
Mixed Election Simulation

Mixed Election Simulation

Paul Johnson and Erik Herron1

1University of Kansas

Swarmfest, Torino Italy

Mixed Election Simulation

Availability

Code: email me pauljohn@ku.edu
Technical Writeup:
modelDescription_2005_06_06.pdf
This Presentation: elections_swarmfest_2005.pdf

Mixed Election Simulation

Ordinary Political Model

I Voters have “ideal points” on the real number
line

I Candidates and/or parties compete by making
promises

I Voters choose most desirable (closest)
candidate / party

Mixed Election Simulation

Ordinary Political Model

I Voters have “ideal points” on the real number
line

I Candidates and/or parties compete by making
promises

I Voters choose most desirable (closest)
candidate / party

Mixed Election Simulation

Ordinary Political Model

I Voters have “ideal points” on the real number
line

I Candidates and/or parties compete by making
promises

I Voters choose most desirable (closest)
candidate / party

Mixed Election Simulation

We Think We know that:

I “Single-Member Plurality Elections” lead to 2
party systems

I Voters select among candidates within “single
member district”

I Usually 2 center parties emerge

I “Proportional Elections” lead to multi-party
systems

I Voters select party
I Algorithm used to calculate seats from votes

(various)
I More representative, less stable

Mixed Election Simulation

We Think We know that:

I “Single-Member Plurality Elections” lead to 2
party systems

I Voters select among candidates within “single
member district”

I Usually 2 center parties emerge

I “Proportional Elections” lead to multi-party
systems

I Voters select party
I Algorithm used to calculate seats from votes

(various)
I More representative, less stable

Mixed Election Simulation

We Think We know that:

I “Single-Member Plurality Elections” lead to 2
party systems

I Voters select among candidates within “single
member district”

I Usually 2 center parties emerge

I “Proportional Elections” lead to multi-party
systems

I Voters select party
I Algorithm used to calculate seats from votes

(various)
I More representative, less stable

Mixed Election Simulation

We Think We know that:

I “Single-Member Plurality Elections” lead to 2
party systems

I Voters select among candidates within “single
member district”

I Usually 2 center parties emerge

I “Proportional Elections” lead to multi-party
systems

I Voters select party
I Algorithm used to calculate seats from votes

(various)
I More representative, less stable

Mixed Election Simulation

We Think We know that:

I “Single-Member Plurality Elections” lead to 2
party systems

I Voters select among candidates within “single
member district”

I Usually 2 center parties emerge

I “Proportional Elections” lead to multi-party
systems

I Voters select party
I Algorithm used to calculate seats from votes

(various)
I More representative, less stable

Mixed Election Simulation

We Think We know that:

I “Single-Member Plurality Elections” lead to 2
party systems

I Voters select among candidates within “single
member district”

I Usually 2 center parties emerge

I “Proportional Elections” lead to multi-party
systems

I Voters select party
I Algorithm used to calculate seats from votes

(various)
I More representative, less stable

Mixed Election Simulation

Research Problem

I Mixed Electoral System
I Some seats allocated by proportional

representation
I Some seats allocated by single-member district

contests

I Are these systems the
I Best of “Both Worlds”
I ”Bastard Hybrids” without the strengths of either!

Mixed Election Simulation

Research Problem

I Mixed Electoral System
I Some seats allocated by proportional

representation
I Some seats allocated by single-member district

contests

I Are these systems the
I Best of “Both Worlds”
I ”Bastard Hybrids” without the strengths of either!

Mixed Election Simulation

Research Problem

I Mixed Electoral System
I Some seats allocated by proportional

representation
I Some seats allocated by single-member district

contests

I Are these systems the
I Best of “Both Worlds”
I ”Bastard Hybrids” without the strengths of either!

Mixed Election Simulation

Research Problem

I Mixed Electoral System
I Some seats allocated by proportional

representation
I Some seats allocated by single-member district

contests

I Are these systems the
I Best of “Both Worlds”
I ”Bastard Hybrids” without the strengths of either!

Mixed Election Simulation

Research Problem

I Mixed Electoral System
I Some seats allocated by proportional

representation
I Some seats allocated by single-member district

contests

I Are these systems the
I Best of “Both Worlds”
I ”Bastard Hybrids” without the strengths of either!

Mixed Election Simulation

Model Voters

I Create districts with ideological tendencies
(parameter=mode & diversity).

I Voters within districts assigned preferences from
tendencies of the districts.

Mixed Election Simulation

Model Voters

I Create districts with ideological tendencies
(parameter=mode & diversity).

I Voters within districts assigned preferences from
tendencies of the districts.

Mixed Election Simulation

Voter Behavior Types

I Choose Party, Vote for its candidate
I Choose Candidate, Choose SMD candidate

separate
I Choose Candidate, Vote for her party

Mixed Election Simulation

Voter Behavior Types

I Choose Party, Vote for its candidate
I Choose Candidate, Choose SMD candidate

separate
I Choose Candidate, Vote for her party

Mixed Election Simulation

Voter Behavior Types

I Choose Party, Vote for its candidate
I Choose Candidate, Choose SMD candidate

separate
I Choose Candidate, Vote for her party

Example District

0 20 40 60 80 100

0.
0

1.
0

2.
0

Beta (3 , 5.67)

ideal point

pr
ob

ab
ilit

y
de

ns
ity

I Beta probability distribution parameterized by
the mode & diversity

Realization

Mixed Election Simulation

National electorate

District Modes Uniform on (30,70)

Mixed Election Simulation

Bootstrapping a Political System

I Draw “party founders” from national electorate
I District level “electioneers” register party

members within districts
I Parties choose SMD candidates as median of

members within district

Mixed Election Simulation

Bootstrapping a Political System

I Draw “party founders” from national electorate
I District level “electioneers” register party

members within districts
I Parties choose SMD candidates as median of

members within district

Mixed Election Simulation

Bootstrapping a Political System

I Draw “party founders” from national electorate
I District level “electioneers” register party

members within districts
I Parties choose SMD candidates as median of

members within district

Mixed Election Simulation

Do Parties Run Candidates In All Districts?

I If Yes: Simple
I If No: Need algorithm to allocate SMD

candidates
I We chose

I Resource constraint model (membership =
scarce resource)

I Parties allocate SMD candidates in districts
where they have the most members

Mixed Election Simulation

Do Parties Run Candidates In All Districts?

I If Yes: Simple
I If No: Need algorithm to allocate SMD

candidates
I We chose

I Resource constraint model (membership =
scarce resource)

I Parties allocate SMD candidates in districts
where they have the most members

Mixed Election Simulation

Do Parties Run Candidates In All Districts?

I If Yes: Simple
I If No: Need algorithm to allocate SMD

candidates
I We chose

I Resource constraint model (membership =
scarce resource)

I Parties allocate SMD candidates in districts
where they have the most members

Mixed Election Simulation

Do Parties Run Candidates In All Districts?

I If Yes: Simple
I If No: Need algorithm to allocate SMD

candidates
I We chose

I Resource constraint model (membership =
scarce resource)

I Parties allocate SMD candidates in districts
where they have the most members

Mixed Election Simulation

Do Parties Run Candidates In All Districts?

I If Yes: Simple
I If No: Need algorithm to allocate SMD

candidates
I We chose

I Resource constraint model (membership =
scarce resource)

I Parties allocate SMD candidates in districts
where they have the most members

Mixed Election Simulation

Rubber Meets The Road

I Voters cast votes for both PR and SMD contests
I Electioneers report PR totals and SMD winners to

Parliament
I Parliament allocates PR seats

I LR-Hare and Compensated
I Threshold 0 5 10

Mixed Election Simulation

Rubber Meets The Road

I Voters cast votes for both PR and SMD contests
I Electioneers report PR totals and SMD winners to

Parliament
I Parliament allocates PR seats

I LR-Hare and Compensated
I Threshold 0 5 10

Mixed Election Simulation

Rubber Meets The Road

I Voters cast votes for both PR and SMD contests
I Electioneers report PR totals and SMD winners to

Parliament
I Parliament allocates PR seats

I LR-Hare and Compensated
I Threshold 0 5 10

Mixed Election Simulation

Jargon

1. Run: start the model, repeatedly hold elections
2. Timestep=one election
3. Between elections:

3.1 Voter ideals can be “re-randomized”
3.2 Party positions can be “re-randomized”
3.3 Party positions might be “adapted” to observed

membership tendencies

Mixed Election Simulation

Jargon

1. Run: start the model, repeatedly hold elections
2. Timestep=one election
3. Between elections:

3.1 Voter ideals can be “re-randomized”
3.2 Party positions can be “re-randomized”
3.3 Party positions might be “adapted” to observed

membership tendencies

Mixed Election Simulation

Jargon

1. Run: start the model, repeatedly hold elections
2. Timestep=one election
3. Between elections:

3.1 Voter ideals can be “re-randomized”
3.2 Party positions can be “re-randomized”
3.3 Party positions might be “adapted” to observed

membership tendencies

Batch Or Graphical Interface

I Histogram of ideal points
I Median of party SMD candidates
I Party seats
I Indicators of representation

Control Panel

Graphs

Mixed Election Simulation

Batch Design

100 runs with each of

I Number of Parties = 5 , 10, 15
I Voter Type Distributions

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1/3, 1/3, 1/3)

I PR thresholds 0, 5, 10
I All Parties Run SMD in All Districts 0, 1

Mixed Election Simulation

Condition Sequence of Batch Simulation

I 30 steps: Randomly chosen party founders
“stuck” in position between elections

I Voter ideal points re-drawn

I ?? steps: Parties adapt dynamically, founder
stands at “median of candidate positions” from
previous election

I Voter ideal points are a “fixed target”

I 30 steps (after equilibration): Parties adapt
dynamically with randomly re-draw voters

I 100 steps: Fix voters, Randomly Choose party
founders.

Mixed Election Simulation

Condition Sequence of Batch Simulation

I 30 steps: Randomly chosen party founders
“stuck” in position between elections

I Voter ideal points re-drawn

I ?? steps: Parties adapt dynamically, founder
stands at “median of candidate positions” from
previous election

I Voter ideal points are a “fixed target”

I 30 steps (after equilibration): Parties adapt
dynamically with randomly re-draw voters

I 100 steps: Fix voters, Randomly Choose party
founders.

Mixed Election Simulation

Condition Sequence of Batch Simulation

I 30 steps: Randomly chosen party founders
“stuck” in position between elections

I Voter ideal points re-drawn

I ?? steps: Parties adapt dynamically, founder
stands at “median of candidate positions” from
previous election

I Voter ideal points are a “fixed target”

I 30 steps (after equilibration): Parties adapt
dynamically with randomly re-draw voters

I 100 steps: Fix voters, Randomly Choose party
founders.

Mixed Election Simulation

Condition Sequence of Batch Simulation

I 30 steps: Randomly chosen party founders
“stuck” in position between elections

I Voter ideal points re-drawn

I ?? steps: Parties adapt dynamically, founder
stands at “median of candidate positions” from
previous election

I Voter ideal points are a “fixed target”

I 30 steps (after equilibration): Parties adapt
dynamically with randomly re-draw voters

I 100 steps: Fix voters, Randomly Choose party
founders.

Mixed Election Simulation

Condition Sequence of Batch Simulation

I 30 steps: Randomly chosen party founders
“stuck” in position between elections

I Voter ideal points re-drawn

I ?? steps: Parties adapt dynamically, founder
stands at “median of candidate positions” from
previous election

I Voter ideal points are a “fixed target”

I 30 steps (after equilibration): Parties adapt
dynamically with randomly re-draw voters

I 100 steps: Fix voters, Randomly Choose party
founders.

Mixed Election Simulation

Condition Sequence of Batch Simulation

I 30 steps: Randomly chosen party founders
“stuck” in position between elections

I Voter ideal points re-drawn

I ?? steps: Parties adapt dynamically, founder
stands at “median of candidate positions” from
previous election

I Voter ideal points are a “fixed target”

I 30 steps (after equilibration): Parties adapt
dynamically with randomly re-draw voters

I 100 steps: Fix voters, Randomly Choose party
founders.

Mixed Election Simulation

Actual demonstration!

No extra charge!

Mixed Election Simulation

Interesting Bug Invented

I Caution about “local variables” and references
I OK to do

- someMethod {
id anAgent = [AClass create: self];
[otherClass setAgent: anAgent]; }

I anAgent is a LOCAL VARIABLE.
I Is it safe to allow otherClass to “use” that agent

after code exits this method?
I That is OK because create grabs memory for

anAgent and it is held until anAgent is dropped.

Mixed Election Simulation

Interesting Bug Invented

I Caution about “local variables” and references
I OK to do

- someMethod {
id anAgent = [AClass create: self];
[otherClass setAgent: anAgent]; }

I anAgent is a LOCAL VARIABLE.
I Is it safe to allow otherClass to “use” that agent

after code exits this method?
I That is OK because create grabs memory for

anAgent and it is held until anAgent is dropped.

Mixed Election Simulation

Interesting Bug Invented

I Caution about “local variables” and references
I OK to do

- someMethod {
id anAgent = [AClass create: self];
[otherClass setAgent: anAgent]; }

I anAgent is a LOCAL VARIABLE.
I Is it safe to allow otherClass to “use” that agent

after code exits this method?
I That is OK because create grabs memory for

anAgent and it is held until anAgent is dropped.

Mixed Election Simulation

Interesting Bug Invented

I Caution about “local variables” and references
I OK to do

- someMethod {
id anAgent = [AClass create: self];
[otherClass setAgent: anAgent]; }

I anAgent is a LOCAL VARIABLE.
I Is it safe to allow otherClass to “use” that agent

after code exits this method?
I That is OK because create grabs memory for

anAgent and it is held until anAgent is dropped.

Mixed Election Simulation

Interesting Bug Invented

I Caution about “local variables” and references
I OK to do

- someMethod {
id anAgent = [AClass create: self];
[otherClass setAgent: anAgent]; }

I anAgent is a LOCAL VARIABLE.
I Is it safe to allow otherClass to “use” that agent

after code exits this method?
I That is OK because create grabs memory for

anAgent and it is held until anAgent is dropped.

Mixed Election Simulation

But...
I Suppose instead you try

char * colors = {”white”,”green”,”blue”}
prSeatGraph = [EZGraph createBegin: self];
[prSeatGraph setColors: colors count: 3];
prSeatGraph = [prSeatGraph createEnd];

I That’s headed for a big crash
I EZGraph does not copy the array into a data

structure, it just makes a “note” of where the
data is.

I The next time EZGraph tries to find the colors,
they are not there

Mixed Election Simulation

But...
I Suppose instead you try

char * colors = {”white”,”green”,”blue”}
prSeatGraph = [EZGraph createBegin: self];
[prSeatGraph setColors: colors count: 3];
prSeatGraph = [prSeatGraph createEnd];

I That’s headed for a big crash
I EZGraph does not copy the array into a data

structure, it just makes a “note” of where the
data is.

I The next time EZGraph tries to find the colors,
they are not there

Mixed Election Simulation

But...
I Suppose instead you try

char * colors = {”white”,”green”,”blue”}
prSeatGraph = [EZGraph createBegin: self];
[prSeatGraph setColors: colors count: 3];
prSeatGraph = [prSeatGraph createEnd];

I That’s headed for a big crash
I EZGraph does not copy the array into a data

structure, it just makes a “note” of where the
data is.

I The next time EZGraph tries to find the colors,
they are not there

Mixed Election Simulation

But...
I Suppose instead you try

char * colors = {”white”,”green”,”blue”}
prSeatGraph = [EZGraph createBegin: self];
[prSeatGraph setColors: colors count: 3];
prSeatGraph = [prSeatGraph createEnd];

I That’s headed for a big crash
I EZGraph does not copy the array into a data

structure, it just makes a “note” of where the
data is.

I The next time EZGraph tries to find the colors,
they are not there

Mixed Election Simulation

What do we find out?

Mixed Election Simulation

SMD is a lot more exciting than PR

Mixed Election Simulation

But With PR

Mixed Election Simulation

Instability Index

Calculate standard deviation in Number of Seats for
each party
Instability Index=Average of those standard
deviations

Mixed Election Simulation

PR

Vert=#N of Effective Parties Horiz=Instability index

Mixed Election Simulation

But SMD is quite different

