " , f i l e = myFile ,

append = TRUE)
cat ("DATA: \n" , f i l e = myFile , append = TRUE)
cat (" FILE IS \ " rundata .dat \ " ; \n " , f i l e = myFile ,

append = TRUE)
cat ("VARIABLE: \n " , f i l e = myFile , append = TRUE)

ffi-2 21 / 35
Writing Scripts From R

That is MUCH better than a long set of cat
commands ...

cat (" NAMES ARE y1−y6 c l u s t e r ; \ n " , f i l e = myFile ,
append = TRUE)

cat (" USEVARIABLES ARE y1−y6 ; \ n " , f i l e = myFile ,
append = TRUE)

cat ("MODEL: \n " , f i l e = myFile , append = TRUE)
cat (" F1 BY y1−y3∗ . 7 ; \n " , f i l e = myFile , append =

TRUE)
cat (" F2 BY y4−y6∗ . 7 ; \n " , f i l e = myFile , append =

TRUE)
cat (" y1−y6∗ . 51 ; \n " , f i l e = myFile , append = TRUE

)
cat (" F1@1.0 ; \n " , f i l e = myFile , append = TRUE)
cat (" F2@1.0 ; \n " , f i l e = myFile , append = TRUE)

ffi-2 22 / 35
Writing Scripts From R

That is MUCH better than a long set of cat
commands ...

cat (" F1 WITH F2∗ . 3 ; \n " , f i l e = myFile , append =
TRUE)

cat ("OUTPUT:\ n" , f i l e = myFile , append = TRUE)
cat (" STDYX;\ n" , f i l e = myFile , append = TRUE)
’

Note: “\n” is required in this style
This is annoying, tedious and difficult to maintain, in
my opinion.
If you really do want to treat each line of code
separately, be less odious:

ffi-2 23 / 35
Writing Scripts From R

That is MUCH better than a long set of cat
commands ...

use only one cat function
use the sep = “\n” argument, like so:

myFile ← "MyMplusCode.inp "
cat ("TITLE : " ,
" A l t e rna t i v e Fit I nd i c e s ; " ,
" " ,
"DATA: " ,
" FILE IS \ " rundata .dat \ " ; " ,
" " ,
"VARIABLE: " ,
" NAMES ARE y1−y6 c l u s t e r ; " ,
" USEVARIABLES ARE y1−y6 ; " ,
" " ,
"MODEL: " ,

ffi-2 24 / 35
Writing Scripts From R

That is MUCH better than a long set of cat
commands ...

" F1 BY y1−y3∗ . 7 ; " ,
" F2 BY y4−y6∗ . 7 ; " ,
" y1−y6∗ . 51 ; " ,
" F1@1.0 ; " ,
" F2@1.0 ; " ,
" F1 WITH F2∗ . 3 ; " ,
" " ,
"OUTPUT: " ,
" STDYX; " , sep = " \n " , f i l e = myFile)

ffi-2 25 / 35
Writing Scripts From R

Complications arise in "adjusting" the output file

Suppose the user’s R code generates 100s of data files,
named “data-1.dat”, “data-2.dat” ...
So we need to write separate Mplus command files, one
for each data file
That means we need to edit the above code, to replace
the word “rundata.dat” with “data-1.dat” or
“data-2.dat” and so forth. And we need a unique name
for each of those Mplus files.
In the following example, I’ll just demonstrate code
that works for one particular run (will be obvious to
reader how to write a for loop that does same for all
values of “run”).

ffi-2 26 / 35
Writing Scripts From R

My suggested method for "splicing in" data-7.dat

Necessary to use one paste to combine the text string with
the run number.
Necessitates breaking the text block of the program into
separate pieces.
Can write in one large cat command, but seems more
manageable to do this:
run ← 7

mpprog1 ← ’
TITLE :

A l t e rna t i v e Fit I nd i c e s ;

DATA:

ffi-2 27 / 35
Writing Scripts From R

My suggested method for "splicing in" data-7.dat
...

FILE IS ’

mpprog2 ← paste (" \ " data− " , run , " . da t \ " ; \n " , sep
= " ")

mpprog3 ← ’
VARIABLE:

NAMES ARE y1−y6 c l u s t e r ;
USEVARIABLES ARE y1−y6 ;

MODEL:
F1 BY y1−y3∗ . 7 ;
F2 BY y4−y6∗ . 7 ;
y1−y6∗ . 51 ;
F1@1.0 ;

ffi-2 28 / 35
Writing Scripts From R

My suggested method for "splicing in" data-7.dat
...

F2@1.0 ;
F1 WITH F2∗ . 3 ;

OUTPUT:
STDYX;

’
outFileName ← paste ("myMplus−" , run , " . i np " , sep =

" ")
cat (mpprog1 , f i l e = outFileName)
cat (mpprog2 , f i l e = outFileName , append = TRUE)
cat (mpprog3 , f i l e = outFileName , append = TRUE)

ffi-2 29 / 35
Writing Scripts From R

I believe gsub usage is cleaner
Insert a “marker” UUUfn in place of “rundata.dat”.
Use gsub to replace that after.
This is used in hpcexamples: Ex09-MplusRunall-2
mplusinp ← ’TITLE :

A l t e rna t i v e Fit I nd i c e s

DATA:
FILE IS \"UUUfn\ " ;

VARIABLE:
NAMES ARE y1−y6 c l u s t e r ;
USEVARIABLES ARE y1−y6 ;

MODEL:

ffi-2 30 / 35
Writing Scripts From R

I believe gsub usage is cleaner ...
F1 BY y1−y3∗ . 7 ;
F2 BY y4−y6∗ . 7 ;
y1−y6∗ . 51 ;
F1@1.0 ;
F2@1.0 ;
F1 WITH F2∗ . 3 ;

OUTPUT:
STDYX;

’

mplusinp ← gsub ("UUUfn" , f l i s t [i] , mplusinp)
mpinpname ← paste (f l i s t [i] , " . i np " , sep=" ")
cat (mplusinp , f i l e=mpinpname)

ffi-2 31 / 35
Writing Scripts From R

What if there are many changes to be written?

If the mplus code has one R variable in many locations,
don’t write separate paste() statements for each one.
Put a text maker on each one
Then USE gsub !

ffi-2 32 / 35
Writing Scripts From R

Make A LOT of changes

Suppose a use wants to replace “y6” by “y8”.?
Put in a marker with each “y6”.
mplusinp ← ’TITLE :

A l t e rna t i v e Fit I nd i c e s

DATA:
FILE IS \"UUUfn\ " ;

VARIABLE:
NAMES ARE y1−UUUy6 c l u s t e r ;
USEVARIABLES ARE y1−UUUy6 ;

MODEL:
F1 BY y1−y3∗ . 7 ;

ffi-2 33 / 35
Writing Scripts From R

Make A LOT of changes ...

F2 BY y4−UUUy6∗ . 7 ;
y1−UUUy6∗ . 51 ;
F1@1.0 ;
F2@1.0 ;
F1 WITH F2∗ . 3 ;

OUTPUT:
STDYX;

’
mplusinp ← gsub ("UUUy6" , " y8 " , mplusinp)
mplusinp ← gsub ("UUUfn" , f l i s t [i] , mplusinp)
mpinpname ← paste (f l i s t [i] , " . i np " , sep=" ")
cat (mplusinp , f i l e=mpinpname)

ffi-2 34 / 35
Writing Scripts From R

.Call

ffi-2 35 / 35
Writing Scripts From R

.Call

	General
	Helpful R Functions
	Writing Scripts From R

