Data Input and Recoding |

Tabular Data Formats

Paul E. Johnson!:2

IDepartment of Political Science
University of Kansas

2Center for Research Methods and Data Analysis
University of Kansas

2013

Data | 1/1 University of Kansas

-
Outline

Data | University of

-
The Usual: Use One Rectangular Data Set

@ Following the introduction of SPSS in 1968, social scientists
became accustomed to the idea of using a “rectangular data
set.”

Varl Var2 Var3 Vard Varb
1 5 6 4 31

2 2 3 5 29 (1)
3 4 5 5 53
4 2 2 3 2

@ The first column was usually a “respondent identifier”

Data | 3/1 University of Kansas

Variable name; Value Label

Value The values of the variables were usually kept in a
numeric format.

Value Label A mapping from numerical values to substantive
labels

Codebook A listing of values and labels, e.g.
‘ Var2 ‘

Value Label

1 Never

Sometimes

Often

Always

Don’t Know

Other Missing

OOl W|IN

Data | 4/1 University of Kansas

__
R Terminology

@ data frame

e combine equal-sized columns side-by-side
e columns can be different data types
e inside R guts, a data frame is really just an R list, with the
“equal length columns” requirement
@ variable: a column of information
numeric (floating point)
integer
factor (a categorical indicator)
ordered factor (a factor that some procedures treat differently)
character

Data | 5/1 University of Kansas

__
Accessing columns V1 V2 V3 in “dat”

o First, be polite. Ask the data frame what its column names
arel

colnames(dat)

Suppose the names are V1, V2, V3, V4,
@ After that, there are many ways to access a column
o Use the Dollar Sign: dat$vi
e Use R list notation dat [["V1"]]
o Ask for column number, as if a matrix dat[, 1]
e Ask for columns by name dat[, c("V1","V2")]

@ These access methods are all equivalent, but some are easier
to “fit” into your program than others.

@ Retrieving one column creates an R vector, not an N x 1 data
frame. Make a mental bookmark for the “drop gotcha”
problem, | should have a blog post about it. (But can explain
it to you if you need).

Data | 6/1 University of Kansas

-
The CSV and other text formats

@ Suppose the variables are in a file that looks like this:

id, age, momage, dadage, iq
1, 14, 33, 36, 117
2, 17, 40, 44, 111

@ Row 1 is a “header” line

@ The separator is the symbol “,

@ This is a “free field” format, only the separator and the values
matter. Column positioning is ignored.

@ We seldom encounter fixed field formats today, but they can
be managed.

Data | 7/1 University of Kansas

Little warning about text storage format

@ We used to (some still do) call this ASCII data (American
Standard Code for Information Interchange)

@ In 1990s, encoding formats proliferated, and today it is very
unlikely that you actually have ASCII text in a text file.

@ ASCII won't recognize slanted quotation marks or many other
symbols that are comon today.

@ "unicode” is an internationalized character encoding format
that is attempting to displace the many formats that have
been used.

@ We hope these character formats "“just work” when you use R,
but if they don't, we have ways to convert text storage
formats. Web search: “locale”, “iconv".

Data | 8/1 University of Kansas

Reading raw text files into R

@ read.table() is the workhorse. | use this instead of
type-specific read functions like read.csv.

dat <— read.table(file = "whatever.txt”, header =
TRUE, sep = ",")

o Key options
o file="whatever.txt"
o header=TRUE: specifies first row is variable names. If no

header line exists, specify FALSE
e sep= the separator character

@ space is default, omit sep option
e “\t"tab
e " comma
° “|H “bal’”
Data | 9/1

University of Kansas

Example

@ In my current working directory, | have a subfolder called
“examples”. Look for a file called “practiceData.txt".

dat <— read.table("examples/practiceData.txt",
header = TRUE)

@ Review the first few lines

head(dat)

grp ed inc mar sex
1 1 11 44444 Y Mal
2 2 10 34343 Y Fem
8 1 9 11112 N Mal
4 3 15 23232 N Fem
5) 1 7 23111 Y Fem
6 1 12 78787 N Mal

Data | 10/1 University of Kansas

Look that over

@ > dat # same as print(dat)
@ > str(dat) # gives item-by-item information

str(dat)

'data.frame': 19 obs. of 5 variables:

$ grp: int 1213112221 ...

$ ed : int 11 10 9 15 7 12 8 6 11 20 ...

$ inc: int 44444 34343 11112 23232 23111 78787 33233
22312 32322 76755 ..

$ mar: Factor w/ 3 levels "N”","W","Y": 33113131
31 ...

$ sex: Factor w/ 2 levels "Fem” "Mal”: 21 2112 21

11

@ Confirm presence of column names

colnames(dat)

‘[1] "grp” "ed” "inc” "mar” "sex” ‘

Data | 11/1 University of Kansas

More Snooping on “dat” object

@ R has a method summary.data.frame, which is called here:

summary (dat)

grp ed inc mar sex

Min. 1 Min. : 6.00 Min. ;11112 N:9 Fem :
9

1st Qu.:1 1st Qu.: 9.50 1st Qu.:23172 W:1 Mal
110

Median :2 Median :12.00 Median :34333 Y:9

Mean 2 Mean 012 .37 Mean :38764

3rd Qu.:3 3rd Qu.:14.50 3rd Qu.:44394

Max. :3 Max. :20.00 Max. 178787

@ rockchalk package has function summarize() that has some
conveniences.

rockchalk :: summarize(dat)

Data | 12/1 University of Kansas

More Snooping on “dat” object ...

$numerics

ed grp inc
0% 6.000 1.0000 11110
25% 9.500 1.0000 23170
50% 12.000 2.0000 34330
75% 14.500 3.0000 44390
100% 20.000 3.0000 78790
mean 12.370 2.0000 38760
sd 4.072 0.8165 18760
var 16.580 0.6667 351900000
NA's 0.000 0.0000 0
N 19.000 19.0000 19
$factors

mar sex

N : 9.0000 Mal :10.000
Y 9.0000 Fem : 9.000
W 1.0000 NA's : 0.000
NA's 0.0000 entropy : 0.998
entropy 1.2448 normedEntropy: 0.998
normedEntropy: 0.7854 N :19.000

Data | 13/1 University of Kansas

More Snooping on “dat” object ...
| N :19.0000 \

@ Many other functions can be run “on” the data frame to find
out more about it.

o Ask for “dimensions”: rows and columns

dim(dat)

[1] 19 5

o Check for presence of row names

rownames(dat)

] Zi% 729 P59 000 OGe - DGm Jpo GEo om0
0" "11" "12" "13" "14" "15" "16" "17" "18"
19"

e names () will reveal names even for a non-rectangular
collection of stuff (an R list, for example) .

Data | 14/1 University of Kansas

__
More Snooping on “dat” object ...

names(dat)

‘[1] "grp” "ed” "inc mar” "sex” ‘

o Review any attributes of the data frame object. Again,
“names” attribute is the thing we get by explicitly asking for
colnames (admittedly confusing).

attributes(dat)

$names
[1] "grp” "ed” "inc” "mar” "sex”

$class
[1] "data.frame”

$row.names
[1] 1 2 3 4 5 6 7 8 910 11 12 13 14 15
16 17 18 19

Data | 15/1 University of Kansas

Exercise: Test your skills on trouble files

@ trouble-1.txt and trouble-2.txt are in examples folder.

] dat <— read.table("examples/trouble—1.txt")

@ Different thing wrong with this

dat <— read.table("examples/trouble—2.txt")

@ Note: You will need to open these files in a “flat text” editor to
see what's in them—don't use MSWord or Excel. Do use any
programming file editor, such as Emacs, Notepad++, RStudio

Data | 16 /1 University of Kansas

Exercise: Test your skills on trouble-1.txt and trouble-2.txt

@ There are GUI Spread-Sheetish thing
@ Look, don't touch
View (dat)

@ Dangerous: allows you to damage data!
fix (dat)

Data | 17/1 University of Kansas

There's even a plot method for data frames

plot(dat)
6 10 16 1.0 2.0 30
1 .I 1 I.I.I -I.I == 1 1 1 1 1 ._Q
™
o
agrp b R | I
- Jo
o —
(S M o
o : :
— : ed :
O - Py hd o
O
O
IR
. ° Inc c offe :Io
o o o |o O
2O
o o
e T L ¥
B mar
] . —ee o
—
[e
sex [-
o
L By B B B — LN L * T T
1.0 2.0 30 10000 50000 1.0 1.4 18

Data | 18/1 University of Kansas

Want to save that data frame as text?

Data |

o Creates a text file “newPractice.txt” in the current working
directory.

write.table(dat, file = "newPractice.txt”, row.names
= FALSE, sep = "|")
@ This creates the file in the subdirectory “examples”

write.table(dat, file = "examples/newPractice.txt”,
row.names = FALSE, sep = "|")

@ row.names = FALSE is important. Otherwise, R this DOES
NOT create a rectangular data structure (try it and see).

@ Sometimes its helpful to specify an unusual separator, but
don't forget to use same separator when re-opening the table

@ Note that factor lables are written out as character strings
dat <— read.table(”examples/newPractice.txt”, sep ="

|", header = TRUE)

19/1 University of Kansas

-
Outline

Data | University of

Most Common Problem: “File not found”

Suppose you try to load a file and this bad thing happens?

> dat <— read.table(file="nonexistant.txt”, header=T)

Error in file(file, "rt”) : cannot open the connection
In addition: Warning message:
In file(file, "rt")
cannot open file 'nonexistant.txt': No such file or
directory

@ First, check that the file is in the current working directory
list.filesQ)

@ Did you misspell something?

Data | 21/1 University of Kansas

-
What to do if you don't see the file ...

You have at least 3 options. | strongly recommend the first as a
part of your file organization scheme.

© Move the file into the current working directory
Ask “where am | are now?":

getwd ()

And copy the file in there (or into a subfolder in there)!

If you ever say “l don't know what my working directory is" it
means you aren’t doing your work properly. Consider changing
your work habits: Open an R file in an editor that knows
about R and helps R start in that location (i.e, do NOT start
R from an icon on the desktop that is disconnected from the
folder in which you intend to work).

@ Change the current working directory

‘> setwd ("a—valid—path—specifier—here") ‘

Data | 22/1 University of Kansas

-
What to do if you don’t see the file

‘> setwd (" /home/pauljohn/Wherever") ‘

R can talk to Windows directories, use forward slashes
‘> setwd("c:/Users/pauljohn/Wherever")} ‘

© Revise the file option to specify a full path.
> ffn <— paste("c:/Users/pauljohn/XYZ/practiceData.txt”

)}
> read.table(file= ffn, header=T)}

@ Method 1 is best: keeps everything together.

@ | only use Method 3 when there is one data frame being used
among several separate R projects.

Data | 23/1 University of Kansas

-
What if You Have Compressed Text Files?

@ Some programs generate huge text files and disk space is
gobbled up!

@ We should compress files with programs like gzip or bzip2

@ These are preferred to the proprietary “zip” compression
format.

@ Free/Open Source programs available for all platforms, “7-zip”,
etc.

@ R can read in a compressed file like so:

dat2 <— read.table(file=gzfile("examples/
practiceData.txt.gz"”), header=T)
identical (dat, dat2)

[[1] TRUE \

o For bz2 files, use bzfile instead of gzfile

@ R can also create compressed files, so that saving text output
may not cause the disk to fill up.

Data | 24/1 University of Kansas

-
Need to Download a File?

@ Possible to read from Web files “on the fly" like so

dat <— read.table(url("http://pj.freefaculty.org/
guides/Rcourse/data—1/examples/practiceData.txt”),
sep = ",”, header = TRUE)
@ Disadvantages

e nothing “saved”
e requires always-on Internet
o difficult to debug

@ Instead, | suggest

download.file("http://pj.freefaculty.org/guides/
Rcourse/data—1/examples/practiceData.txt”,
destfile = "practiceData.txt”)

Then use read.table() to import that.

@ Abstract the file name definitions, look more “professional”

Data | 25/1 University of Kansas

Need to Download a File?

Data |

fnl <— "practiceData.txt”

addr <— "http://pj.freefaculty.org/guides/Rcourse/
data—1/examples”

download.file(pasteO(addr, fnl), destfile

dat <— read.table(fnl, header = TRUE, sep

fnl)
HVH)

26/1 University of Kansas

-
Outline

Data | 27 /1 University of

__
Easy to Add and Remove Variables

Data |

To remove a variable, simply set it to NULL. Any of these will
work:

dat$ed <— NULL
dat[[* “ed'']] <— NULL
dat[, c(ed'')] <= NULL

Add a variable. Name a column using any of the usual
methods. For example,

dat$noise <— rnorm(nrow(dat), m = 444, sd = 234)
dat [["moreNoise”]] <— rnorm(nrow(dat), m = 0, sd = 1)

Copy ed to a new variable name

dat$newed <— dat$ed

Remove the original ed
dat[["ed"]] <— NULL

28/1 University of Kansas

-
Easy to Add and Remove Variables ...

@ I'll undo this damage to dat later.

colnames(dat)

[1] "grp” "inc” "mar” "sex" "
noise” "moreNoise” "newed”
rockchalk :: summarize(dat)

$numerics

grp inc moreNoise newed noise
0% 1.0000 11110 —1.6620 6.000 18.6
25% 1.0000 23170 —0.4029 9.500 352.1
50% 2.0000 34330 0.4912 12.000 418 .4
75% 3.0000 44390 1.1340 14.500 588.6
100% 3.0000 78790 2.1970 20.000 869 .3
mean 2.0000 38760 0.3464 12.370 459 .2
sd 0.8165 18760 1.1950 4.072 200.1
var 0.6667 351900000 1.4290 16.580 40040.0
NA's 0.0000 0 0.0000 0.000 0.0
N 19.0000 19 19.0000 19.000 19.0

Data | 29/1 University of Kansas

-
Easy to Add and Remove Variables ...

$factors
mar sex

N : 9.0000 Mal :10.000
Y 9.0000 Fem : 9.000
w 1.0000 NA's : 0.000
NA's 0.0000 entropy : 0.998
entropy 1.2448 normedEntropy: 0.998
normedEntropy: 0.7854 N :19.000
N :19.0000

Data | 30/1 University of Kansas

-
What If the Data Frame has the Wrong Column Names?

@ Recall, colnames() displays the names.
@ R philosophy: provide similarly named assignment function
e Re-name all of them in one swipe:

colnames(dat) <— c("colone”, "coltwo”, "three”,
andSoForth™)

e Just rename one at a time, for example, change the second
column name to “columntwo”

colnames(dat) [2] <— *'columntwo '’

@ Because this is error prone, | tend to be more verbose about
when | really want to get it right.

o First, Catch that vector of names and look it over

mycolnames <— colnames(dat)
mycolnames

Data | 31/1 University of Kansas

What If the Data Frame has the Wrong Column Names?

[1] "grp" Tine” "mar” Toox”
"noise” "moreNoise” "newed”

o Edit the vector of names

origname <— mycolnames[2] ##need a copy
mycolnames [2] <— "WhateverPJSays”
colnames(dat) <— mycolnames
colnames(dat)

[1] "grp” "WhateverPJSays"” "mar”
"sex" "noise”

moreNoise” "newed”

o Better put it back the way it was (or else the rest of the
program won't work). And I'd better restore the ed variable

while I'm at it.

Data | 32/1 University of Kansas

-
What If the Data Frame has the Wrong Column Names?

colnames(dat)[2] <— origname
dat$ed <— dat$newed
colnames(dat)

[1] ngpvl Hincn Nmarﬂ "seXH
"noise” "moreNoise” "newed” "ed”

Data | 33/1 University of Kansas

-
Outline

Data | 34/1 University of

__
Cleaning Up Typographical Errors in Data

@ Resist the temptation to edit the data file directly with Excel
or such (non-traceable changes are dangerous)

@ Use any preferred method to scan data and detect troubles.
@ Write code to recode for typographical errors.
@ Example: Change the value of dat$ed from 47 to 17.

o Recode: take the column “ed” (as dat$ed) and then, in that
vector, find the index of values that are equal to 47, and
change them to 17.

dat$ed[dat$ed==47] <— 17

o That is two equal signs together
e Equivalent alternative coding

dat[dat$ed==47, "ed"”] <— 17

Data | 35/1 University of Kansas

-
Cleaning Up Typographical Errors in Data ...

@ We can grab particular row and column values by their
numerical position if we want

dat[7, 2] <— 17

@ Use %in%: Its a Multiple Matcher!

dat$ed[dat$ed %in% c(190, 191, 192, 200)] <— 99

Data | 36/1 University of Kansas

-
Outline

Data | 37/1 University of

__
Maybe There Are Missing Value Indicators?

@ Out-of-range scores like “99" or 999" may mean “unavailable”
or “don’t know" or some other “missing value”

@ It may be necessary to manually mark those scores as missing
@ R uses NA as the value for missings

@ NA is a “symbol”, can be assigned as if it were a numerical
value

dat$ed[dat$ed==99] <— NA

o Call any dat$noise value bigger than the mean a missing

dat$noise[dat$noise > mean(dat$noise)] <— NA

@ Or use %in% to collect mutiple discrete values
dat$ed[dat$ed %in% c(110, 190, 191, 192, 200)] <— NA

Data | 38/1 University of Kansas

-
Anticipate Missing Codes when Importing Data

Data |

@ Suppose some SAS user gives you a file with some periods
where you wish you had NA
@ R won't understand that:

dat2 <— read.table("examples/newp.sas.txt”, 6 header=T,
sep="1")
str(dat2$noise)

Factor w/ 10 levels "."”,”"—186.784638260593",..: 1 7 1
9 10 NA 1 NA NA 6

@ R treats period "." as a letter, so the whole column is treated
as a character variable (which, by default, is converted to a
factor)

@ Don't manually edit the file

@ Do revise your R code: Specify the missing strings and it will
be OK!

39/1 University of Kansas

-
Anticipate Missing Codes when Importing Data ...

dat2 <— read.table("examples/newp.sas.txt”, header =
TRUE, sep = "|", na.strings = c("NA",”."))
str(dat2$noise)

[num [1:19] NA 321 NA 346 363

Data | 40/1 University of Kansas

-
Outline

Data | 41/1 University of

Numbers are Easy

@ First, make sure a variable really is a number. Should have no
attributes:

attributes (dat$ed)

‘NULL

is.numeric(dat$ed)

[[1] TRUE |

is.factor (dat$ed)

[[1] FALSE |

Data | 42/1 University of Kansas

-
Numerical Recoding: As Easy as Math

e Want the log?

dat$edlog <— log (1l + dat$ed)
dat$edsqrt <— sqrt(dat$ed)
dat$edexp <— exp(dat$ed)

head(dat)
grp inc mar sex noise moreNoise newed ed edlog edsqrt
edexp

1 1 44444 Y Mal NA 0.2987237 11 11 2.484907 3.316625 59874
2 2 é2§43 Y Fem NA 0.7796219 10 10 2.397895 3.162278 22026
S 1 .‘11?]6.12 N Mal 418.4230 1.4557851 9 9 2.302585 3.000000 8103
4 g .22332 N Fem 337.8817 —0.6443284 15 15 2.772589 3.872983 3269017
5 1 i;fll Y Fem NA —1.5531374 7 7 2.079442 2.645751 1096
6 1 .33387 N Mal 18.5983 —1.5977095 12 12 2.564949 3.464102 162754

791

@ NB 1: | don’t usually obliterate old variables. Create new
instead.

Data | 43/1 University of

Numerical Recoding: As Easy as Math ...

@ NB 2: Suggested naming scheme keeps original variable name
and appends new letters. This keeps similar variables
alphabetically grouped. (Do NOT use dat$loged. DO use
dat$edlog).

Data | 44 /1 University of Kansas

-
Outline

Data | University of

-
What is a Factor?

@ A factor is a structured thing
(“look-up table”), with numbers

and labels.

o R's internal numerical score, Internal Value Label
always 1, 2, 3, 4, ... 1 Catholic
o A list of labels of “levels” for 2 Protestant
each number 3 Muslem
o The idea.bt.ahind fac.tors is 4 Hindu

that statistical routines should .
5 Jewish

be smart enough to give you
the correct answer, depending
on whether your data is
numeric or categorical.

Data | 46 /1 University of Kansas

-
Little Factor Wrinkles

@ Unlike SPSS, where users can assign any numerical scores
they want for values, R always uses consecutive 1,2,3, ...

@ Those internal scores are what you get when you use
as.numeric() on a factor.

@ So, if you “import” an SPSS dataset and allow R to convert
those variables to factors, the SPSS coded values 1, 3, 5,7, 9
will be lost forever, R will internally re-number that 1, 2, 3, 4,
5. You can NEVER recover the SPSS numeric scores.

@ R gets the labels right. From R’s point of view, the separate
labels are the only important information. The numbering is
not important. (Only silly people base any work on the
integers associated with factor levels.)

Data | 47/1 University of Kansas

Convert Numeric to Factor

This arises in 2 contexts, which we treat separately.

@ A numeric variable coded 1, 2, 3 should become a factor
variable with discrete labels like c(“Catholic” “Protestant”
“Muslem”) or c(“Midwest”,"South”, “East”).

@ A numeric variable has to be grouped into ranges (“low”,
“medium”, and “high")

Data | 48 /1 University of Kansas

Convert “grp” into R factor

@ Recall dat's variable grp

dat$grp

[[1] 1213112221222333313 \

@ We want to faithfully reproduce that, without re-grouping or
losing values.

Data | 49/1 University of Kansas

-
The factor () function

@ The factor function converts existing values into characters
and enters them as factor levels, alphabetically

@ Try that without entering any detailed arguments

dat$grpfacl <— factor(dat$grp)
str(dat$grpfacl)

Factor w/ 3 levels ”17,72”7,737: 1 213112221

with (dat, table(grpfacl, grp))

grp
grpfacl 1

W N =
oo o
DO O W

@ That's treating 1 as a character, "1", etc.

Data | 50/1 University of Kansas

__
Assign More Meaningful Labels for the Levels

@ Let's be very concrete about this:

dat$grpfacl <— factor(dat$grp, labels = c(”"Numberl”,
"Number2”, "Number3”))
str(dat$grpfacl)

Factor w/ 3 levels "Numberl”, K "Number2”,..: 1 2 1 3 1 1
2221

with (dat, table(grp, grpfacl))

grpfacl
grp Numberl Number2 Number3
1 6 0 0
2 0 7 0
8 0 0 6

Data | 51/1 University of Kansas

The factor function’s levels argument RE-ORDERS the
input!

@ Common mistake, to mis-understand difference between
levels() function and levels argument in factor () function.

@ In factor, the levels argument indicates which existing scores
are to be included, and in which order.

dat$grpfaco <— factor(dat$grp, levels = c(”2","1","3"
), labels = c¢("Number2”, "Numberl”, "Number3”))
str(dat$grpfaco)

Factor w/ 3 levels "Number2”,”Numberl”,..: 2 1 2 3 2 2
1112

@ Note that the labels were re-arranged accordingly.

with (dat, table(grp, grpfaco))

Data | 52/1 University of Kansas

-
The factor function’s levels argument RE-ORDERS the

input!

Data |

grpfaco
grp Number2 Numberl Number3

1
2
8

0
7
0

6
0
0

0
0
6

Now inside grpfaco, the internal numbering of the scores is
changed. The labes are correct:

head(dat[, c("grp”, "grpfaco”, "grpfacl”)])

grp

OOl A WN

oW RN e

grpfaco
Numberl
Number2
Numberl
Number3
Numberl
Numberl

grpfacl
Numberl
Number2
Numberl
Number3
Numberl
Numberl

53/1

University of Kansas

-
The factor function’s levels argument RE-ORDERS the
input!

@ But the internal numeric scores have changed

rbind (grp = dat$grp, grpfaco = as.numeric(dat$grpfaco

)L .1:6]

(.11 [.2] [.3] [.4] [.5] [.6]
grp 1 2 1 3 1 1
grpfaco 2 1 2 8 2 2

@ The ordering can be important. Statistical procedures will
generally us the first one as the baseline and provide estimates
of the other levels as “contrasts”. The way procedures handle
factors is controlled by the session options().

Data | 54 /1 University of Kansas

Collapse a numeric range into a Factor

@ Sometimes researchers want to convert temperature scores

"o

from numeric to c(“cold","warm”,"hot”) or such.
@ R provides a function called cut () that is intended for that
purpose.

@ The user must supply breaks so that the scores are
subdivided.

@ Labels for the levels of the new factor will be supplied
automatically, but many users will not like them.

Data | 55/1 University of Kansas

Let's convert noise into a new factor

@ Recall dat$moreNoise

quantile (dat$moreNoise)

0% 25% 50% 75% 100%
—1.6620502 —0.4028670 0.4911883 1.1338291 2.1968335

o Let's create 5 groupings

dat$mnl <— cut(dat$moreNoise, breaks = c(—10, -1,
0.3, 0.7, 1, 10))
table(dat$mnl)

(-10,-1] (-1,-0.3] (-0.3,0.7] (0.7 1] (1,10]
3 3 6 2 5

levels (dat$mnl)

[1] "(-10,-1]" "(-1,-0.3]" "(-0.3,0.7]" "(0.7,1]"
"(1,10]"

Data | 56/1 University of Kansas

Let's convert noise into a new factor ...

@ Because the labels are so ugly, many people will change them
either

o at the time of creation

dat$mnl <— cut(dat$moreNoise, breaks = c(-10, 1,
-0.3, 0.7, 1, 10),

labels = c("never”, "seldom”, "some”, "freq",
often”))

o after creation

levels$mnl <— c("never”, "seldom”, "some”, "freq”
"often”)

Data | 57/1 University of Kansas

Brief Exercise: Run these commands (chunk exerciselQ in
R file)

x <— c("Y","N","Y","Y" ,"F","N")
is.factor(x)

is.character(x)

xfl <— factor(x)

xfl
levels (xfl)
x[1] <= "P”

xf1[1] <= "P”

xfl1[1] <— "F”

xfllevs <— levels (xfl)

xf1[1] <= xfllevs[2]

xf2 <— factor(x, levels = c("Y”,"N","anything”), labels =
c("HECK” ,"YES" ,”"irrelevant”))

table(x, xf2, exclude = NULL)

xf2 [1] <= "Y”

levels (xf2)

xf2 [1] <— "HECK"

xf2

Data | 58/1 University of Kansas

Create a character variable and convert it to a factor

@ Begin with a character vector
X <m (YN LYY TR N
is.factor (x)

[[1] FALSE \

is.character (x)

[[1] TRUE |

@ Turn that into a factor, using defaults
xfl <— factor(x)

xfl
[I] YNY Y FN
Levels: FNY
levels (xf1l)

‘[1] "F" N YT

Data | 59/1 University of Kansas

__
Notice What R No Longer Allows

@ x will still let us write anything we want
x[1] <= "P”

@ But xf1 will refuse any assignment that is not a valid level.

@ Why? xfl is not an ordinary character vector anymore. It has
levels that must be used for values.

levels (xf1l)

‘[1] "F" O'N" YT

@ Try to set xfl to a value that is not in levels(xf1)
xf1[1] <= "P”

Warning message:
In “[<—.factor “(stmpx", 1, value = "P")
invalid factor level, NAs generated
Data | 60/1

University of Kansas

__
Assigning Values To Factors

@ Assign new value either with properly quoted, legal label, as in

xfl[1] <= "F"

@ If the level were longer, or had spaces or other details that
might cause danger of typographical errors, it is better to
review the levels and then take the one you want. Examples:

xfllevs <— levels (xfl)
xfl[1] <— xfllevs[2]

@ Or in one step, put the value of xf1[1] to level 2
xf1[1] <= levels (xf1[1]) [2]

@ That is better because it avoids danger of typographical errors
in long labels

Data | 61/1 University of Kansas

The “drop unused levels” controversy

@ "levels” Orders the new vactor using the pre-existing variable.

@ “labels” Supplies new labels of this new variable

xf2 <— factor(x

levels=c("Y"”,”N","anything”), labels

=c("HECK" ,"YES" ,"irrelevant”))

table(x, xf2, exclude = NULL)
xf2
X HECK YES irrelevant <NA>
F 0 0 0 1
N 0 2 0 0
P 0 0 0 1
Y 2 0 0 0
<NA> 0 0 0 0

@ The levels argument includes an “unobserved” level.

@ If we run the factor through factor(), it will “drop unused

levels”.

Data |

62/1 University of Kansas

The “drop unused levels” controversy ...

xf2 <— factor (xf2)
table(x, xf2, exclude = NULL)

xf2
X HECK YES <NA>
H 0 0 1
N 0 2 0
P 0 0 1
Y 2 0 0
<NA> 0 0 0

Values listed for xf2 only include "HECK" and “YES", the levels
that are obseved in xf2.

@ This fails
xf2[1] <= "anything”

Warning message:
In ‘[<—.factor (" *tmpx", 1, value = "anything")
invalid factor level , NAs generated

Data | 63/1 University of Kansas

The “drop unused levels” controversy ...

@ Better check the valid levels

levels (xf2)

‘[1] "HECK" "YES"

@ But this is OK
xf2[1] <— "HECK"

@ See?
xf2

[1] HECK YES HECK HECK <NA> YES
Levels: HECK YES

Data | 64/1 University of Kansas

-
Add New Values: Requires a “fiddle” with Levels

Data |

o Copy xf2 to xf3, then append a new level “Denver”

xf3 <— xf2

levels (xf3) <— c(levels(xf3), "Denver”)
xf3[5] <— "Denver”

data.frame(x, xfl, xf2, xf3)

OOl WN

x xfl xf2 xf3
R N HECK HECK
N N YES YES
Y Y HECK HECK
Y Y HECK HECK
F F <NA> Denver
N N YES YES

65/1 University of Kansas

Practice this: Choose Your Names. Choose Your Order

o factor() levels and labels must match.

dat$grpfac2 <— factor(dat$grp, levels = c(2,1,3),
labels = c("Western”,”Midwest” ,"”Eastern”))
str(dat$grpfac2)

Factor w/ 3 levels "Western”,"Midwest”,..: 2 1 2 3 2 2
1112

with (dat, table(grpfac2, grp))

grp

grpfac2 123
Western 0 7 0
Midwest 6 0 O
Eastern 0 0 6

Data | 66 /1 University of Kansas

Now, suppose you want to re-order the levels

e Everybody has made this mistake at least once (Maybe twice):
It is VERY tempting to do something like

levels (dat$grpfac2) <— c(”"Midwest”, "Eastern”,
Western")

@ Caution. Disaster occurred!

dat$grpfac3 <— dat$grpfac2
levels (dat$grpfac3) <— c(”"Midwest”,”Western”,"Eastern

str(dat$grpfac3)

Factor w/ 3 levels "Midwest”,"Western”,..: 2 1 2 3 2 2
1112

with(dat, table(grpfac3, grpfac2))

Data | 67/1 University of Kansas

Now, suppose you want to re-order the levels ...

grpfac2
grpfac3 Western Midwest Eastern
Midwest 7 0 0
Western 0 6 0
Eastern 0 0 6

@ Big point: "levels ()" does not “reorganize” the information.
It just changes the labels of the current order.

Data | 68/1 University of Kansas

Why would you want to use levels()?

o | use levels ALMOST EXCLUSIVELY to review existing
variables (not to set new levels)

levels (dat$grpfac3)

is perfectly safe
@ Putting an argument on the right hand side can be tricky. Do
that in order to
e To rename (respell) same level in the same order
e Perhaps you want shorter strings. This is automatic

shortLabels <— abbreviate(levels(dat$grpfac3),
minlength= 1)
levels (dat$grpfac3) <— shortLabels

e Same to do it manually, but perhaps more error prone because
we might type W, M and E “out of order”

levels (dat$grpfac3) <— c("M","W’,"E")

Data | 69/1 University of Kansas

You Can Reorganize Factor Variables, However ...

@ At create time, use the levels argument.

newFactor <— levels(oldFactor, levels=c("C", "B", "A"
), labels=c("car”, "bus”, "auto”))

@ Suppose the current levels of grpfac2 are
levels (dat$grpfac2)

‘[1] "Western” "Midwest” "Eastern” ‘

@ create grpfacd by re-ordering

dat$grpfac4d <— with(dat, factor(grpfac2, levels=c(”
Eastern”,”Western” ,”Midwest")))
with (dat, table(grpfac4, grpfac2))

grpfac2
grpfac4 Western Midwest Eastern
Eastern 0 0 6
Western 7 0 0
Midwest 0 6 0

o Effect: Changes the way results are reported (plots,

regression
Data | 70/1 University of Kansas

relevel function is a convenience function

@ For unordered factors,"relevel ()" can be used to properly
re-sort a variable so that one value “comes first”

dat$grpfacs <— with(dat, relevel(grpfac2, ref="
Eastern”))

with(dat, table(grpfacs, grpfac2))

grpfac2
grpfach Western Midwest Eastern
Eastern 0 0 6
Western 7 0 0
Midwest 0 6 0

@ Has very limited effect of moving one value to the front of the
levels

o Effect: Changes regression tables

Data | 71/1 University of Kansas

grpfac2 has “Western" as the Reference Category

coef (summary(Im(newed ~ grpfac2, data = dat)))[,1:2]

Estimate Std. Error
(Intercept) 10.428571 1.449695
grpfac2Midwest 1.738095 2.133893
grpfac2Eastern 4.404762 2.133893

Data | 72/1 University of Kansas

grpfacd has “Eastern” as the Reference Category

coef (summary(Im(newed ~ grpfac4 , data = dat)))[,1:2]

Estimate Std. Error
(Intercept) 14.833333 1.565850
grpfac4Western —4.404762 2.133893
grpfac4dMidwest —2.666667 2.214446

Data | 73/1 University of Kansas

The Problem of “combining” levels

@ Suppose you have a factor variable with 3 levels
x <— c("A","B","C" "B","C")

@ However, “C" is a redundant scoring. It is really same as B.

@ We want to put “C” cases into “B". The "“obvious approach”

fails.
f <— factor(x, levels = c("A”,"B","C"), labels = c("A
u’uBn’nBu))
Warning message:
In “levels<—" (" *tmpx', value = if (nl = nlL)
as.character(labels) else pasteO(labels
duplicated levels will not be allowed in factors
anymore

@ Its necessary to “create” a new level, then recode to use it
(seems tedious).

Data | 74/1 University of Kansas

The Problem of “combining” levels ...

levels(x) <— c(levels(x), "BorC")
x[x %in% c("B", "C")] <— "BorC”
x <— factor(x)

table (x)

A BorC
1 4

@ The use of factor(x) causes the old, unused levels “B” and “C"

to be removed.

levels (x)

‘ [1] "A” "BorC"

levels (x) <— c("A","B")
table (x)
University of Kansas

Data | 75/1

The Problem of “combining” levels ...

= > X

B
4

@ Package rockchalk has a function called combineLevels()
that is intended to automate this. Example usage
x <— factor(c("A","B","C" ,"B","C" "A"))
xrc <— rockchalk::combinelLevels(x, c("B",”C"), "BorC”

)

The original levels A B C
have been replaced by A BorC

table (xrc, x)

Xxrc A BC
A 200
BorC 0 2 2

Data | YAt University of Kansas

-
R has its Own Data Storage Formats

R's save() and load()

Correct suffixes: “RData” and “rda”. NOT “Rdata” (as | often
do mistakenly)

Objects saved in this way are compressed

Are compatible across platforms: Can email from Mac user to
Linux user and R can load “as if" it were created there.

Data | st University of Kansas

__
Try this magic trick

@ Suppose “dat” is a data frame

save(dat, file="practiceData.RData")

@ Remove the dat object from memory
rm(dat)

o Get it back

load (" practiceData.RData”)
str(dat)

Data | 78/1 University of Kansas

Lately | prefer RDS format (saveRDS())

@ Shortcoming of 1load(): the collection of saved objects is
restored into memory and existing objects with same names
are obliterated!

@ See 7saveRDS, which describes a way to save a single R
object, along with the readRDS() that can restore an object
and re-name it in the process.

@ File name suffix standard is “rds".

saveRDS (dat, "practiceData.rds")
dat99 <— readRDS(”practiceData.rds")
str(dat99)

Data | 79/1 University of Kansas

-
Lately | prefer RDS format (saveRDS())

'"data.frame': 19 obs. of 18 variables:

$ grp cint 1213112221 ...

$ inc cint 44444 34343 11112 23232 23111 78787
33233 22312 32322 76755 ...

$ mar Factor w/ 3 levels "N”","W’,"Y”: 3 3 1 1 3
131 3 1

$ sex : Factor w/ 2 levels "Fem”,”Mal”: 2 1 2 1 1
22111 ...

$ noise : num NA NA 418 338 NA ...

$ moreNoise: num 0.299 0.78 1.456 —0.644 —1.553

$ newed : int 11 10 9 15 7 12 8 6 11 20

$ ed ©int 11 10 9 15 7 12 8 6 11 20

$ edlog : num 2.48 2.4 2.3 2.77 2.08

$ edsqrt : num 3.32 3.16 3 3.87 2.65 ...

$ edexp : num 59874 22026 8103 3269017 1097

$ grpfacl . Factor w/ 3 levels "Numberl”,”Number2”,
1213112221

$ grpfaco . Factor w/ 3 levels "Number2”,”Numberl”,

2123221112

$ mnl : Factor w/ 5 levels "(-10,-1]","(-1,-0.3]"

,..: 3452115233

Data | 80/1 University of Kansas

Lately | prefer RDS format (saveRDS()) ...

$ grpfac2 : Factor w/ 3 levels "Western”,”Midwest”, ..
2123221112

$ grpfac3 : Factor w/ 3 levels "Midwest”,”Western”, ..
2123221112

$ grpfac4d : Factor w/ 3 levels "Eastern”,”Western”, ..
3231332223

$ grpfach . Factor w/ 3 levels "Eastern”,”Western”, ..
3231332223

identical (dat, dat99)

[[1] TRUE

Data | 81/1 University of Kansas

