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Abstract

This paper is about the theoretical implications of agent-based modeling exercises.
Construction of an agent-based model challenges a social scientist to formalize many
concepts and relationships that would have remained implicit or unrecognized. While
formalizing these "unimportant" assumptions can be a nuisance, it can also have sub-
stantial theoretical payoffs. In order to fill the gaps of the model, the researcher is
forced to confront the gaps in the theory that motivated the model in the first place.
Using examples drawn from several large political science simulation models, the pa-
per argues that frailty, defined as unpredictability in the behavior of agents, is often
required in order to bring closure to the modeling exercise. It is difficult (or impos-
sible) to square the dynamic or aggregate implications of the agent-based model with
observations without placing a substantial amount of emphasis on frailty. Hence, the
component in behavior that we often treat as "error" in empirical analysis is actually
a vital part of the glue that makes the many different moving parts of a social sys-
tem interact in coherent ways. The example models were developed with the Swarm
simulation system (http://www.swarm.org) during the last decade.

1 Introduction
This paper is about the process of agent-based modeling. The “process” is one of translation,
from a researcher’s ideas about the parts of an interactive process into a working computer
model. I’m trying to summarize my experience in a number of modeling projects and outline
some ideas about when the translation from idea to model is most likely to be useful. Another
purpose is to make it easier for researchers and program developers to understand each other.
To facilitate that communication process, I have some suggestions about the process that
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occurs between the posing of the question, “what would happen if we had an agent-based
model of (whatever)?” and the development and analysis of the computer model.

I’m writing about this from the perspective of a professor who frequently serves the role
of a programming consultant. Researchers, professors and students alike, often approach
me with ideas that they would like to translate into an agent-based model. After working
on quite a few projects, I’ve accumulated a mental list of “danger signs” and “opportunity
indicators” about the agent-based modeling projects.

2 Terminology and Purposes
First, the easy part: terminology. For the sake of discussion, here are some definitions.

agent. An isolated collection of data and routines for gathering, adjusting, and (selectively)
revealing data.

agent-based model. A collection of agents along with a computer framework required to
manage their interaction and to collect information.

Second, the difficult part: what are the purposes of agent-based modeling?
In my opinion, the creation of an agent-based model is best understood as a “hypothesis-

generating exercise” (Johnson, 1996). We want to find out what might happen if a collection
of separate things are thrown together into a system. The agent-based modeling exercise is on
the same epistemological level as game theory or mathematical models of physical systems.
These models take simplified characteristics of objects and formalize them so as to use tools
of reasoning with which they can be better understood and formalized. These models are
not conducted with the purpose of representing reality in a one-to-one translation. Rather,
the purpose is to force ourselves (or our clients) to think through a theory thoroughly and
understand all of the implications of our newly-made-explicit ideas.

Many of the earliest, and still most exciting, agent-based models were framed on the
effort to produce “something” from “nothing.” They seemed to be realistic because they
generated patterns that appeared to match empirically observed patterns. The macro-level
“something” emerged (Holland, 1992, 1996, 1998; Strogatz, 2003; Miller and Page, 2007;
Mitchell, 2009). The separate parts seemed to organize themselves (Bak, 1999). Patterns
that we notice in our empirical reality, patterns that we may have taken for granted or that
we may not have noticed, are given a deeper foundation, a bottom-up explanation (Epstein
and Axtell, 1996). For examples, consider the abstract work in artificial life (Langton, 1986,
1995) and evolution (Kauffman, 1993, 1995).

Within this school of thought, it is very important to design agents that are very simple,
perhaps even unrealistically simple. Consider the models of bee-hives or ant food searches,
for example. The bees are very simple creatures, they do not intentionally regulate the
temperature of the hive. And yet, as they go about their simple “lives,” the hive’s temper-
ature ends up “just right”. The ants don’t understand that they are following or emitting
pheromones as they follow the trail between their home and a pile of food. The models
of bees and ants (or ’boids’, or whatnot) don’t imbue the individuals with much, if any,
intelligence, and yet the aggregate pattern is produced.
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When I meet a client who has been reading the complexity literature, I generally know
what they want from an agent-based model. The mission, which is nearly ubiquitous in the
literature of complexity and artificial life, is to produce an emergent property. I choose to
define emergent property as an aggregate regularity that is not obviously expected on the
basis of the individual components in a model. Note the wiggle room created in this definition
by the phrase, “not obviously expected.” I’ve often wondered if emergent properties must be
“unexpected properties” (and for whom must they be unexpected).

The main idea here is that most people who are presented with an agent-based model will
be interested if its aggregate properties are consistent with their understanding of reality.
But is even better if the property evidenced in the model can then be “discovered” in reality.
Empirical regularities seem to come in three flavors. One is a “factoid” that is widely under-
stood as a pattern in reality. At the opposite end of the spectrum, we have a “revelation,”
something that exists, but has not been recognized (probably because theory did not tell us
where to look). In between the two, we have a “hunch,” something a researcher suspects, or
wishes to demonstrate, but other scientists are not aware of it. An agent-based model that
generates a emergent property that amounts to the revelation of an empirical pattern will
have traction with the scientific audience. In the literature of complexity, the best example
I have heard of is the models of “landslides” in sand piles and self-organized criticality (Bak,
1999). As far as I can tell, these models generate claims about the relevance of “power laws”
in observational data that we might not have detected otherwise. I have the same impression
about mathematical models based on fractals (Mandelbrot, 1983; Barnsley, 1993).

Of course, any aggregates that emerge from a model can be interesting, and here we
come to the curious role of factoids. I had not realized that the the “hive stabilizing”
behaviors of bees had been recognized for several decades (Heinrich, 1981) when I started
reading about Santa Fe Institute projects that generated an emergent property of stable
temperatures in simulated hives (Hiebeler, 1994). The fascinating thing about the bee models
is not only that we understand problem management among bees (although that is very
interesting, if you happen to be a scholar of bees!), but that we might gain insight into other
domains of communal activity. Swarm Intelligence is the moniker for the general proposition
that communal problems of humans might be understood from a bee hive’s point of view
(Theraulaz and Deneubourg, 1992; Bonabeau et al., 1999; Bonabeau and Theraulaz, 2000;
Jacob et al., 2007). The motivating idea in this context is that the bee hive model is well
understood and consistent with our understanding of reality, and so we hope for a “spill over”
from that domain to others. If a model produces a pattern that seems obviously wrong–it
is not consistent with our factoids–we may not be interested. As such, the patterns that we
believe are real help us to sort though proposed models. Of course, if a model produces an
emergent property that seems wrong, but more careful empirical analysis rejects the factoid,
rather than the model, then we think the model is even more useful.

Finally, consider the importance of hunches and the “reverse engineering” approach to
agent-based models. I doubt that very many models have emergent properties that were
completely unexpected to their authors. The most usual path (again, I believe) to an agent-
based model begins with a supposed aggregate pattern that the researcher wants to “reverse
engineer.” A researcher observes (or guesses about, or wishes for) an aggregate pattern, and
then sets out to develop an individual level model that produces that aggregate pattern.
Some researchers present results indicating (or pretending) they have found an unexpected
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aggregate pattern from the agent-based model. If they are truthful in making that claim,
we are more likely to take the model seriously, because it appears “more true,” or “more like
reality.” That model is not a magician’s card trick; it is not designed primarily to produce
the “unexpected” emergent property.

On the other hand, if we suspect that the model is engineered to produce that aggregate
pattern, we are less interested. Since we cannot see into their minds at the moment of
a model’s creation, we are unable to know if we are being deceived when the authors of
agent-based models claim that their model produces some previously unrecognized empirical
reality. If we suspect that a model is reverse engineered to produce a emergent property,
we are less interested mainly because, rightly or wrongly, it seems as if the author has not
made an imaginative contribution. It is not difficult, or so it seems, to code up some agents
to produce any particular aggregate pattern. Strictly speaking, I don’t think that is correct,
since I’ve tried to write simple models to reproduce some aggregate patterns and found it
surprisingly difficult to do. Nevertheless, many suspect that a model that is engineered to
produce an emergent property is both easy to create and intellectually dubious. Whether
an emergent property mirrors some empirical reality is really quite beside the point here.
The point is that it is probably easy to design a model to produce one pattern, and so we
suppose there’s not much worth learning from that model.

How can we reclaim credibility for a model that has, to some extent, been reverse engi-
neered? This did not occur to me while working on a series of projects in the early 2000s,
but now the answer seems perfectly obvious. One must reverse engineer some similar models
to produce different emergent properties! This allows us to conduct comparative statics and
dynamics, to find out if one model’s design is somehow more realistic or interesting than
another. From this point of view, then, a modeling project faces a heavy burden. Not only
must one develop the “author’s” model, the one the author is interested in, the one that has
the right emergent properties. One must also develop the “other guy’s” model, so that the
author’s model has something firm to lean against.

Anybody can throw together a model that produces some aggregate regularity. That’s
not the objective for most researchers in the complexity tradition. Instead, the objective
is to produce an aggregate reality that others would not expect from an inspection of the
individual pieces.

3 The Agent-Based Modeling Checklist
I have been developing a “checklist” for creation of agent-based models. This has helped me
to teach about agent-based modeling and it has been especially helpful in interacting with
people who want me to write agent-based models for them.

In a perfect world, the following would occur. A scientist visits my office with an exhaus-
tive mathematical characterization of the agents that are being studied. The scientist also
has a clear model for the over-time process of community development. All I need to do is
take those formulas and translate them into Objective-C and we are finished.

The world is not perfect. Almost nobody who wants an agent based model has the
exhaustive mathematical characterization that is needed to write code for a simulation. My
clients are generally empiricists who have concluded either that 1) the data is too hard to
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get, or 2) the statistical models can’t manage the data. They often want a deeper, richer
characterization of reality than the one that is implied by the usual statistical model. They
are not necessarily against the idea that, at some point, a generalized linear model will be
estimated with data, but they don’t what the variables should be and they don’t know what
the formula ought to be.

There is the problem in a nutshell. The computer model requires absolute clarity (every
variable must be explicitly set and updated) and the person who wants me to write the model
is usually driven to the agent-based research strategy by the lack of clarity. The formulation
of the computer model places demands on the researchers that they usually don’t expect.

Thus I propose a regimen that we can impose on the process of translation between a
substantive model and an agent-based computer model.

3.1 Step 1. Construct The Individual Agents
3.1.1 Make a list of variables that are internal to each individual agent

These are called the “instance variables” in computer science. Most obviously, each individual
agent has two kinds of information.

1. Permanent (unchangeable) characteristics of the agent (which may differentiate that
agent from other agents)

2. Individual variables that may change as the simulation progresses. This includes pri-
vate, or internal, variables that may not be observable directly by other agents, as
well as variables that are externally observable states (substantively, we might call
these behaviors). As far as the model is concerned, all of these characteristics are just
variables, information that is recorded in integers, real values, and so forth.

3. There may also be class variables, values that are simultaneously recognized and taken
into account by sub-groups of agents. For example, consider an agent-based model of
an army. If army X is at war with army Y, then each agent in X might have an instance
variable that says “we are at war with army Y.” However, it would be easier to write
“we are at war with army Y” on a chalk board and have all of the agents in army X
take notice of it. If a programming language does not include the possibility of class
variables, we can work around this limitation. We could create instance variables, one
for each agent. We would have to think very carefully about how to synchronization
of instance variables of many agents. In a model with 1000s of agents, the storage
ramifications are quite obvious. Instead of allocating space for each agent to keep its
own copy of some commonly-held variable, we allocate space for one variable that all
agents can talk notice of.

The model designer has to make a sequence of choices about information privacy. In object-
oriented languages, variables can be characterized as “private” or “public.” A public variable
is one that other objects can easily “gather” without permission or cooperation from the
object. Think of a public variable as the color of the agent’s shirt, which the other agents
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can see without difficulty. On the other hand, some of the agent’s variables should not be ex-
ternally visible. A private variable can only be learned by other objects through a structured
interface, a framework that the model must provide that allows information exchange.

To continue my checklist, while designing the agents, we need to consider the insertion
of

4. Instance variables to record everything the agent “remembers” about

(a) itself: the values of its instance variables as they existed in the past
(b) other agents, either as individual agents or as summarized by recollections about

groups or regions
(c) the “world”

The agent-based model is always a dynamic model. Thus, we are studying agent instance
variables that change over time. The emphasis on the emergence and maintenance of social
patterns over time differentiates agent-based modeling from many traditional models in social
science which presume the existence of equilibrium, rather than focusing on the achievement
of it. I’d point to traditional microeconomics and game theory for evidence of that (Nash,
1951; Von Neumann and Morgenstern, 1953). There are tremendous mathematical benefits
in that approach: one can bring to bear the power of mathematical fixed point theorems to
argue for a the existence of a stable equilibrium by harmonizing the plans of actions of an
arbitrarily large set of agents.

Because we are not usually concerned about the calculation of a particular outcome in
agent-based modeling, we face a more diffuse, less-well organized modeling process. We have
to make seemingly bizarre judgments about the self-awareness of the agents. The agent
may need to have a model of itself, others and possibly a model of the world into which
its experience may be accumulated. These records may be very comprehensive and code to
maintain is difficult to maintain.

Finally, we probably need

5. An algorithm to initialize the agent’s recollections.

The agent-based model begins at time 0. It “starts.” What happened before that? How
can the agents can behave reasonably? In the time before time 0–prehistory–we may have
complicated maneuvers that create a “false history” upon which the model can continue into
the future. In the Santa Fe artificial stock market (Palmer et al., 1994; Johnson, 2002), for
example, the agents who begin trading at time 0 must have an accumulation of memories of
past market events on order to begin trading. The model has a rather complicated series of
steps to generate “false” memories for the agents, false memories that must be more-or-less
internally consistent (both within the individual agent and across the various agents). I
suppose that, in Bayesian MCMC models, they’d call these burn-in iterations.

3.1.2 Design methods to adjust the instance variables.

In object-oriented programming, an object (the thing that represents our agent) includes not
only data, but also methods. For readers who have studied programming (such as Pascal,
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C or Fortran), but not object-oriented programming, the term method will be unfamiliar.
A method is different from a function in the following sense. A function “floats” in the
abstract, willing to receive inputs and generate outputs when it is instructed to do so. In C
programming, as traditionally practiced, a function was not carried out “by” an object, it
was carried out “on” a data structure. The term “method” is used (in large part) to avoid
that way of thinking. A method is an action that a particular type of object can carry
out. Objects send messages to one another, they exchange data and request actions. The
difference between functions and methods translates into agent-based models fairly well (see
the Apple Objective-C manual, Apple Computing, 2009). We think of objects, or artificial
agents, as representations of people, and we ask those object to respond to requests.

All of the agent-based models, so far as I know, rely on the passage of time to allow
agents the opportunity to change the values of their instance variables. It is fairly common
to refer to the periodic actions that agents may perform as “step” methods. A step method
may simply cause “book-keeping” to occur. An agent’s age may increment by one unit with
each time step. If the agent has a finite lifespan, then the step method will usually include
the duty for the agent to check whether its time for removal from the simulation has come.
A variety of other actions may be more-or-less automatic, such as a tree growing a certain
amount when a particular amount of water is available.

The agent may be faced with decisions to update many of its instance variables, and these
decisions may reflect a complicated mixture of input about the information states of other
agents (or the “world” more generally). If we are working within the complexity tradition,
of course, we are behooved to keep these internal machinations as simple as possible.

3.1.3 How is agent’s information made “available”?

As far as the simulation design is concerned, there is no difference between an attitude and
a behavior. These are just variables that exist within an agent.

The object-oriented paradigm of computer software design seeks to preserve information
within separate objects. The objects reveal information and change values of instance vari-
ables only through a well-structured interface. In an object-oriented framework, we would
be more likely to think of information updates as a process of “messaging” between objects.
Agents send information with messages, they receive messages and take note of them. We
don’t allow one object to simply “change” the instance variables inside a separate object.
Similarly, the variables that are inside an object might not be easily visible to the other
objects, and information retrieval can be highly nuanced.

In the agent-based model, this translates into a series of design decisions.

1. Does the agent’s existence in the model directly expose instance variables to access by
other agents?
Now the difference between public and private variables comes to the forefront. Can
other agents simply “look” at at one agent and instantly “know” the values of some
of its instance variables? Consider building a model of discussion in a cocktail party.
Some participants have easily observable characteristics, possibly size, gender, and the
style of clothing. Many of the other individual characteristics are likely to be private,
and they are not directly observed. The party guests know their own religious beliefs,
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tastes in music, and favorite foods, but, at best, they can form educated guesses about
the other guests.

2. Is the revelation of private information a focal point in the model? If so, think hard
on the problem of private preferences and public declarations.
An agent-based model of political protest will typically hinge on each individual agent’s
willingness to take a risky personal action. The protest requires agents in sequence to
announce “I am opposed to our government” (Granovetter and Soong, 1988; Brichoux,
2002).

3.1.4 Step 1b. Formulate Auxiliary Agents

Researchers are usually interested in their favorite topic, whether that is citizens, voters,
consumers, students, teachers, or whatnot. When we begin with step 1, we usually start
with those substantively important agents. Lets call those the primary agents, the ones that
the researcher intends to study. After laying out the primary agents, we usually find that a
secondary set of agents will be necessary to glue everything together. I’ll call those auxiliary
agents.

In almost all models, we need to introduce some substantively-unimportant auxiliary
agents who keep records in the simulation. In Swarm, we call that the “observer swarm,” it
an draw graphs as the simulation progresses. It would be a breach of expectations to put
substantively important actions into the observer agents. We don’t want to think of these
record-keepers as substantively important actors in the model.If we wanted the observer to
systematically like or on the activities of the substantively important agents.

I can provide an example about the accidental profusion of auxiliary agents in an agent-
based model. In Herron and Johnson (2005), we develop represent voters and candidates in
a multi-district electoral model. The voters are relatively simple, they decide which party
to join, attend a caucus with other people who join that party, and then they vote for a
candidate in the general election. The candidates are fairly simple, they simply declare
policy proposals to the voters within a district.

But the auxiliary agents are rather more involved than one might expect. Each district
needs a political party object that will hold the caucus in which district-level candidates
are chosen. It is necessary to have both national level political parties and district parties
because they have separate functions. In particular, the national party decides whether to
pay for a campaign in each of the separate districts. In addition, there must be district-level
agents that keep a list of eligible voters and records about the candidates. That district-level
agent, who we call the electioneer, has to hold the elections and then report the results to
the national offices, for which another auxiliary agent must be created. The national offices
combine the vote totals they receive from the district election managers and then use the
rules of proportional representation to select the candidates who will become members of the
national legislature. In that project, I’d guess that about 30% of the computer programming
effort was dedicated to the substantively important actors, the voters and the candidates,
and about 70% of the effort is in the auxiliary agents.
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3.2 Step 2. Construct the Environment in which Agents are Sit-
uated

3.2.1 Where do agents “live”?

Here are some possibilities.

1. Arrange the agents in a pattern of discrete “cells”.

(a) Do we think of the cells as squares (a checker board), or triangles, or hexagons,
or what? The implications for interactions with “neighbors” seem obvious.

(b) Do we insist that only one agent can be “in” a cell at one time? It is scarcely
possible to imagine Conway’s game of life in a grid that allows more than one agent
to exist in each cell .That has obvious implications for the feasibility of movement
by the agents. In the Schelling neighborhood segregation model, the dynamical
process is driven by the idea that many cells are empty, creating opportunities
for agents to move. a grid, that allows multiple agents to inhabit the same cell.

2. Place the agents at points in a Euclidean plane.

3. Collect the agents in an unordered“list”.

3.2.2 Do agents interact?

1. Do agents “find each other?” How? Perhaps the agents are “stuck in place” on the
grid and they may “look up” or “look sideways” or “look diagonally”.

2. When they meet, how do agents exchange information? Can some variables be auto-
matically gleaned by simple recognition, while others must be guessed at? Note that
the internal record keeping systems of the agents must support whatever approach is
selected here.

3. Are agents oblivious to the larger artificial society? Are they aware, or do they care,
about fluctuations in global indicators when they make their “local” decisions?

In some models, the agents don’t keep track of any system-wide indicators. These agents
are completely oblivious to everything that they do not experience “first hand.” Axel-
rod’s original culture model (Axelrod, 1997a) would be one example like that, because each
individual agent would simply gather information about one neighbor at one time point.
Schelling’s model of neighborhood segregation (Schelling, 1971) is similar, in that each agent
only surveys his immediate vicinity before deciding what to do. These models of very-
limited-information decision-making are certainly consistent with the complexity literature’s
emphasis on the cultivation of emergent properties from the simplest possible agents.

In other models, the agents do not interact with each other at all. Instead, they interact
with an aggregate. In the original Santa Fe artificial stock market (Palmer et al., 1994), for
example, the agents buy and sell stock. They observe the same market-wide indicators, of
course, and their individual behaviors will affect the development of the market. However,
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the agents in the ASM never say, “hey, agent 33, what are you buying next time?” Similarly,
in the El Farol model (Casti, 1996), the agents care only that they can go to a not-too-
crowded bar for Irish music. They are playing against the aggregate, not other individual
agents. Their happiness does not depend on whether the bar is filled up with a particular
client list. They only care if there is the right number of empty seats.

Between the extremes, when agents react to information about some of the other agents,
we run into some interesting philosophical issues. The challenge in these models is to explain
how the agents gain the information that they are putting to use. I believe it is important to
avoid “social telepathy” (Erbring and Young, 1979), the assumption that the agents somehow
magically know the individual opinions of many others within the society. Perhaps a model
of social protest may plausibly assert that each agent can stand at its current position and
“look around” to see how many others are marching in the streets. Or perhaps the agents can
watch local television to observe activities in particular locations. In most cases, however,
we find models are driven by some powerful assumptions about the information that the
agents can gather. For example, in the Social Impact Model (Latane, 1996), each individual
decides on its opinion, but in doing so it takes into account (simultaneously) the opinions
of all the other agents, putting more weight on the opinions of the ones who are close by
(Latane, 1996). The authors don’t explain the process through which the agents are all made
aware, simultaneously, of the opinions of all the others. A slightly more believable approach
is found in the adaptation of the the Axelrod culture model by Shibanai et al. (2001). They
introduce a new type of agent which might be thought of as a polling agency with a mass
media outlet. The other agents can learn about the state of the society from that single
global source.

3.3 Simulation Infrastructure
3.3.1 What is time?

In an object-oriented program, we might create a large number of separate objects and collect
them into a list. The objects just “sit there,” doing nothing, until some message is sent to
them.

In a similar vein, lets think of our agents as a collection of objects that are created at
time 0. They sit, waiting, until they are told to do something. We create their reality.
We create time as well. Time is usually measured by the passage of discretely experienced
opportunities for action.

3.3.2 How do we schedule actions in the model?

In the Swarm Simulation System, the schedule is an “objective” thing, an infinitely long
conveyor belt. On each position in the belt, the schedule joins together 1) the objects being
sent messages, and 2) the messages they are supposed to be sent. The framework is based on
run time binding of objects to actions; there is flexibility in the selection of particular agents
who may act. The hierarchy of levels, from individual agents, to aggregates, and then to the
system as a whole, is harmonized by the principle that everything has to happen sometime.
Einstein’s credited with the quip, ““The only reason for time is so that everything doesn’t
happen at once.”
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Figure 1: The Schedule

The important idea here is that agents carry out their actions at particular times, and time
is strictly an ordinal concept. The actions of a whole society need to be interleaved into the
time structure of the model

The design of a model’s schedule requires us to ask a number of questions. Does each agent
“step” every time period? Perhaps we should just pick one agent at random to step every
time? Do we want to randomly shuffle the list of agents at each time step? Conceptually, do
we believe that the world is a “frozen snapshot” in the mind of each agent when the agents
are deciding what to do? If so, we are proceeding as though all of the agents act “at the
same moment?” That kind of a model is easier to code, but it may not be as realistic. In
contrast, perhaps that each agent has completely up-to-date information when its time to
act arrives. In this view, each agent’s action is instantaneously made available to each of the
others.

Is the schedule flexible? A static schedule may require each agent to “step” in every time
period, but perhaps we need something else. In Swarm, schedule can adapt to substantively
important actions. Perhaps nothing happens most of the time, but then random disturbances
are introduced that cause some agents to take steps, which cause others to take steps in the
future. This is called dynamic scheduling, and we speak as though agents “put themselves
on the schedule” at particular points in the future.

3.4 What data do we need during and after simulation?
Research projects will differ in their conceptualization of the record keeping problem. In
my experience, there are at least two choices. First, the data to be collected might be
wholly individualistic in nature, or it may be an aggregated characteristic of the agent
society. Second, the way that we design data collection differs by whether we think of data
as emerging from the individual agents, or whether we have an some functions that steal
their instance variables and summarize them. This is summarized in Table 1.

On the left, I divide the data to be collected into 2 types. One is individualistic, meaning
it is data reported by the agents in the model themselves. This data may be regarded as
“subjective,” in the sense that it only reflects the agent’s actual experience of the world. The
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Table 1: Record Keeping
Record keeper

internal external

Data to be collected individualistic door-to-door opinion survey involuntary DNA collection
aggregated unemployment rate, social

entropy
Relocate individual data
into a communal record
system

other data type, which I call “aggregated,” is information that the program calculates about
the agents. There are almost always some societal measurements that individual agents are
not able to provide on their own. For example, one cannot learn the unemployment rate
from interviewing particular people. It is necessary to interview a lot of people and then
synthesize the information into an unemployment rate.

Next, how do we think of the record keeper. Is the record keeper given “super powers” to
look inside all of the agents and tabulate their status? Is the record keeper forced to interact
with the agents through the same, limited, interface that the agents follow to interact with
each other? We can think of that record keeper as a surveyor who collects information on the
phone, asking the agents for their information. Sometimes researchers want more information
that, to have different or more accurate information than the agents would be willing to
provide to each other. In simulations, the difference between these modeling strategies is
readily observed in the way that the code renders individual agents in graphic displays. Does
the simulation tell the individual agents to “draw themselves” on the landscape, or does it
imbue the landscape with the ability to draw the agents (with or without their permission).

There may be a temptation to re-design a simulation in order to facilitate easier record
keeping. In almost all projects there is a contradiction between agent privacy and the speed
of computations. Usually, the substance of the problem would require us to have some sort
of separate object–a surveyor, a government agency, or such–that surveys individuals and
finds out about them. That would be most consistent with the idea of “information hiding”
and the privacy of the agents. It is also the most realistic method, in the sense that the
“real world” does it that way. On the other hand, a model will run more and more slowly
as this record keeping is going on. The agents have to constantly answer survey questions.
To obtain speed of execution, one is tempted to bend the principles a little bit so that the
important information is kept in some public, easily tabulated, format. I know of at least
one simulation that stores the individual agent information in a data base and the agents
have to ask the data base for their own information when they need it!

In the model described in Political Disagreement (Huckfeldt et al., 2004), we have in-
dividual agents who have their own opinions and they have personal records about other
agents they have encountered. There is also a more-or-less objective aggregated record of
the opinions of all agents at a given moment. We never allow a meta-agent to simply glance
through the private data of the agents, however.

In our model, the conflict between speed and agent privacy was navigated as follows.
Each agent has an opinion vector, but most opinions are not changing most of the time. We
found that surveying each of the agents at the end of each time interval was extremely time-
consuming. There was, however, a way to accelerate the calculations. Almost all the time,
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the surveyor would ask the agent, “what are your opinions,” and the agent would respond
with the exact same opinion string that was reported in the previous time. To speed the
calculations, a centralized tabulator object was created and it maintained records on the
opinions of the agents. The graphs that are displayed when the model runs are drawn from
the data in the tabulator. When agents change their opinions, they (of course) update their
private variables, but we also created a method through which they notify the tabulator. As
long as the number of agents who change their opinions is not huge (say, above one-half of
the artificial society), this system of double-record keeping is efficient.

There was a similar tension between realism and computational speed in the political
protest model (Brichoux, 2002). Each agent in that model lives at a point on a Euclidean
plane, and the agent can view the activities of agents within a certain radius of vision. We
found that the model ran very very slowly if each agent had to individually survey the state
of the society. Each agent had to inquire of each of the other agents if it was protesting
at a given instant. It is much faster, if less realistic, to retain a centralized record of agent
actions and then ask each agent to report its changes to that central registrar. An even
faster result was obtained by pre-aggregating agent activities into a social record keeping
system that allowed the model to quickly answer this question for each agent. “If I am at
location (x,y), how many other protesters can I see within a radius r.” Since many agents
were asking the same–or a very similar question–there were efficiencies of scale to be had by
making the calculation about trouble at (x,y) only once, and re-distributing that information
to the all of the agents who need to make the same calculation. One could try to provide
a substantive justification for this communal information collection, perhaps by calling it a
television station or such, but one has to strain quite a bit to accept such an argument. It
is a pure-and-simple redesign for the speed of the simulation.

Some researchers want to have details saved on each agent’s instance variables at each
time point. That will make a model run more slowly and require more disk storage, of
course. However, it may open up interesting possibilities that fall under the heading of
“simulation serialization.” We could use the saved data from any particular time point to
re-start the model and subject it to new external influences. In the political disagreement
model, that approach was used to generate quite a few interesting figures which demonstrated
some conditions under which perturbations of the model might produce social behavior
fluctuations.

4 The Inevitable Follow-Up Questions
In this section, some of the follow-up questions that arise most frequently are considered. I
am tentatively proposing the following idea. There is a natural tension between the computer
modeler and the substantive researcher. The computer modeler has a collection of routines
for particular purposes and the substantive modeler has a few notions about what agents
might be and how their interaction might unfold. Translating from the researcher’s idea
into a computer model forces the substantive researcher to become interested in (or pretend
to be interested in, more likely) a series of specific modeling decisions. On the other hand,
the program developer is supposed to try to represent the researcher’s ideas in code and
then clear up the additional decisions that are necessary to make the computer program run
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successfully.
Almost always, it happens that the practice of writing the computer model calls us to

fill in a lot of empty spaces in our theory. Our theory usually describes the “interesting”
parts of the social process that we think might be going on, but the act of tying the pieces
together in a computer model usually creates a raft of design choices. I’m calling these
additional decisions the “follow-up questions” and I’m concerned about the danger that
they might derail the modeling exercise by drawing an excessive amount of attention to
seemingly irrelevant detail. I’m especially worried that the seemingly irrelevant details may
play a driving force in the model’s behavior without the accommodating re-conceptualization
of our theory.

4.1 Design and the belt of auxiliary assumptions
Follow-up questions are inevitable. A project begins with a “pencil and paper sketch” of the
parts that are substantively interesting to the researcher. Programmers would like this sketch
to be as detailed as possible, including a list of the variables in the agents, the structure
in which they interact, and the record keeping system to be used, and so forth. That kind
of detail is usually lacking at the outset, but even if it is available, it is never sufficient for
development of computer code. The computer code has to be built up bit by bit.

The best programmers I know still follow the advice that is emphasized in introductory
programming: add small pieces, recompile, make sure it runs, and try to understand the effect
of what has been changed. Superficially, of course, this is about avoiding programming errors
(bugs). But there’s a more important reason. This is an agent-based modeling exercise. We
started with the idea that we have a complex system, an on-going series of information
exchanges that can (and will, we hope) produce unintended effects (emergent properties).
If a model is built up in stages, it is much more likely that we will be able to understand
emergent properties (and differentiate them from flaws in the code).

This is an exciting, but dangerous part of the agent-based modeling exercise. On the
one hand, we want to keep our focus on the part of the model that is truly interesting to
our substantive research. On the other hand, we need to be faithful to our audience. We
want to be able to say to our readers that a system with certain characteristics behaves
in certain ways, and we should not present a model whose overall behavior is driven by
an unmentioned, obscure detail in computer code. Thus the research process has difficulty
balancing the emphasis we place on the research topic and the auxiliary details.

The problem that we are “distracted by auxiliary details” is not peculiar to agent-based
modeling. It seems to be inherent in the practice of scientific research itself. The theories
that we are interested in usually have a small core of ideas and formulas, and also a possibly
wide belt of other stuff that connects them together and to our observations (Hempel, 1966).
We don’t care about the other stuff so much, we wish we didn’t have to put up with it. But
we need it, without it our ideas are obviously wrong. With the other stuff, our predictions
are less obviously incorrect. Kuhn argued that as theories accumulate more and more of
that other stuff, they seem less and less interesting and useful, so that eventually they
reach a point of crisis in which their value is outweighed by their inconvenient, cumbersome
apparatus (1962). These increasingly ill-suited theories can be displaced by new, simpler
characterizations of the central ideas that, at least at first, are guarded by smaller belts of
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tedious, inconvenient, arguments. As such, new theories don’t necessarily fit the data better,
they are just more satisfying, usually on an abstract level, partly because they are not so
full of other stuff (Toulmin, 1961).

As a result of the fact that a modeling strategy that ads more and more of the other
stuff is preparing itself for an internal crisis and eventual rejection, we need to be cautious.
It seems to me agent-based modeling makes it particularly easy for us to throw in auxiliary
appliances that seem necessary, but are irrelevant to the substance at hand. We are able to
see the problem more clearly in agent-based modeling because the computer programming
framework does not structure our choices. Programming allows a nearly infinite-dimensional
space of auxiliary assumptions that can be brought to bear.

4.2 Do you really want us to write nm computer programs?
Every simulation project will, with certainty, run up against the research boundaries de-
scribed by Bankes (1993). Suppose we come to a design point at which there are 3 choices,
none of which is substantively more appealing than the others. The only responsible choice
is to work out all 3 options, to literally write 3 computer models, to find out if any of these
apparently indifferent choices imply a difference. Thus we have allowed the auxiliary design
issue, about which we had no opinion at the outset, to become part of our research problem.

The work on the auxiliary details compounds, like interest on a bank account. While we
are working on the first 3 models, we will come to a second decision point that presents 3
more choices. Being responsible scholars, we decide to write those three models. And since
this choice may affect our conclusion on the previous decision, we find ourselves wading
through 32 = 9 models. After just a few of these decision points, we quickly find ourselves
in an untenable situation, trying to implement nm different models.

I’ll call this the nm problem. Either we devote a huge amount of effort to experiments
designed to help us choose among auxiliary assumptions, or we ignore the issue and proceed
as if we did not notice the problem in the first place. The first option is commonly self-
destructive, while the latter is dishonest. We would like to steer a course between the
extremes, on in which we rigorously evaluate alternatives that are likely to make a difference,
while while we honestly admit that we recognize, but not pursue, all of them. At the
current time, however, we have only weak guidance in separating the real problems from the
epiphenomena.

I can point quite a few examples of this problem. Consider the public opinion models.
The substantive purpose is to study public opinion via social influence. When I started
writing agent-based models, the leading models used a checker board analogy to lay out
the agents on a square grid of square cells (Latane, 1996; Axelrod, 1997a). The substantive
issue, the part that truly interests us, is the way that agents decide their own opinions after
taking notice of the opinions of others around them. All of the rest is other stuff.

We’ve already put a big pile of other stuff in the middle of our project. The square grid,
by itself, is a huge auxiliary assumption. Do we really want a model with agents that are
evenly spaced across a rectangular array? Its not realistic, but it may be useful. After that,
then we have to make a lot of other auxiliary modeling decisions that arise simply because
of our original decision to place the agents on a grid.
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1. Should we use von Neumman or Moore neighborhoods: Should the agents find neigh-
bors by looking up, down, left, and right or can they also look diagonally?

2. Should we limit the agents to interact only with the others that are immediately
adjacent to them? What if some have a larger radius of vision than that?

3. If an agent can interact with agents are further away in the grid, should the opinions
of far-away others be given less weight? If so, what might be a good formula for the
effect of distance?

4. What about the agents who are positioned on the edge of the grid? Are they on the
edge, with fewer opportunities for interaction than the other agents? Perhaps we need
to redesign our world, think of the grid as a torus, with edges that wrap around so
that there are no agents on the edges.

It seems irresponsible at the current time to develop a grid based model that does not allow
for different types and sizes of neighborhoods. I don’t know when, or if, the neighborhood
type is likely to affect the simulation, but I expect it might. Thus we should have to design
it both ways This is frustrating because code has to be designed in an ever more complicated
maze. One that implements agents with a variety of neighborhoods, and worlds that wrap
or don’t wrap around.

After we have finished with those ad hoc modeling decisions, then we are confronted by
more other stuff. Should the agents update opinions synchronously (meaning that they all
update their variables at the same instant)? Synchronous updating is the classic approach in
cellular automata, such as Conway’s Game of life (Gardner, 1970). Quite a few of the models
that generate interesting fractal patterns are based on synchronous updates (Wolfram, 2002).
In the simulation model, synchronous updates are implemented as a “double buffered” grid:
the agents have access to the “old” state of the world, and they register their new opinions
on the “new” state of the world. After all of the agents have made their changes, then the
“new” grid becomes the “old” grid and the situation is repeated.

Is the choice between synchronous or asynchronous updating an important choice? Many
of us suspect that the answer is yes, but we don’t know for sure. There is a famous paper
which seemed to indicate that synchronous updating can substantially distort our under-
standing of simulated spatial iterated prisoner’s dilemma (Huberman and Glance, 1993),
and then an equally famous rebuttal which seems to indicate that the difference is trivial,
usually (Nowak and May, 1992; Nowak et al., 1996). The whole problem seems like an af-
terthought, and it is. It is an artifact of our conceptualization of the way that agents are
connected together.

Suppose we throw away synchronous updating altogether. What should we do? Axelrod
placed his agents evenly among the cells of a grid, but did not update them all at the same
instant. He proposed to randomly choose one agent and allow it interact and adjust, suppos-
ing all of the others are fixed at the same moment (1997a). Epstein and Axtel replicated that
model, using the seemingly equivalent assumption that the list of agents would be shuffled at
each time point. The list was traversed in order, allowing each agent to act according to the
exact same logic as was used in Axelrod’s model. To their surprise, there were differences in
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the long-run behavior of the model because the “shuffled list” approach never allowed one
agent to have more chances to step than the others (Axtell et al., 1996).

The fact that we have made a seemingly endless series of important decisions about
the computer model for reasons that are completely external to the substantive research
questions is the major problem. If the research problem had somehow been posed to us as
a controversy about whether people speak to their neighbors in a strictly north and south
pattern, for example, then these things would be relevant. On the other hand, if we want to
study political influence and persuasion, then these decisions are truly auxiliary. They are
other stuff we can easily throw away without a second thought.

In the best case scenario, we should stop and re-think our theory. If the computer model’s
development is really dominated by this string of seemingly irrelevant decisions, perhaps the
problem is not in the computer model, but rather in the theory itself. The theory is lacking
in detail in some important ways, and that void is filled by computer implementation ideas,
not substantive research ideas. That is to say, we hope we will are sufficiently self-aware so
as to recognize the proliferation of ad hoc decisions and then we should think more clearly
about the theory that necessitates them.

In the political disagreement model, we were plagued by a series of these problems because
we started with “agents smeared evenly on a square grid”. After a long list of computer mod-
eling questions, Bob Huckfeldt wondered out lout, “why are we having to bother with all of
this?” To guide the decisions about the agent neighborhoods, we tried to make substantively
motivated design. Substantively speaking, our topics–humans–to move from one context to
another (from home, work, church, softball). People are not spread evenly across the ter-
rain, some places are more crowded than others. People may sometimes occupy a common
meeting area. That model adopted various implementations of a decentralized scheduling
framework, dividing the agent’s day into a fixed series of time steps and allowing agents to
initiate interactions with others that they encountered (this is explained more fully in the
Political Disagreement book, but the most complete explanation is, as always, in the source
code itself: http://pj.freefaculty.org/Swarm/MySwarmCode/OpinionFormation).

I don’t think we solved the problem of the auxiliary assumptions, but rather we tried
to answer some of them with principles that we were willing to put within the core of
the theory that we were developing. I’m certain we did not avoid the nm problem en-
tirely. A scan through the code still reveals a lot of re-designs for exploration of spe-
cial cases. My notes indicate that, during a 6 month stretch in 2002, I was preoccu-
pied with three different code implementations of the dynamic scheduling framework. We
wanted the agents to move about autonomously, but there were several competing ideas
about how that should be implemented in a complex system. There is a power point
presentation about this (http://pj.freefaculty.org/ResearchPapers/Presentations/
Swarmfest02/DynamicScheduling) with example code, of course.

4.3 When will the simulation end?
Suppose the program is finished and the model runs. How long should we wait for our
results? How many timesteps should we monitor?

The answer depends on a host of factors. There are two cases in which we have an easy
answer. First, the topic being considered calls for a model that is finished after a certain
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number of steps. Most modeling projects don’t dictate, a priori, a finite number of steps,
but there are a few that might. A model of a series of weekly political primaries, ending with
a general election, describes a finite sequence of events. An agent-based model of a football
game would have a finite length Casti (1997). Perhaps an even simpler example would be a
simulation of a television contest, such as the American Idol. One of my students wrote an
MA thesis that about an agent-based model of political nominations following the American
Idol format that sequentially eliminated the contenders (Struemph, 2006).

Second, if the model exhibits a tendency to stabilize to a fixed pattern, an equilibrium
configuration, then we also do not have much trouble. The model grinds to a halt on its own
term: our agents stop changing, the environmental variable become constants. The political
opinion models generally do stabilize into a locked pattern of agreement and disagreement,
some more quickly than others (very quickly: Latane (1996); less quickly: Axelrod (1997a);
and slowly: Huckfeldt et al. (2004)). The Schelling segregation model does generally reach
a stable pattern (Schelling, 1971; Zhang, 2011).

If our modeling exercise falls into either of those two categories, we can feel fortunate. We
are relieved of the need to make a number of other decisions about how much data to gather
and how to simplify it for a presentation. These models make me uncomfortable; it is more
difficult to persuade the audience that the implications of the model are relevant if we have
to equivocate over the question of whether we have observed the model for enough timesteps.
If a model reaches a stable point, and shows no sign of budging (e.g., Johnson, 1996), the
presentation is much more manageable. Many of the problems of reporting and presentation
are solved automatically. If we run the model a thousand times, then a histogram or other
summaries of the outcomes may convey the important message.

What do we do if the simulation model does not grind to a halt? Without a computational
stable point, the research problem is open-ended and difficult to present to readers. We have
no good way of knowing if we have enough iterations with a run of the model. If repeated runs
indicate that the model does not track to a particular kind of outcome, then we worry that
we have not run enough different re-starts as well. I wouldn’t want to be on the receiving end
of a critique like Binmore’s review of The Complexity of Cooperation because my simulation
was terminated too suddenly (Binmore, 1998).

This is not a purely idle concern, since a very large segment of the agent-based models do
not exhibit fixed behavior patterns over the long run. Models of bees, ants, bit-forecasting
stock market investors, do not stabilize to a pattern of fixed individual behavior. However,
they do seem to stabilize to an understandable pattern that can be characterized as a sta-
tistically stable distribution. I’ve not seen the diagnostic tools for convergence of Markov
Chains (from Gibbs sampling in Bayesian statistics) applied to these models, but it might be
fruitful to do so. We would, at least, have a rigorous, well documented set of arguments that
would justify the collection of a sample of, say, the last 2000 timesteps from a simulation
upon which to make our analysis.

Some models seem to have neither a tendency to form stable individual patterns of
behavior nor stable aggregates (Brichoux, 2002). Many of the agent-based simulations in
artificial life, particularly in the “edge of chaos” literature (Langton, 1990; Kauffman, 1993),
are designed with the idea that the transformation matrix is not a fixed probability model,
but rather it is an adaptive process that may never stabilize. In these cases, even the Bayesian
tools will not afford us any insight. The strong theoretical results about the convergence in
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Figure 2: Instability of Majority Rule

distribution of a Markov chain Monte Carlo (MCMC) simulation presuppose that the system
is in a stable stable.

Most of the influential social science theories are oriented to producing stable equilib-
rium distributions. The mainstream social scientists are not so interested chaos theory, for
example. There is one exception, however, in mainstream political science. This is the prob-
lem of the generic instability of majority rule in multidimensional policy spaces (McKelvey,
1976; Schofield, 1978). A small example with just three voters on a two dimensional space
is presented in Figure 2. There is generally no point is safe from defeat by that majority
rule; majority rule will wander. If we choose proposals carefully, we can lead a majority
wherever we want to go (in this case, we can hop from w to y, and then y to z, and z to u, in
a sequence of majority approved proposals. Captivated by the apparent illogic of majority
rule, many scholars have tried to understand conditions under which majority rule is likely
to be the most incoherent (for a review, see Johnson (1998)).

In the shadow of that burgeoning literature on the instability of majority rule, I wrote
an agent-based simulation model that randomly assigns voters to positions in the two di-
mensional space. We allow proposals to be put to the audience completely at random, and
the voters accept of reject each proposal strictly on the grounds of whether or not the pro-
posal moves policy closer to the agent’s most preferred position (http://pj.freefaculty.
org/Swarm/MySwarmCode/MajorityRule). A snapshot of one of these models is displayed
in Figure 3. The left panel displays the initial state, with the policy proposal in the top left.
Proposals emanate from a random process that we can adjust. We can control the length of
the jump in policy that is allowed, and we can regulate the range of motion allowed to the
proposer. This particular run allows the proposals to be drawn from a 180 degree angle that
is centered on the most recent winning proposal (the agenda proposal process cannot turn
backwards, that it to say. At most it can turn 90 degrees to the left or right, but the choice
within that range is uniformly random.

This model never reaches a stable point, but it does not wander so widely as we might
have expected. In this particular run, the random proposal process finds majority support
for change about 22% of the time. The striking thing about the model, however, is that it
can very seldom find two randomly chosen points in a row that lead away from the center.
This model of the agenda setter encourages the proposer to keep wandering away from the
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Figure 3: Majority Rule Simulation

middle by allowing proposals only in the half-space that is “in front” of the agenda setter
(facing in the direction of the most recently approved change). Finding a string of randomly
chosen points that wander widely, as illustrated in Figure 2, would be about as likely as
the proverbial monkeys typing the Bible. That is to say, not very likely. This was proven
formally for a specific random model of the proposal mechanism in Ferejohn, McKelvey, and
Packel (1984).

Although the simulation may convey some visual suggestion, it is far from a rigorous
mathematical proof. An effort to establish the stability of majority rule purely on the
basis of the agent-based model would be an uphill battle because readers would always be
suspicious that the model ought to be allowed to run longer, or that we lack a rigorous way
to characterize observed instability. The simulation allows us to tweak the proposal and
decision process in ways that are impossible in the mathematical analysis, however. I have
often wished I could travel back in time to write simulations for that research team, so as to
make to power of their argument more visually compelling.

4.4 Should we re-design a stable simulation by inserting noise?
Suppose we want to model an on-going (not time bound) social process that, empirically
speaking, does not reach a stable point. The simulation model, however, “grinds” to a halt.
That model is tractable, and possibly useful, but is it realistic? If we want to keep using the
simulation model that grinds to a stop, we have some rhetorical devices at our disposal with
which we try to finesse that problem. We argue, for example, that a model is an isolated
example of a pristine system that operates under idealized conditions. We recognize that,
in reality, many social processes are not allowed to run until they are completed. Instead,
they are subject to disturbances of many sorts, and thus reality never equilibrates the way
our model does. The study of the “ideal type” model may still be useful.

We might conclude, instead, that the simulation model is “just wrong.” In order to
prevent it from locking at a certain stage, we have to make some changes that make the
model less stable. We might throw in exogenous randomness.
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That has been a discouraging realization for me. We are going to intentionally obscure
the underlying tendencies of the model we have prepared. It has been such a discouraging
thing that I have avoided it, for the most part, by ignoring it.

Misery loves company, and recently I have realized that this same problem arises in
empirical research as well as in game theoretic modeling. Consider each in turn.

4.4.1 Mixed effects regression analysis

Suppose a model makes a clear prediction:

yi = β0 + β1xi.

That model will almost always be instantly rejected. We almost never gather columns of xi

and yi data that are perfectly aligned. This model is obviously wrong.
It is necessary to infuse an error term, some noise, so that the model is not so easily

rejected. This error, ei is, to many of us, just unmeasured other stuff (that is very pleasantly
behaved, with an expected value of 0 and fixed variance):

yi = β0 + β1xi + ei.

This model is not so obviously wrong as the first one. So far, the auxiliary assumption
involves the simple assertion that the effects besides xi are well behaved.

Now suppose we apply that model to data, but there appears to be trouble because some
of the outcomes have more dispersion in them than is implied by the model. Historically,
we called heteroskedasticity and developed a set of tools (weighted least squares, etc) to try
to manage it. Our auxiliary hypothesis about ei has to be made more ad hoc. We suppose
different random processes are at work and then redesign the model accordingly. Witness the
development of regression models for count data and the debate over whether the outcome
is better represented by a Poisson or Negative Binomial distribution (Long, 1997; Cameron
and Trivedi, 1998). One model, the simple one, is obviously wrong; the more complicated
model is less provably wrong. All in all, this seems like a distracting exertion of effort on
other stuff.

The way we view heteroskedastic regression is changing, however, because new perspec-
tives are helping applied researchers transform the “corrections for heteroskedasticity” into
substantively meaningful components in social theory. The use of clustered random errors
and frailty in survival analysis would be primary examples. Random effect regression models
lead us to incorporate cluster-specific random effects into the core of a new type of social
theory. Membership within a school or community may have a “contextual effect” that is not
directly measurable. Clusters cause heteroskedasticity, but that’s not the main point any-
more (Goldstein, 1995; Pinheiro and Bates, 2000; Raudenbush and Bryk, 2002). Hence the
rise of the contextual model. Another difference is found in the way additional randomness
is incorporated in survival analysis (for a nice discussion, see Congdon (2006)). Frailty is
individual-level randomness, inserted on the substantive grounds that two people in the same
situation do not always behave in the same way. Instead of talking about heteroskedasticity
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and correcting for it, we talk about how to design a theoretical model that generates “over
dispersion” in order to more closely match observed data.

4.4.2 Insertion of randomness in game theory

In game theory, a model may make a definite prediction about human behavior that is not
consistent with observation. There have been a variety of efforts to deal with the problem,
but the approaches that I’m referring to in this section are trembling hand and quantal
response equilibrium models.

Noticing that some equilibrium points in games were not empirically plausible, Nobel
Prize winner Reinhard Selten suggested that we might impose some mandatory randomness
in agent behavior Selten, 1975. A little bit of randomness may eliminate some of the most
unrealistic, least plausible predictions of these models. Tn the quantal response equilibrium
approach to game theory, McKelvey and Palfrey, 1988 propose the same idea write large.
These changes seem, at least on the surface, to be a dry and uninteresting as corrections
for heteroskedasticity. However, in political science, there is a growing literature associated
with the idea that the models imposing some intrinsic randomness are more consistent with
the facts and that we can attempt to integrate this randomness into theories of international
politics (Signorino, 1999).

4.4.3 Plausible randomness in social theories and agent-based models.

A complex system is often defined as a collection of autonomous agents who are only loosely
linked together. The characterization “loosely linked” means that the agents are not directly
in “control” of one another. Instead, the agent behaviors reflect a large number of seem-
ingly unpredictable small influences that they encounter. An agent-based model may seem
random, even though it is not (“deterministic randomness”).

The computer code for a complex system model is, almost by definition, complicated.
We sometimes have difficulty believing that a result is correct–we worry that some flaw in
the code my cause a pattern to emerge. We have difficulty feeling sure that the theoretically
relevant settings in the model are responsible for a given change in its behavior. To avoid that
confusion, and to diminish the nm problem, we are urged to “keep it simple, stupid” (Axelrod,
1997b). In particular, we probably should not design extremely complicated agents. We
should not gratuitously insert random variables because the model should–if things work
right–already have a lot of uncertainty in it. Add to that the “something for nothing”
research strategy that leads to interesting models of bee hives and ant trails.

In most agent-based modeling projects, we will arrive at a point where the substantive
researcher says, “I did not mean to say people always behave in a certain way. I meant to
say they usually do.” Thus the code has to be redesigned so that an agent usually does one
thing, but not always. As long as these changes are motivated by the substance of the social
theory being investigated, these changes should not be discouraged. They were simply an
oversight in the initial design of the agents.

However, it often happens that we design models that grind to a halt, and they do so
because our theory was not well considered from the start. The social science theories we
usually hold describe one or two choices in a short time span. Most of them are not intended
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to describe hundreds or thousands of decisions that humans make on a day-to-day basis.
Let’s consider the agent-based model of political protest . Usually, we start thinking about
this from Granovetter’s threshold perspective (Granovetter, 1978; Granovetter and Soong,
1988). People may be unhappy “on the inside,” but they do not show it on the outside.
If some people express their unhappiness, that may encourage others to do the same, and
the aggregate level of discontent gradually “tips” the society toward a state of rebellion. A
simulation that plots the behaviors of the agents over time will generally accumulate agents
who are willing to show their discontent on the outside.

The fact that the model grinds to a fixed state of widespread protest should probably be
considered a flaw. We need to introduce some component at the individual level that will
make the outcomes more realistic. One change that is required is individual frailty, a “maybe
I will or maybe I won’t” sort of randomness that is simply thrown into the model. This is
note a completely ad hoc decision, however, because it has a real-life referent: protesters may
become “exhausted.” If we change the model so that each individual agent has a personal
characteristic that determines the number of consecutive days that the agent is willing to
protest, then we can arrive at a more realistic model in which there are occasional flare-ups
of political discontent (Brichoux, 2002).

5 Conclusion
This essay has presented an overview of the agent-based model building process. It began
with a characterization of the agents and the agent based model. A checklist for the cre-
ation of agent-based models was offered and a number of specification issues in agent-based
modeling were considered.

One of the creative sources of friction in the agent-based modeling process is the mismatch
between patterns that exist in the observable world and patterns that arise in the computer
simulation. One contribution of this paper is a taxonomy of the mismatches that may arise
and some hits about the conditions under which they are likely to be important. Sometimes
we are not concerned when the model’s aggregate behaviors do not match our observations
because we view the model as an ideal type system operating in an enclosed environment.

On the other hand, there are cases of concern when models generate results that are
grossly out of line with our empirical reality. Rather than adjusting the agent-based model
in a wholly ad hoc way so as to force it into line with our empirical expectations, I would urge
modelers to strive for the cultivation of substantively meaningful changes in the behavior of
individual agents that might lead to changes in the aggregate behavior of the model.
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