
ffi 1/ 55

R’s Foreign Function Interface (FFI)

Paul E. Johnson1 2

1Department of Political Science

2Center for Research Methods and Data Analysis, University of Kansas

2013

ffi 2/ 55

Outline

1 General

2 Review of Return Concept

3 .C and .Call
.C
.Call

ffi 3/ 55
General

Outline

1 General

2 Review of Return Concept

3 .C and .Call
.C
.Call

ffi 4/ 55
General

Why bother with code written in C, C++,
Fortran, or Java, or ...

One of the most thorough discussions of the foreign
function interfaces is found in R Programming for
Bioinformatics (2009), by one of the R origininators,
Robert Gentleman.
Gentleman discusses 2 reasons for using compiled code
through R.

Programs in C (C++, Fortran) may be faster
Programs (really, libraries, algorithms, etc) exist in C
(C++, Fortran) and can be put to use from R.

ffi 5/ 55
General

About Speed

Most authors emphasize the speed of calculations in C
or Fortran
Counter-arguments

Gentleman’s opinion (2009): The sheer speed
(reduction in run time) not usually a compelling
reason to use foreign functions.
Claims:

Well written R code can be fast
Much faster to write an R program that works than a
really fast C program that’s complicated

ffi 6/ 55
General

About Speed

Suggestions:
Write it in R, at least for a prototype (Knuth
“premature optimization is the root of all evil”).
Profile the code, find out where the slowdown might
be, look for algorithmic accelerations within R
If necessary, can re-write to push some calculations to
C, C++, etc.

Several well known programmers have expressed this
same view to me directly (John Nash (author R optim
and Compact Numerical Methods for Computers:
Linear Algebra and Function Minimisation, 2ed, 1990).

ffi 7/ 55
General

Don’t Get Carried Away, though...

I’d still rather have a program written entirely in C (or
C++, Objective-C, or Fortran), if it works dependably,
than a program written in R. I feel certain it will be
faster
But

That’s a really BIG IF, and
The time required to write a program in R will be 1/2
or 1/3 of time to write a program in C (for me, at
least)
My co-authors don’t know much C, but do know R.

For example, Martyn Plummer’s JAGS program is
written in C++, not R.

ffi 8/ 55
General

If Not For Speed, then Why the FFI?

Use existing programming libraries, which are written
in C, C++, Fortran, ...
100s of optimizations and 1000s of tests have been
applied against Famous C libraries like

Atlas
GotoBLAS2

ffi 9/ 55
General

What this Lecture is NOT About

Some R packages masquerade as usages of the foreign
function interface.
They follow this approach:

Write a text file of program syntax
Use system commands to call a compiler on that
syntax
Run the program in a shell, write results on disk
Use R to harvest the results from the disk file

Examples: OpenBUGS (BUGS code), SabreR
(Fortran), MPlusAutomation

ffi 10 / 55
General

What this Lecture is About

The Foreign Function Interface
Shared library approaches that allow R to use
functions written in other languages
Exemplified in the R functions .C, .Call, .Fortran

ffi 11 / 55
Review of Return Concept

Outline

1 General

2 Review of Return Concept

3 .C and .Call
.C
.Call

ffi 12 / 55
Review of Return Concept

Return by Value versus Return by Reference

Return by Value: do calculations on copies of input
variables, don’t allow changes in those input variables,
return results to user as “new” thing
Return by Reference: input variables are pointers,
allow the function to dereference values and change
them at the memory location.
Recall R: heavy preference for “return by value”.

Arguments into an R function are “local copies”.
They cannot be altered.
R design strongly prefers we return results as new
objects that are created in the last line of each
function.

ffi 13 / 55
Review of Return Concept

C Allows both

Elementary C is taught with “return by value”
i n t myFunction () ;

means the value coming out will be one integer
double myFunction () ;

or one double with real number
Return by value recommended for any C function that
returns one thing
Understanding of “return by reference” requires

conceptual understanding of pointers
caution!

ffi 14 / 55
Review of Return Concept

Return by Value in C

i n t myFunc (double x , double y){
// l o c a l c op i e s o f x and y are c reated
// c a l c u l a t i o n s us ing x and y , may change them
return z ;

}
i n t myRes1 ; double g1 , k1 ;
myRes1 = myFunc(g1 , k1) ;

The only change observed is the value of myRes1.

g1 and k1 “go into” myFunc, but they are not affected by it.

ffi 15 / 55
Review of Return Concept

Return by Reference in C

void myFunc (double x , double y , double ∗z) {
// x and y are s t i l l l o c a l . But ∗z i s a memory po in t e r
// ∗z " d e r e f e r e n c e s " the value pointed at by z , and changes i t
∗z = x + y ;

}
double g1 , k1 ; double ∗ m1;
myFunc(g1 , k1 , m1) ;

There’s no formal return
g1 and k1 “go into” myFunc, but they are not affected
by it.
The value pointed to by m1 IS changed by myFunc

ffi 16 / 55
Review of Return Concept

Almost All Famous C Programs use Return by
Reference

BLAS “Basic Linear Algebra Subprograms” .
Interfaces & implementations in Fortran, C, etc. The
interface (http://www.netlib.org/blas/blast-forum)
Use return by value where possible.

calculate an inner “dot” product of vectors pointed to
by X and Y.

double cblas_ddot (const i n t N, const double ∗X, const i n t incX ,
const double ∗Y, const i n t incY) ;

Explain: N: number of elements in both *X and *Y.
incX and incY are set to 1, almost always.

ffi 17 / 55
Review of Return Concept

Almost All Famous C Programs use Return by
Reference ...

BLAS: multiply matrices:
I worked my heart out, lets examine my SVN-guides
repository in folder:
c-programming/Examples/cblas-examples
Note in examples that the interface to those BLAS
functions is quite complicated.
GSL abstracts that somewhat. Offers a Matrix
“struct” to avoid some details.
GSL: return matrix results, pass by reference:

GSL: subtract 2 matrices: a - b
i n t gsl_matrix_sub (gsl_matrix ∗ a , const gsl_matrix ∗ b)

c-programming/Examples/cblas-examples

ffi 18 / 55
Review of Return Concept

Almost All Famous C Programs use Return by
Reference ...

Matrix subtraction a − b, the result is put into a, b
remains unchanged.
The “int” return indicates success or failure of the
calculation.

ffi 19 / 55
.C and .Call

Outline

1 General

2 Review of Return Concept

3 .C and .Call
.C
.Call

ffi 20 / 55
.C and .Call

.C and .Call

Why 2 interfaces?

Why do some people claim .C is discouraged?

Why do the experts recommend we use .Call?

ffi 21 / 55
.C and .Call

.C

.C can work with a pre-existing C function "as is"

Programs that R can access through .C do not have a
“rich interaction” between R and C.
The C function must have

(void) return type
Arguments must be pointer variables

R passes C some pointers, C writes results there.
The .C call it returns an R list with “copies” of the
variables.

ffi 22 / 55
.C and .Call

.C

.C Examples

In my SVN-guides, look in the folders:
c-programming/Examples/FromR-dotC-1
And
c-programming/Examples/FromR-dotC-2
Note how we have to use as.integer() and as.double()
to prepare R variables to be passed as pointers to C.
The results come back as a list of “revised arguments”
variables. We better step through the examples to
see...

c-programming/Examples/FromR-dotC-1
c-programming/Examples/FromR-dotC-2

ffi 23 / 55
.C and .Call

.C

Translating Variables

Gentleman(2009) p. 187
R C

logical int *
integer int *
double double *
single single *

complex Rcomplex *
character char **

raw char*
list SEXP
other SEXP

C provides built in types
int, double, char
Typedefs for Rcomplex and
SEXP found in Rinternals.h

ffi 24 / 55
.C and .Call

.C

.C Sales Pitch

If we pass integers, doubles, and characters, we don’t
need to revise the C code much, if at all.
As long as the function can create a shared library, its
all easy.

ffi 25 / 55
.C and .Call

.C

Use GSL Routines in C, via R

In my SVN-guides, look in the folder:
c-programming/Examples/FromR-CallGSL-dotC

c-programming/Examples/FromR-CallGSL-dotC

ffi 26 / 55
.C and .Call

.C

.C Usage Examples

R packages in CRAN: MNP (case study below)

James Lindsey R packages (supporting books such as
Models for Repeated Measurements.

http://www.commanster.eu/rcode.html. Consider the R
package “repeated”, for example:
http://www.commanster.eu/rcode/repeated.tgz

http://www.commanster.eu/rcode.html
http://www.commanster.eu/rcode/repeated.tgz

ffi 27 / 55
.C and .Call

.C

Why Some Folks discourage .C

No easy “error checking”
C code doesn’t use R idioms or structures
Dangers discussed in .C help page on duplication
Missing and other non-numeric variables.

ffi 28 / 55
.C and .Call

MNP Case Study

Why MNP

It is code you might actually understand: very clear
coding, no nonsense naming etc
The fitted model is relevant
We see the strengths and weaknesses of C as a way of
life. This one creates a vector storage structure and
random number generation from scratch

ffi 29 / 55
.C and .Call

MNP Case Study

When I install that, What Do I See?
> in s t a l l . p a c k a g e s ("MNP" , repos=" http : // rweb.quant .ku.edu / cran ")
I n s t a l l i n g package in to ’ /home/paul john /R/x86_64−pc−linux−gnu−library

/3 . 0 ’
(as ’ l i b ’ i s un sp e c i f i e d)
t ry ing URL ’ http : // rweb.quant .ku.edu / cran/ s r c / cont r ib /

MNP_2.6−4.tar.gz ’
Content type ’ app l i c a t i on /x−gzip ’ l ength 974626 bytes (951 Kb)
opened URL
==
downloaded 951 Kb

∗ i n s t a l l i n g ∗ source ∗ package ’MNP’ . . .
∗∗ package ’MNP’ s u c c e s s f u l l y unpacked and MD5 sums checked
∗∗ l i b s
gcc −std=gnu99 −I/ usr / share /R/ inc lude −DNDEBUG − fpic −O3 −pipe

−g −c MNP.c −o MNP.o
gcc −std=gnu99 −I/ usr / share /R/ inc lude −DNDEBUG − fpic −O3 −pipe

−g −c rand .c −o rand.o
gcc −std=gnu99 −I/ usr / share /R/ inc lude −DNDEBUG − fpic −O3 −pipe

−g −c sub r ou t i n e s . c −o sub rou t i n e s . o
gcc −std=gnu99 −I/ usr / share /R/ inc lude −DNDEBUG − fpic −O3 −pipe

−g −c v e c t o r . c −o v e c t o r . o
gcc −std=gnu99 −shared −o MNP.so MNP.o rand.o sub rou t i n e s . o v e c t o r . o

− l lapack − lb las − l g fo r t ran −lm −lquadmath −L/usr / l i b /R/ l i b −lR
i n s t a l l i n g to /home/pauljohn /R/x86_64−pc−linux−gnu−library/3 . 0 /MNP/

l i b s
∗∗ R

ffi 30 / 55
.C and .Call

MNP Case Study

When I install that, What Do I See? ...

∗∗ data
∗∗∗ moving data s e t s to l a zy load DB
∗∗ prepar ing package f o r lazy load ing
∗∗ help
∗∗∗ i n s t a l l i n g help i n d i c e s
∗∗ bu i ld ing package i n d i c e s
∗∗ t e s t i n g i f i n s t a l l e d package can be loaded
∗ DONE (MNP)

ffi 31 / 55
.C and .Call

MNP Case Study

Check that in the package insall directory

In the install directory for the package, I have...
$ pwd
/home/paul john /R/x86_64−pc−linux−gnu−library/3 . 0
$ l s MNP/ l i b s /
MNP.so

That’s a dynamically loadable C library,

ffi 32 / 55
.C and .Call

MNP Case Study

MNP Source code

Get the source code (download.packages(“MNP”, type
= “SOURCE”, dest = “/tmp”). I grabbed
MNP_2.6-4.tar.gz on 2013-12-02.
Note the folders:

R: The R code
src: the C source code

ffi 33 / 55
.C and .Call

MNP Case Study

Check the file onAttach.R

" .onAttach " ← f unc t i on (l i b , pkg) {
mylib ← dirname (s y s t em . f i l e (package = pkg))
t i t l e ← packageDescr ipt ion (pkg , l i b . l o c = mylib) $ T i t l e
ver ← packageDescr ipt ion (pkg , l i b . l o c = mylib) $Vers ion
author ← packageDescr ipt ion (pkg , l i b . l o c = mylib) $Author
packageStartupMessage (pkg , " : " , t i t l e , " \nVersion : " , ver , " \

nAuthors : " , author , " \n")
}

When the user runs library(MNP) (or require(MNP)),
the first thing it does is create 5 variables,

“mylib” is the value of the location where the package
is installed.
It uses that to get the title & author information
displayed in packageStartupMessage

ffi 34 / 55
.C and .Call

MNP Case Study

Check the file onAttach.R ...

Note “dirname(system.file(package = “MNP”))” is a
way to ask your running R session where it is finding
the MNP installed folder.

ffi 35 / 55
.C and .Call

MNP Case Study

Check the package NAMESPACE file

The first line is
useDynLib (MNP)

ffi 36 / 55
.C and .Call

MNP Case Study

Check the R source for the function mnp()

The function “mnp” is doing all of the heavy lifting.
In the file mnp.R , find line 152:

param ← .C (" cMNPgibbs " , a s . i n t e g e r (n.dim) ,
a s . i n t e g e r (n.cov) , a s . i n t e g e r (n .obs) , a s . i n t e g e r (n.draws) ,
a s .doub l e (p.mean) , a s .doub l e (p .p rec) , a s . i n t e g e r (p .d f) ,
a s .doub l e (p . s c a l e ∗p.a lpha0) , a s .doub l e (X) , a s . i n t e g e r (Y) ,
a s .doub l e (c o e f . s t a r t) , a s .doub l e (c o v . s t a r t) ,
a s . i n t e g e r (p.imp) , a s . i n t e g e r (invcd f) ,
a s . i n t e g e r (burnin) , a s . i n t e g e r (keep) , a s . i n t e g e r (t r a c e) ,
a s . i n t e g e r (verbose) , a s . i n t e g e r (MoP) , a s . i n t e g e r (l a t en t) ,
pdStore = double (n .par ∗ f l o o r ((n.draws−burnin) /keep)) ,
PACKAGE="MNP") $pdStore

param ← matrix (param , nco l = n.par ,
nrow = f l o o r ((n.draws−burnin) /keep) , byrow=TRUE)

Boom! There it is. A thing param is returned, and
matrix() is used to grab the right rows and columns
out if it.

ffi 37 / 55
.C and .Call

MNP Case Study

C File Inventory

Makevars : A Makefile that controls how the C files are
compiled. In this case, there is only a miniscule
entry

The C files:
$ l s
Makevars rand .c sub r ou t i n e s . c v e c t o r . c
MNP.c rand.h subrou t in e s . h ve c t o r . h

ffi 38 / 55
.C and .Call

MNP Case Study

C File Inventory

Makevars : A Makefile that controls how the C files are
compiled. In this case, there is only a miniscule
entry
$ cat Makevars
PKG_LIBS = $ (LAPACK_LIBS) $ (BLAS_LIBS) $ (FLIBS)

MNP.c : This is the orchestrating file, where the key
functions are accessed from R. The functions are

ffi 39 / 55
.C and .Call

MNP Case Study

C File Inventory ...
void cMNPgibbs (i n t ∗piNDim , i n t ∗piNCov , i n t ∗piNSamp , i n t ∗piNGen ,

double ∗b0 , /∗ p r i o r mean f o r beta ∗/
double ∗pdA0 , i n t ∗piNu0 , double ∗pdS , double ∗pdX ,
i n t ∗y , /∗ re sponse va r i ab l e : −1 f o r miss ing ∗/
double ∗pdbeta , double ∗pdSigma , i n t ∗piImp ,
i n t ∗ invcdf , /∗ use i nv e r s e cdf f o r TruncNorm? ∗/
in t ∗piBurnin , /∗ the number o f burnin ∗/
in t ∗piKeep ,
i n t ∗ i t r a c e ,
i n t ∗verbose , /∗ 1 i f extra p r in t i s needed ∗/
in t ∗piMoP , /∗ 1 i f Multinomial ordered Probit ∗/
in t ∗ l a t ent , /∗ 1 i f W i s s to r ed ∗/
double ∗pdStore)

void p r ed i c t (double ∗dX, /∗ X matrix ∗/
in t ∗nobs , /∗ number o f obse rva t i on s ∗/
double ∗dcoef , /∗ c o e f f i c i e n t s ∗/
double ∗dSigma , /∗ covar i ance s ∗/
in t ∗ndims , /∗ number o f dimensions ∗/
in t ∗ncovs , /∗ number o f c ova r i a t e s ∗/
in t ∗ndraws , /∗ number o f MCMC draws ∗/
in t ∗moredraws , /∗ number o f extra draws ∗/
in t ∗verbose ,
double ∗prob , /∗ p r obab i l i t y output ∗/
double ∗ choice , /∗ cho i c e output ∗/
double ∗ order /∗ order output ∗/)

ffi 40 / 55
.C and .Call

MNP Case Study

C File Inventory ...
note, both of these are “return by reference”
approaches.

rand.[hc] : h is the header, c is the code. The header file
declares 4 functions, there’s nothing except for
the function prototypes
double sTruncNorm(double bd , double mu, double var , i n t

lower) ;
double TruncNorm(double lb , double ub , double mu,

double var , i n t invcd f) ;
void rMVN(double ∗Sample , double ∗mean , double ∗∗

inv_Var , i n t s i z e) ;
void rWish (double ∗∗Sample , double ∗∗S , i n t df , i n t

s i z e) ;

Note significance of **X, which is,
basically, a pointer to one corner of a
two-dimensional storage area

ffi 41 / 55
.C and .Call

MNP Case Study

C File Inventory ...
Whereas *X is a pointer to the beginning
of a one-dimensional storage area

vector.[hc] : Allocates storage for vectors and matrices!
i n c l u d e < s t d l i b . h >
i n c l u d e < a s s e r t . h >

i n t ∗ intArray (i n t num) ;
void PintArray (i n t ∗ i v e c to r , i n t l ength) ;
i n t ∗∗ intMatr ix (i n t row , i n t c o l) ;
void PintMatrix (i n t ∗∗ imatr ix , i n t row , i n t c o l) ;

double ∗doubleArray (i n t num) ;
void PdoubleArray (double ∗dvector , i n t l ength) ;
double ∗∗doubleMatrix (i n t row , i n t c o l) ;
void PdoubleMatrix (double ∗∗dmatrix , i n t row , i n t c o l) ;

double ∗∗∗doubleMatrix3D (in t x , i n t y , i n t z) ;
void PdoubleMatrix3D (double ∗∗∗dmatrix3D , i n t x , i n t y ,

i n t z) ;

long ∗ longArray (i n t num) ;

void FreeMatrix (double ∗∗Matrix , i n t row) ;
void Free intMatr ix (i n t ∗∗Matrix , i n t row) ;

ffi 42 / 55
.C and .Call

MNP Case Study

C File Inventory ...

void Free3DMatrix (double ∗∗∗Matrix , i n t index , i n t row)
;

Here we have VERY CLEARLY named
functions, a style worth admiring.
Functions to create and initialize {integer,
double} arrays or matrices

The function doubleArray allocates a
memory and returns a POINTER to the
beginning of it.
If you want to “Print” that to the screen,
use the PdoubleArray function.

ffi 43 / 55
.C and .Call

MNP Case Study

C File Inventory ...
Read the vector.c file and you notice that
the print-to-screen work is being done by
Rprintf, a function from the R C library.
(hence the file includes the header R.h.
THe top of vector.c has
i n c l u d e < s t d l i b . h >
i n c l u d e < a s s e r t . h >
i n c l u d e < s t d i o . h >
i n c l u d e < R _ e x t / U t i l s . h >
i n c l u d e <R.h >

Strictly speaking,
I think vector.h SHOULD be included
here, I suppose the compiler might
assume it. But all working C code I
know of would include vector.h at the
top of vector.c.

ffi 44 / 55
.C and .Call

MNP Case Study

C File Inventory ...

“stdlib.h” and “assert.h” need not be
included in vector.c since it was included
in vector.h (assuming vector.h was
included here).

Note the Free functions to erase a vector
or matrix when no longer needed. Vital to
stop memory leaks.

ffi 45 / 55
.C and .Call

MNP Case Study

.Call

Makevars : A Makefile that controls how the C files are
compiled. In this case, there is only a miniscule
entry
$ cat Makevars
PKG_LIBS = $ (LAPACK_LIBS) $ (BLAS_LIBS) $ (FLIBS)

ffi 46 / 55
.C and .Call

.Call

.Call

.Call is used widely in the R source code
Uses return by value, NOT return by reference
Asks user to re-write C code, interacting more
meaningfully with R objects using R-provided variable
types and functions.

ffi 47 / 55
.C and .Call

.Call

Benefits of using .Call, as opposed to .C

C code is interacting with data structures in same way
that R internal C code does
Better checking of argument types
For this purpose, R offers an elaborate collection of

C variable types
C functions

ffi 48 / 55
.C and .Call

.Call

Garbage Collection: Why this is Dicey

When you use .Call, your C code is running “inside”
the R memory zone framework
That means that the garbage collector might kill your
constructed variables
Note the PROTECT and UNPROTECT macros in
this example from Writing R Extensions
i n c l u d e <R.h >
i n c l u d e < R i n t e r n a l s . h >

SEXP convolve2 (SEXP a , SEXP b)
{

in t na , nb , nab ;
double ∗xa , ∗xb , ∗xab ;
SEXP ab ;

a = PROTECT(coerceVector (a , REALSXP)) ;
b = PROTECT(coerceVector (b , REALSXP)) ;
na = length (a) ; nb = length (b) ; nab = na + nb − 1 ;
ab = PROTECT(a l l o cVec to r (REALSXP, nab)) ;

ffi 49 / 55
.C and .Call

.Call

Garbage Collection: Why this is Dicey ...

xa = REAL(a) ; xb = REAL(b) ; xab = REAL(ab) ;
f o r (i n t i = 0 ; i < nab ; i++) xab [i] = 0 . 0 ;
f o r (i n t i = 0 ; i < na ; i++)

f o r (i n t j = 0 ; j < nb ; j++) xab [i + j] += xa [i] ∗ xb [j] ;
UNPROTECT(3) ;
re turn ab ;

}

You’d compile that into a shared object, then inside R
you could call like so
conv ← f unc t i on (a , b) .Ca l l (" convolve2 " , a , b)

ffi 50 / 55
.C and .Call

.Call

Rcpp as an Magic Bullett

The difficulty of writing that special C motivated Dirk
Eddelbuettel and Romain Francois to work very hard a
developing a style of C++ coding that can be
more-or-less automagically gobbled into R via the R
package Rcpp.
I’ll write notes on that in the lecture folder ffi-3.

ffi 51 / 55
.C and .Call

.Call

Background information 1: Use R library
functions from a C Program

In my Guides repo (or http://pj.freefaculty.org/guides)

c-programming/Examples/FromC-CallRmathlib

Does not meaningfully interact with R, only uses some C
functions that the R team has made available.

c-programming/Examples/FromC-CallRmathlib

ffi 52 / 55
.C and .Call

.Call

Background information 2: Using R embedded in
a C Program

In my Guides repo (or http://pj.freefaculty.org/guides)
FromC-RunRembedded

c-programming/Examples/c-programming/Examples/
FromC-RunRembedded

Starts an R session AND actually interacts with it.

c-programming/Examples/c-programming/Examples/FromC-RunRembedded
c-programming/Examples/c-programming/Examples/FromC-RunRembedded

ffi 53 / 55
.C and .Call

.Call

Can Generalize previous to use R functions in R.h

In the installed R, there should be a header folder that has
R C function interfaces

Search for “R.h”

The same folder has subfolder “R_ext”, which has more
header files that are listed in R.h

R.h (headers in R_ext) provides R “replacements” for basic
C functions

Example: printf can be replaced by Rprintf (See
R_ext/Print.h)

ffi 54 / 55
.C and .Call

.Call

.Call

ffi 55 / 55
.C and .Call

.Call

.Call

	General
	Review of Return Concept
	.C and .Call
	.C
	.Call

