R’s Foreign Function Interface (FFI)

Paul E. Johnson! 2

IDepartment of Political Science

2Center for Research Methods and Data Analysis, University of Kansas

2013

Outline

General

Review of Return Concept

.C and .Call
m .C
m .Call

i

L General

Outline

General

i

L General

Why bother with code written in C, C++,
Fortran, or Java, or ...

m One of the most thorough discussions of the foreign
function interfaces is found in R Programming for
Bioinformatics (2009), by one of the R origininators,
Robert Gentleman.

m Gentleman discusses 2 reasons for using compiled code
through R.

m Programs in C (C++, Fortran) may be faster
m Programs (really, libraries, algorithms, etc) exist in C
(C++, Fortran) and can be put to use from R.

i

L General

About Speed

m Most authors emphasize the speed of calculations in C
or Fortran

m Counter-arguments

m Gentleman’s opinion (2009): The sheer speed
(reduction in run time) not usually a compelling
reason to use foreign functions.

m Claims:

B Well written R code can be fast

® Much faster to write an R program that works than a
really fast C program that’s complicated

i

L General

About Speed

m Suggestions:

m Write it in R, at least for a prototype (Knuth
“premature optimization is the root of all evil”).

m Profile the code, find out where the slowdown might
be, look for algorithmic accelerations within R

m If necessary, can re-write to push some calculations to
C, C++, etc.

m Several well known programmers have expressed this
same view to me directly (John Nash (author R optim
and Compact Numerical Methods for Computers:
Linear Algebra and Function Minimisation, 2ed, 1990).

i

L General

Don’t Get Carried Away, though...

m ['d still rather have a program written entirely in C (or
C++, Objective-C, or Fortran), if it works dependably,
than a program written in R. I feel certain it will be
faster

m But

m That’s a really BIG IF, and

m The time required to write a program in R will be 1/2
or 1/3 of time to write a program in C (for me, at
least)

m My co-authors don’t know much C, but do know R.

m For example, Martyn Plummer’s JAGS program is
written in C++, not R.

il
L General

If Not For Speed, then Why the FFI?

m Use existing programming libraries, which are written
in C, C++, Fortran, ...

m 100s of optimizations and 1000s of tests have been
applied against Famous C libraries like

m Atlas
m GotoBLAS2

i

L General

What this Lecture is NOT About

m Some R packages masquerade as usages of the foreign
function interface.

m They follow this approach:

m Write a text file of program syntax

m Use system commands to call a compiler on that
syntax

m Run the program in a shell, write results on disk

m Use R to harvest the results from the disk file

m Examples: OpenBUGS (BUGS code), SabreR
(Fortran), MPlusAutomation

i

L General

What this Lecture is About

m The Foreign Function Interface

m Shared library approaches that allow R to use
functions written in other languages

m Exemplified in the R functions .C, .Call, .Fortran

il
L Review of Return Concept

Outline

Review of Return Concept

il
L Review of Return Concept

Return by Value versus Return by Reference

m Return by Value: do calculations on copies of input
variables, don’t allow changes in those input variables,
return results to user as “new” thing

m Return by Reference: input variables are pointers,
allow the function to dereference values and change
them at the memory location.

m Recall R: heavy preference for “return by value”.

m Arguments into an R function are “local copies”.
They cannot be altered.

m R design strongly prefers we return results as new
objects that are created in the last line of each
function.

il
L Review of Return Concept

C Allows both

m Elementary C is taught with “return by value”

int myFunction () ;

means the value coming out will be one integer
double myFunction () ;
or one double with real number

m Return by value recommended for any C function that
returns one thing

m Understanding of “return by reference” requires

m conceptual understanding of pointers
m caution!

il
L Review of Return Concept

Return by Value in C

int myFunc (double x, double y){
// local copies of x and y are created
// calculations using x and y, may change them
return z;

¥

int myResl; double gl, kl;

myResl = myFunc(gl, kl1);

The only change observed is the value of myResl.

gl and k1 “go into” myFunc, but they are not affected by it.

il
L Review of Return Concept

Return by Reference in C

void myFunc (double x, double y, double xz){
local. But %z is a memory pointer

// x and y are still
"dereferences" the value pointed at by z, and changes

/] *z

¥z = X + v;

it

}
double gl, kl; double * ml;
myFunc(gl, k1, ml);

m There’s no formal return
m gl and k1 “go into” myFunc, but they are not affected

by it.
m The value pointed to by m1 IS changed by myFunc

il
L Review of Return Concept

Almost All Famous C Programs use Return by

Reference

m BLAS “Basic Linear Algebra Subprograms” .
Interfaces & implementations in Fortran, C, etc. The
interface (http://www.netlib.org/blas/blast-forum)

m Use return by value where possible.

m calculate an inner “dot” product of vectors pointed to
by X and Y.

double cblas_ ddot(const int N, const double *X, const int incX,
const double xY, const int incY);

Explain: N: number of elements in both *X and *Y.
incX and incY are set to 1, almost always.

il
L Review of Return Concept

Almost All Famous C Programs use Return by
Reference ...

m BLAS: multiply matrices:
I worked my heart out, lets examine my SVN-guides
repository in folder:
c-programming/Examples/cblas-examples

m Note in examples that the interface to those BLAS
functions is quite complicated.

m GSL abstracts that somewhat. Offers a Matrix
“struct” to avoid some details.

m GSL: return matrix results, pass by reference:

m GSL: subtract 2 matrices: a-b

int gsl_matrix_sub (gsl_matrix * a, const gsl_matrix * b)

c-programming/Examples/cblas-examples

il
L Review of Return Concept

Almost All Famous C Programs use Return by
Reference ...

m Matrix subtraction a — b, the result is put into a, b
remains unchanged.

m The “int” return indicates success or failure of the
calculation.

i
L .C and .Call

Outline

.C and .Call

i
L .C and .Call

.C and .Call

Why 2 interfaces?
Why do some people claim .C is discouraged?

Why do the experts recommend we use .Call?

i
L .C and .Call
L.c

.C can work with a pre-existing C function "as is'

m Programs that R can access through .C do not have a
“rich interaction” between R and C.

m The C function must have

m (void) return type
m Arguments must be pointer variables

m R passes C some pointers, C writes results there.

m The .C call it returns an R list with “copies” of the
variables.

i
L .C and .Call
L.c

.C Examples

® In my SVN-guides, look in the folders:
c-programming/Examples/FromR-dotC-1
And
c-programming/Examples/FromR-dotC-2

m Note how we have to use as.integer() and as.double()
to prepare R variables to be passed as pointers to C.

2

m The results come back as a list of “revised arguments
variables. We better step through the examples to
see...

c-programming/Examples/FromR-dotC-1
c-programming/Examples/FromR-dotC-2

i
L .C and .Call
L.c

Translating Variables

Gentleman(2009) p. 187 m C provides built in types
’ R ‘ C ‘ int, double, char
logical inf * m Typedefs for Rcomplex and
integer int * SEXP found in Rinternals.h
double double *
single single *
complex | Rcomplex *
character char **
raw char*
list SEXP
other SEXP

.C Sales Pitch

m If we pass integers, doubles, and characters, we don’t
need to revise the C code much, if at all.

m As long as the function can create a shared library, its
all easy.

i
L .C and .Call
L.c

Use GSL Routines in C, via R

In my SVN-guides, look in the folder:
c-programming/Examples/FromR-CallGSL-dotC

c-programming/Examples/FromR-CallGSL-dotC

.C Usage Examples

R packages in CRAN: MNP (case study below)

James Lindsey R packages (supporting books such as
Models for Repeated Measurements.

http://www.commanster.eu/rcode.html. Consider the R
package “repeated”, for example:
http://www.commanster.eu/rcode/repeated.tgz

http://www.commanster.eu/rcode.html
http://www.commanster.eu/rcode/repeated.tgz

i
L .C and .Call
L.c

Why Some Folks discourage .C

No easy “error checking”
m C code doesn’t use R idioms or structures

Dangers discussed in .C help page on duplication

Missing and other non-numeric variables.

i
L .C and .Call
LI\INP Case Study

Why MNP

m [t is code you might actually understand: very clear
coding, no nonsense naming etc

m The fitted model is relevant

m We see the strengths and weaknesses of C as a way of
life. This one creates a vector storage structure and
random number generation from scratch

L MNP Case Study

When I install that, What Do I See?

> install.packages ("MNP", repos="http://rweb.quant.ku.edu/cran")

Installing package into ’/home/pauljohn/R/x86_64—pc—linux—gnu—library
/3.0

(as ’lib’ is unspecified)

trying URL ’http://rweb.quant.ku.edu/cran/src/contrib/
MNP_2.6—-4.tar.gz’

Content type ’application/x—gzip’ length 974626 bytes (951 Kb)

opened URL

downloaded 951 Kb

* installing *sourcex package ’MNP’
*% package ’'MNP’ successfully unpacked and MD5 sums checked

*% libs

gcc —std=gnu99 —I/usr/share/R/include —DNDEBUG —fpic —0O3 —pipe
—g —c MNP.c —o MNP.o

gce —std=gnu99 —I/usr/share/R/include —DNDEBUG —fpic —0O3 —pipe
—g —c rand.c —o rand.o

gce —std=gnu99 —I/usr/share/R/include —DNDEBUG —fpic —0O3 —pipe
—g —c subroutines.c —o subroutines.o

gcc —std=gnu99 —I/usr/share/R/include —DNDEBUG —fpic —0O3 —pipe
—g —c vector.c —o vector.o

gcc —std=gnu99 —shared —o MNP.so MNP.o rand.o subroutines.o vector.o
—llapack —lblas —lgfortran —lm —lquadmath —L/usr/lib/R/lib —IR

installing to /home/pauljohn/R/x86_64—pc—linux—gnu—library/3.0/MNP/
libs

** R

When I install that, What Do I See? ...

*% data

*%% moving datasets to lazyload DB

*% preparing package for lazy loading

*% help

*%% installing help indices

% building package indices

**% testing if installed package can be loaded
* DONE (MNP)

i
L .C and .Call
LI\INP Case Study

Check that in the package insall directory

In the install directory for the package, I have...

$ pwd

/home/pauljohn /R/x86__64—pc—linux—gnu—library /3.0
$ lIs MNP/libs/
MNP.so

m That’s a dynamically loadable C library,

i
L .C and .Call
LI\INP Case Study

MNP Source code

m Get the source code (download.packages(“MNP”, type
= “SOURCE”, dest = “/tmp”). I grabbed
MNP _ 2.6-4.tar.gz on 2013-12-02.

m Note the folders:

R: The R code
src: the C source code

Check the file onAttach.R

".onAttach" < function(lib, pkg) {
mylib < dirname(system.file (package = pkg))
title <« packageDescription(pkg, lib.loc = mylib)$Title
ver < packageDescription(pkg, lib.loc = mylib)$Version
author <+ packageDescription(pkg, lib.loc = mylib)$Author
packageStartupMessage (pkg, ": ", title, "\nVersion: ", ver, "\
nAuthors: ", author, "\n")

m When the user runs library(MNP) (or require(MNP)),
the first thing it does is create 5 variables,

m “mylib” is the value of the location where the package
is installed.

m [t uses that to get the title & author information
displayed in packageStartupMessage

i
L .C and .Call
LI\INP Case Study

Check the file onAttach.R ...

m Note “dirname(system.file(package = “MNP”))” is a
way to ask your running R session where it is finding
the MNP installed folder.

i
L .C and .Call
LI\INP Case Study

Check the package NAMESPACE file

m The first line is

useDynLib (MNP)

Check the R source for the function mnp()

m The function “mnp” is doing all of the heavy lifting.
m In the file mnp.R , find line 152:

param < .C("'"cMNPgibbs", as.integer (n.dim),

as.integer(n.cov), as.integer(n.obs), as.integer (n.draws),
as.double (p.mean), as.double(p.prec), as.integer(p.df),
as.double(p.scalexp.alpha0), as.double(X), as.integer (Y),
as.double(coef.start), as.double(cov.start),

as.integer (p.imp), as.integer (invcdf),

as.integer (burnin), as.integer (keep), as.integer (trace),
as.integer (verbose), as.integer (MoP), as.integer (latent),
pdStore = double(n.parxfloor ((n.draws—burnin) /keep)),

PACKAGE="MNP")$pdStore

param < matrix(param, ncol = n.par,

nrow

floor ((n.draws—burnin) /keep), byrow=TRUE)

m Boom! There it is. A thing param is returned, and

m matrix() is used to grab the right rows and columns
out if it.

C File Inventory

Makevars : A Makefile that controls how the C files are
compiled. In this case, there is only a miniscule

entry
m The C files:
$ 1s
Makevars rand.c subroutines.c vector.c
MNP.c rand.h subroutines.h vector.h

i
L .C and .Call
LI\INP Case Study

C File Inventory

Makevars : A Makefile that controls how the C files are
compiled. In this case, there is only a miniscule
entry

$ cat Makevars
PKG_LIBS = $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

MNP.c : This is the orchestrating file, where the key
functions are accessed from R. The functions are

i
L.C and .Call
L MNP Case Study

C File Inventory ...

void cMNPgibbs(int *piNDim, int %piNCov, int =*piNSamp, int =*piNGen,

double *b0, /* prior mean for beta x/

double *pdAO, int *piNuO, double *pdS, double *xpdX,
int xy, /* response variable: —1 for missing =/
double *pdbeta, double xpdSigma, int *pilmp,

int xinvcdf , /* use inverse cdf for TruncNorm? x/

int *piBurnin, /% the number of burnin =/
int xpiKeep,
int xitrace ,

int xverbose, /% 1 if extra print is needed =/
int xpiMoP, /* 1 if Multinomial ordered Probit =/
int =xlatent , /* 1 if W is stored =/
double *pdStore)
void predict (double =*dX, /* X matrix =/
int =*nobs, /* number of observations x/
double xdcoef, /* coefficients x/
double xdSigma, /% covariances =/
int *ndims, /* number of dimensions x/
int xncovs, /* number of covariates x/
int *ndraws, /* number of MCMC draws x/

int *xmoredraws, /x number of extra draws x/
int *xverbose ,

double *prob, /* probability output x/
double *choice, /x choice output =/

double *order /% order output x/)

C File Inventory ...

m note, both of these are “return by reference”
approaches.

rand.|[hc| : h is the header, ¢ is the code. The header file
declares 4 functions, there’s nothing except for

the function prototypes

double sTruncNorm(double bd, double mu, double var,

lower) ;

double TruncNorm(double 1b, double ub, double mu,

double var, int invecdf);

void rMVN(double xSample, double *mean, double xx*
inv_Var, int size);

void rWish(double **Sample, double *x*S, int df,
size);

m Note significance of **X, which is,

basically, a pointer to one corner of a

two-dimensional storage area

i
L.C and .Call
L MNP Case Study

C File Inventory ...

m Whereas *X is a pointer to the beginning
of a one-dimensional storage area

vector.|hc| : Allocates storage for vectors and matrices!

#include <stdlib.h >
#include <assert.h >

int xintArray(int num) ;

void PintArray(int xivector, int length);

int xxintMatrix(int row, int col);

void PintMatrix(int xs*imatrix, int row, int col);

double *doubleArray (int num) ;

void PdoubleArray (double xdvector, int length);

double *xdoubleMatrix(int row, int col);

void PdoubleMatrix (double **dmatrix, int row, int col);

double **xdoubleMatrix3D (int x, int y, int z);
void PdoubleMatrix3D (double x**dmatrix3D, int x, int y,
int z);

long *longArray (int num);

void FreeMatrix(double *xMatrix, int row);
void FreeintMatrix (int **Matrix, int row);

i
L .C and .Call
LI\INP Case Study

C File Inventory ...

void Free3DMatrix (double *%%Matrix, int index, int row)

m Here we have VERY CLEARLY named
functions, a style worth admiring.

m Functions to create and initialize {integer,
double} arrays or matrices

m The function doubleArray allocates a
memory and returns a POINTER to the
beginning of it.

m If you want to “Print” that to the screen,
use the PdoubleArray function.

i
L .C and .Call
L MNP Case Study

C File Inventory ...

m Read the vector.c file and you notice that

the print-to-screen work is being done by
Rprintf, a function from the R C library.
(hence the file includes the header R.h.
THe top of vector.c has

#include
#include
#include
#include
#include

<stdlib.h >
<assert.h >
<stdio.h >
<R_ezt/Utils.h >
<R.h >

m Strictly speaking,

m | think vector.h SHOULD be included
here, I suppose the compiler might
assume it. But all working C code I
know of would include vector.h at the
top of vector.c.

i
L .C and .Call
LI\INP Case Study

C File Inventory ...

m “stdlib.h” and “assert.h” need not be
included in vector.c since it was included
in vector.h (assuming vector.h was
included here).

m Note the Free functions to erase a vector
or matrix when no longer needed. Vital to
stop memory leaks.

Makevars : A Makefile that controls how the C files are
compiled. In this case, there is only a miniscule
entry

$ cat Makevars
PKG_LIBS = $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

il
L .C and .Call
L .call

.Call

m .Call is used widely in the R source code
m Uses return by value, NOT return by reference

m Asks user to re-write C code, interacting more
meaningfully with R objects using R-provided variable
types and functions.

il
L .C and .Call
L .call

Benefits of using .Call, as opposed to .C

m C code is interacting with data structures in same way
that R internal C code does

m Better checking of argument types

m For this purpose, R offers an elaborate collection of

m C variable types
m C functions

i
L .C and .Call
L .call

Garbage Collection: Why this is Dicey

m When you use .Call, your C code is running “inside”
the R memory zone framework

m That means that the garbage collector might kill your
constructed variables

m Note the PROTECT and UNPROTECT macros in
this example from Writing R Extensions

#include <R.h>
#include <Rinternals.h >

SEXP convolve2 (SEXP a, SEXP b)
{
int na, nb, nab;
double x*xxa, =*xb, *xxab;
SEXP ab;

a PROTECT (coerceVector (a, REALSXP)) ;

b PROTECT (coerceVector (b, REALSXP)) ;

na = length(a); nb = length(b); nab = na + nb — 1;
ab = PROTECT(allocVector (REALSXP, nab));

i
L .C and .Call
L .call

Garbage Collection: Why this is Dicey ...

xa = REAL(a); xb REAL(b); xab = REAL(ab);

for(int i = 0; i < nab; i++) xab[i] = 0.0;
for(int i = 0; i < naj; i++)

for(int j = 0; j < nb; j++) xab[i + j] += xal[i] * xb[j];
UNPROTECT(3) ;

return ab;

}

m You’d compile that into a shared object, then inside R
you could call like so

conv <« function(a, b) .Call("convolve2", a, b)

il
L .C and .Call
L .call

Recpp as an Magic Bullett

m The difficulty of writing that special C motivated Dirk
Eddelbuettel and Romain Francois to work very hard a
developing a style of C++ coding that can be
more-or-less automagically gobbled into R via the R
package Repp.

m ['ll write notes on that in the lecture folder ffi-3.

il
L .C and .Call
L .call

Background information 1: Use R library

functions from a C Program

In my Guides repo (or http://pj.freefaculty.org/guides)
c-programming/Examples/FromC-CallRmathlib

Does not meaningfully interact with R, only uses some C
functions that the R team has made available.

c-programming/Examples/FromC-CallRmathlib

il
L .C and .Call
L .call

Background information 2: Using R embedded in
a C Program

In my Guides repo (or http://pj.freefaculty.org/guides)
FromC-RunRembedded

c-programming/Examples/c-programming/Examples/
FromC-RunRembedded

Starts an R session AND actually interacts with it.

c-programming/Examples/c-programming/Examples/FromC-RunRembedded
c-programming/Examples/c-programming/Examples/FromC-RunRembedded

il
L .C and .Call
L .call

Can Generalize previous to use R functions in R.h

In the installed R, there should be a header folder that has
R C function interfaces

Search for “R.h”

The same folder has subfolder “R_ext”, which has more
header files that are listed in R.h

R.h (headers in R__ext) provides R “replacements” for basic
C functions

Example: printf can be replaced by Rprintf (See
R_ext/Print.h)

	General
	Review of Return Concept
	.C and .Call
	.C
	.Call

