
Power Tour of Swarm Apps

Paul Johnson
Swarmfest 2005 Tutorial

Torino, Italy
2005/06/05

3 Questions to ask about a
model

● 1. What do these agents “do”?
● 2. How do they interact & get information?

– meet each other?
– detect changes in environment?

Scheduling

● 3. How are their actions “interleaved” in
time?

Ordinary Models: repeatedly process a
collection of agents (perhaps shuffle)

Scheduling Details

A. Synchronization
– synchronous: all step at same time, don't

impact environment until all have acted.
– asynchronous: each one steps and registers its

impact on the environment
B. Dynamic Scheduling: Events add items to

schedules

Cellular Automata

● CA can be written in Swarm
● Conway Game of Life

Cellular Automata (CA)
● Can be written with Swarm
● World is a grid of cells

● Colors represent condition (state)

Rules for Updating Cells

● Rules specify state transition
● Usually depend on neighborhood

VonNeumann (4) Moore (8)

Conway's Game of Life

● Martin Gardner, “The Fantastic
Combinations of John Conway's new solitar
game “life”” Scientific American, 223, (1970)

● 2 States: on / off (alive / dead)
● Cells die if they are lonely (< 2 neighbors)
● Cells die if too crowded (> 3 neighbors)
● Cells turn on if neighbors = 3

Conway

Arborgames

● Melissa Savage & Manor Askenazi (SFI)
● Several Species of Tree
● Tree occupies cell & sheds seeds in

neighbors
● Seeds may grow on open cells in “young

forest”
● Die if “mature forest” has no opening
● Fires
● Code significantly revised for inclusion in

swarmapps-objc-2.2

Look Under the Hood

● A whole bunch of cellular automata running
at once!

● Young forest
● Mature forest
● Fire grid
● Seed Grids (1 for each Species)

Scheduling in Game of Life

● All cells are updated at each step
● Double-buffered “grid”

– each cell is updated against a snapshot of the
grid from the previous period

– after all cells are updated, then their status is
drawn onto the grid

● This is SYNCHRONOUS updating

Heatbugs: Prototype Swarm
Application

● Agents are bugs seeking “just the right”
temperature

● Each bug deposits heat onto a “HeatSpace”
● Each bug moves in a 2d grid that is “overlaid”

on the HeatSpace

Bug Interactions

● Look at “step” method in Heatbug.m

● Bugs adjust to heat in HeatSpace

● No direct interaction between bugs
● Prevented from stepping onto occupied cells

Heatbugs: Synchronous?

● Both ASYNC and SYNC elements
● SYNCHRONOUS: Heat grid is not updated

until all bugs (agents) move

Look in HeatbugModelSwarm.m for
“updateLattice” message sent to “heat”

●

Heatbugs: Asynchronous
Aspects

● Agent Schedule: repeated 'trips through the
list'

● Possibly randomized
● Agents reposition themselves one-at-a-time
● Agents will not move onto an occupied

square

Heatbugs: Cool Gadgets

● GUI buttons interact with agents
● Pixmaps for bugs (compiler flags)
● Batch mode: run with -b: demonstrates “fork”

in main.m between GUI ObserverSwarm and
BatchSwarm

“createActionForEach”

● HeatbugModelSwarm “buildActions”
● Simple Old-style Method
 actionForEach =
 [modelActions createActionForEach:

heatbugList message: M(step)];
● Faster, new “multilanguage” method used if
Compiler flag FAST is set

#make EXTRACPPFLAGS=-DFAST
●5% difference on my laptop

A Simpler Approach

● Create method that processes agents
- myLoop {

id anAgent, index;
index= [heatbugList begin: self];
for (anAgent=[index next]; [index

getLoc]==Member; anAgent = [index next])
...[do something for each element in a collection];
}

● In buildActions add:
[schedule at: 0 createActionTo: self
 Message: M(myLoop)];

Scheduling Opinion, cont.

● Reasons to take “loop” approach
– keeps agent actions “together in time”
– faster because it does not invoke the “deep

down” scheduling apparatus so much
– avoids major hassles, especially when writing

models in Java
● Counter argument:

– Sometimes you want to throw actions onto the
pile at a given time and want them all “mixed up”

But if you really want speed

● Use gcc profiler to find slow parts of model
● Revise code:

– Reduce use of % operator makes model much
faster (about 1/3)

Dynamic Scheduling:
Mousetrap

● Notable event-driven Swarm simulation
● There's a “master schedule” in ModelSwarm
● Mouse traps “go off” and then notify

ModelSwarm that other traps are supposed
to go off at a future time

●

Mousetrap start

Mousetrap: midpoint

Mousetrap: finished

How Decentralized is it?

● Schedule in ModelSwarm manages timing
● Not completely “decentralized” in the bottom-

up sense
● A true bottom-up scheduling is possible

(pjrepeater* examples)
● “activateIn:” is hierarchical “time

harmonization” tool

Dynamic Scheduling: Ballet

● Tina Yu & Paul Johnson, “Tour Jeti,
Pirouette: Dance Choreographing by
Computers,” YELM Journal (2003).

● Dancers have a list of dance steps and a
“transition matrix”

● Dance Steps (Behaviors) take a variable
number of time steps

● Swarm model has dancers “schedule
themselves” for new steps X timesteps into
future (asynchronous, dynamic scheduling).

Dancer

Schelling2

● Thomas Schelling, “Dynamic Models of
Segregation”, Journal of Mathematical
Sociology, 1971

● Cells are “houses”
● White cells are empty
● Agents are “colored” and move about
● Can tolerate some diversity
● move if

tolerance < diversity in neighborhood

diversity = 1 - fractionOwnType

Standard Schelling Start

Standard Schelling End

Schelling2 Runtime Options

● ASYNCHRONOUS or SYNCHRONOUS
● Load & save parameter files
● Set Neighborhood type- Moore or

VonNeumann
● Radius of neighborhood
● Edge effects & Wrap Around
● Randomized ordering of agent actions at

each step

Many Options can be
considered

● Number of races
● Tolerance of individuals
● Set Neighborhood type- Moore or

VonNeumann
● Radius of neighborhood
● Edge effects & Wrap Around
● Randomized ordering of agent actions at

each step
● ASYNCHRONOUS or ASYNCHRONOUS
●

Bells & Whistles

● Note Files:
– Parameter file: load or save
– Output file

● Screenshot of raster: turn on
“writeGUIRaster” in the GUI, watch what
happens

● Full BatchSwarm implementation, including
BatchPixmap

Explore: flight1.setup

Protest Activist Model

● Brichoux and Johnson, “Power of
Commitment in Collective Action”, JASS
(2002).

● “Activists” code available PJ's
“MySwarmCode/Protest”

● Agents on a grid
● Can (optionally) move
● Can protest if they are unhappy or want

change
● Agents “view” limited number of cells in their

vicinity

Protest #2

● SYNCHRONOUS compiler flag
– each agent chooses next behavior on the basis

of a “snapshot” of community at previous instant
– SYNC can produce “modeling artifacts”

(Huberman and Glance, ,)
● ASNCHRONOUS model:

– each agent's action registers in eyes of others
“right away”

– more realistic?

Protest snapshot

Social Impact Model

● Nowak & Latane: social psychologists

A. Nowak, J. Szamrej, B. Latane. “From
private attitude to public opinion: A dynamic
theory of social impact” Psychological
Review 97 (1990)

● A well-known cellular automaton
● Agents change YES or NO depending

Latane's theory

● Agents change opinion YES or NO
depending on social pressure

● Agents gather “support” from like-minded
others

● Agents subjected to pressure from other-
minded agents

● Influence is distance weighted: closer agents
have more influence

Social Impact Model

● Swarm “SIM” available
● Swarm SIM model implements

ASYNCHRONOUS option
● Swarm SIM implements “variable

neighborhood size”

Social Impact Model

Speed Note

● Heatbug style cell search TOO SLOW
● Activists, SIM, Schelling2 use “collector

grids” to register the actions of agents.
● When agents “make change” they register

that action withworld
● World applies impact on all cells within

“eyesight”.
● Other agents can obtain “visible activity” with

a single check or a Grid position.

Artificial Stock Market

● Pioneering study.

R.G. Palmer, Brian Arthur, John Holland, Blake
LeBaron, & Paul Taylor, “Artificial economic
life: a simple model of a stockmarket”
Physica D 75: 264-274.

● Swarm project on Sourceforge
 http://ArtStkMkt.sf.net
Code revisions discussed Johnson, “Agent-based

Modeling...”, Soc. Sci. Computer Review, 2001.

What's in the ASM?

● Agents buy or sell a single stock
● Agents receive info on the world and on

stock price patterns
● Each agent has an intricate “mental model”

of the world (Genetic Algorithm)
● Agents invest in isolation: never meet
● Runs for hours in order for agents to “learn”

ASM
In
Action

ASM: Serialization

● ASM-2.4 implements Serialization:
– able to save entire state of simulation and restart
– valuable because of long “burn in” time for ASM

● Serialization allows one to change agent
behavioral assumptions within a “stabilized”
context.

● Developing “Social ASM” in which agents
can copy from each other

Public Opinion (home & work)

● Huckfeldt, Johnson, Sprague, Political
Disagreement: The Survival of Diverse
Opinions within Communication Networks
(Cambridge, 2004)

● Agents interact only when they
– find another available agent and
– choose to initiate interaction

● Various behavioral premises
● (Comparatively) complete documentation

Many agents per cell allowed

Opinion Model #2

● Full implementation of Swarm serialization in
LispArchiver format

● Run model to equilibrium
● Restart repeatedly after small random

shocks.

20 restarts

Opinion Model #3

● Thorough example of batch processing.
● Makes picture (png format) snapshots of

grids at designated intervals.
● Text output: use C commands to write text

into files
● Unix tools for post-processing data files (tail,

etc) & R scripts for graphs
● Some (smarter) users prefer HDF5 output

which can be obtained from EZGraph

Multi-Agent Grids

● Original Swarm designers always considered
 Grid2d with one agent per cell

● Sometimes we want multi-agent cells
● Sven Thommesen developed 1st prototype of

multi-agent grid (MoGrid2d)
● PJ's MultiGrid2d is MoGrid2d on steroids.

– answers all ordinary Swarm instructions suitable
for grids

– allows full customization of “cell sites” to allow
diagnostic information collection

Asynchronous And
Synchronous

● Commonly mistaken as a Swarm library
issue.

● Actually, its an issue of conceptualization
and user model design

● Sudden Impact: Does programmer intend
agents to have impacts on environment/other
agents that are immediately?

