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I Candidates and/or parties compete by making
promises

I Voters choose most desirable (closest)
candidate / party
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We Think We know that:

I “Single-Member Plurality Elections” lead to 2
party systems

I Voters select among candidates within “single
member district”

I Usually 2 center parties emerge

I “Proportional Elections” lead to multi-party
systems

I Voters select party
I Algorithm used to calculate seats from votes

(various)
I More representative, less stable
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Mixed Election Simulation

National electorate

District Modes Uniform on (30,70)
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Batch Or Graphical Interface

I Histogram of ideal points
I Median of party SMD candidates
I Party seats
I Indicators of representation



Control Panel



Graphs



Mixed Election Simulation

Batch Design

100 runs with each of

I Number of Parties = 5 , 10, 15
I Voter Type Distributions

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1/3, 1/3, 1/3)

I PR thresholds 0, 5, 10
I All Parties Run SMD in All Districts 0, 1
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Condition Sequence of Batch Simulation

I 30 steps: Randomly chosen party founders
“stuck” in position between elections

I Voter ideal points re-drawn

I ?? steps: Parties adapt dynamically, founder
stands at “median of candidate positions” from
previous election

I Voter ideal points are a “fixed target”

I 30 steps (after equilibration): Parties adapt
dynamically with randomly re-draw voters

I 100 steps: Fix voters, Randomly Choose party
founders.
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Mixed Election Simulation

Actual demonstration!

No extra charge!
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I Caution about “local variables” and references
I OK to do

- someMethod {
id anAgent = [AClass create: self];
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I anAgent is a LOCAL VARIABLE.
I Is it safe to allow otherClass to “use” that agent

after code exits this method?
I That is OK because create grabs memory for

anAgent and it is held until anAgent is dropped.
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But...
I Suppose instead you try

char * colors = {”white”,”green”,”blue”}
prSeatGraph = [EZGraph createBegin: self];
[prSeatGraph setColors: colors count: 3];
prSeatGraph = [prSeatGraph createEnd];

I That’s headed for a big crash
I EZGraph does not copy the array into a data

structure, it just makes a “note” of where the
data is.

I The next time EZGraph tries to find the colors,
they are not there
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What do we find out?
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SMD is a lot more exciting than PR
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But With PR



Mixed Election Simulation

Instability Index

Calculate standard deviation in Number of Seats for
each party
Instability Index=Average of those standard
deviations
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PR

Vert=#N of Effective Parties Horiz=Instability index
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But SMD is quite different


