R You Ready?

Paul E. Johnson, Prof., Political Science Assoc. Dir, Center for Research Methods and Data Analysis

University of Kansas

Acknowledgment: Thanks to the r-help crowd, especially Pat Burns, Deepayan Sarkar, John Fox, and Sandy Weisberg, for their useful examples

PJ (KU)

R You Ready?

- Mission for this talk
 - Describe "R"
 - Illustrate some of its uses
- Future "hands-on" computing sessions can be scheduled.
- Alert: KU Summer Stats Camp will offer 1 week-long session on R taught by some well qualified folks :) http://www.quant.ku.edu

Outline

- What is R?
- If You Knew S, you'd Feel Right At Home!
- OK, What Does It DO?
- Graphics is a Major Selling Point for R
- 6 R Handy for Teaching Statistics
- 6 Packages: Addon Components for R
- 🕜 Data Importation Anecdote
- If You Want To Get Started
- Opendix 1: Code for Simulation Examples

3

4 3 4 3 4 3 4

< 67 ▶

Outline

- If You Knew S, you'd Feel Right At Home!
- OK, What Does It DO?
- Graphics is a Major Selling Point for R
- 6 R Handy for Teaching Statistics
- 6 Packages: Addon Components for R
- 🕖 Data Importation Anecdote
- 📧 If You Want To Get Started
- 9 Appendix 1: Code for Simulation Examples

Image: A mathematical states and a mathem

"R is a little bit like an elephant"

∃ > 5 / 68 March 19, 2010

イロト イロト イヨト

э

R is

- a free/open implementation of S.
- a SAS/SPSS replacement for stats and graphs (salvation from Excel)
- the embodiment of a new philosophy about data analysis, perhaps best exemplified by William Venables and Brian Ripley, *Modern Applied Statistics with S/R*, now in its 4th edition.
- a statistical toobench for rapid model development by statisticians.
- an open community of scholars who cooperate, exchange, and enhance each other's work product

Outline

1 What is R?

If You Knew S, you'd Feel Right At Home!

- OK, What Does It DO?
- ④ Graphics is a Major Selling Point for R
- 6 R Handy for Teaching Statistics
- 6 Packages: Addon Components for R
- 🕖 Data Importation Anecdote
- 💿 If You Want To Get Started
- Oppendix 1: Code for Simulation Examples

< 177 ▶

- The S Language was developed at Bell Labs (mid 1970s). See Richard Becker's "Brief History of S" about the AT&T years
- *S-plus* is a commercial product that answers to S syntax commands (from the Insightful Corporation).
- There have been 4 generations of the S language.
 - Currently, S3 and S4 are in use
 - In perfect world, transition would not affect users because changes are "under the hood"

- R is a computer language
 - similar to S, but possibly better from a "computer science point of view."

Ross Ihaka and Robert Gentleman. 1996. "R: A language for data analysis and graphics." *Journal of Computational and Graphical Statistics*, 5(3):299-314.

- R is a program that interprets scripts written in the R language
 - ▶ R also can "inter-connect" with other programs.
- R is now the "lingua franca" of research methods development. You Snooze, You Lose.

- We can inspect, verify, copy, change, fix, and extend R.
- R team also elected to make R available for FREE, without charge.
- R evolves. It is an open, world-wide community of scholars.
- In R-space, nobody can hear (has to listen to) you scream (apologies to Alien)

Outline

- 1 What is R?
- 2 If You Knew S, you'd Feel Right At Home!
- OK, What Does It DO?
- Graphics is a Major Selling Point for R
- 6 R Handy for Teaching Statistics
- 6 Packages: Addon Components for R
- 🕖 Data Importation Anecdote
- 📧 If You Want To Get Started
- Oppendix 1: Code for Simulation Examples

イロト イポト イヨト イヨト

- A set of ways to organize data
- All the usual statistical models
- Handy graphs
- Highly "extensible"-open to modular "packages"
- Framework for cooperation with other programs and languages

• An interactive session in R looks like this

pauljohn@pols124: ~ File Edit View Terminal Help > > > x <- rnorm(n=1000, mean=10, sd=20)</p> > mean(x)[1] 10.07482 > sd(x)[1] 20.10633 > guantile(x) 0% 25% 50% 75% 100% -51.164700 -3.763587 10.293876 22.687147 70.862537 > hist(x) > >

• > is the "prompt". Type stuff there!

イロト イポト イヨト イヨト

• A graph pop ups when you type "hist(x)"

• But clicking on the graph doesn't do anything.

• Type more commands to re-draw and beautify the graph.

				pauljohn@pols124: ~	
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>T</u> erminal	<u>H</u> elp	
> > hist > hist 2 Surv > line >	:(x) :(x, vey o es(den	prob=1 f Immi nsity	Γ,breaks= igrants") (x), col=	20, main="Lithuanian Refugee Dissatisfaction", "red", lty=2,lwd=1.5)	xlab="200
ΣΠ					

3

イロト イポト イヨト イヨト

And a nicer looking histogram pops up

• Some GUI do exist (Rcmdr, jagr, rattle, rkward), but....

PJ (KU)

March 19, 2010 16 / 68

Outline

- What is R?
- If You Knew S, you'd Feel Right At Home!
- OK, What Does It DO?
- Graphics is a Major Selling Point for R
- 6 R Handy for Teaching Statistics
 - 6 Packages: Addon Components for R
- 🕖 Data Importation Anecdote
- 💿 If You Want To Get Started
- Oppendix 1: Code for Simulation Examples

イロト イヨト イヨト イヨ

- R can create a "blank canvas"
- Which can then be decorated with subsidiary plotting commands like
 - lines
 - ▶ points
 - ► text
 - polygon

A (10) < A (10) </p>

Recall the old crowd favorite, the Normal Distribution,

 $x \sim N(\mu, \sigma^2)$

 μ is the center point of x's range, the expected value, or mean σ is a dispersion parameter, often called the standard deviation

 $x \sim Normal(\mu = 10.03, \sigma = 12.58)$

I warned you. This is one awesome figure!

∃ > March 19, 2010 20 / 68

< 17 ►

э

plot() is magic! It tries to guess what you need, and it gives it to you. R has separate methods to create

- scatterplots
- barplots
- boxplots
- spinograms
- and so forth

< 🗗 🕨

March 19, 2010 22 / 68

plot 1 numeric by a categorical variable, get boxplot

< **1** → <

э

plot 2 categorical variables \rightarrow spineplot

< 17 × <

3

Gender Gap Prettier as a Barplot, IMHO

R You Ready?

March 19, 2010 25 / 68

3

(日) (同) (日) (日) (日)

Best Bar Plot from POLS706 Midterm 2010

PJ (KU

R You Ready

March 19, 2010 26 / 68

3

My Best Barplot from the POLS706 Midterm, 2009

R You Ready?

March 19, 2010 27 / 68

э

Outline

- What is R?
- If You Knew S, you'd Feel Right At Home!
- OK, What Does It DO?
- Graphics is a Major Selling Point for R
- B R Handy for Teaching Statistics
 - Packages: Addon Components for R
- 🕖 Data Importation Anecdote
- 💿 If You Want To Get Started
- Oppendix 1: Code for Simulation Examples

イロト イヨト イヨト イ

- Types of random variable generators (not just Normal, but also many others)
- Calculate theoretical quantities
 - probability density curves
 - cumulative distribution functions
- Draw samples from these distributions
- Conduct simulations (Monte Carlo experiments) easily
 - R has functions to streamline this work.

One Normal Variable, μ =50, σ =20

A Random Sample from N(10,400)

▶ 《夏》《夏》 書 ♪ 夏 ∽ Q へ March 19, 2010 30 / 68

< 17 ×

Observed and "True" Probabilties

Possible Values

< 17 ►

Э

The Sampling Distribution of the Mean

Normal Sample Means

Consistent with theory, means should be Normal(μ =50, σ =20/ $\sqrt{1500}$

PJ (KU

March 19, 2010 32 / 68

Put On Original Scale!

Normal Sample Means

э

< (10) ×

Sample from Exponential is not Normal

An Exponential Random Sample

< (17) >

The Means Look Very Normal to ME!

Sample Means from Exponentials

Recall that this is the Central Limit Theorem

PJ (KU

March 19, 2010 35 / 68

Outline

- What is R?
- If You Knew S, you'd Feel Right At Home!
- OK, What Does It DO?
- ④ Graphics is a Major Selling Point for R
- 6 R Handy for Teaching Statistics
- 6 Packages: Addon Components for R
 - Data Importation Anecdote
- 📧 If You Want To Get Started
- Oppendix 1: Code for Simulation Examples

イロト イヨト イヨト イ

- R Package Writers follow a set of guidelines
- Upload packages to CRAN
- Available after passing checks & tests
- R users can download & install from within R.
 - > install.packages(c("lmtest","car"), dep=T)

A Little Introspection, Please

- What packages do you have already?
 - > rownames(installed.packages())

R provides a set of "recommended" packages, every install will have them.

• Wonder what you are missing out on?

> rownames(available.packages())

On 2010-03-19, that command returned a list of 2260 packages.

I want it ALL!

l wrote a script that installed them all on a Windows system. Download and Install took

- 3 hours
- 2.7 Gigabytes of storage
- Check for updates periodically
 - > update.packages(ask=F, checkBuilt=T)

イロト 不得下 イヨト イヨト 二日

- I recently learned there is an R package for making and playing SudoKu puzzles.
- At first, I turned my nose up at the frivolity of it, but then
- I installed it
 - > install.packages("sudoku")
- After it is installed, run
 - > library(sudoku)

PJ (KU)

< 47 ►

- The first thing I always do after loading a package is find out what is inside it:
- > library(help=sudoku)

< 🗗 🕨

```
Information on package 'sudoku'
Description:
Package: sudoku
Version: 2.2
Date: 2009-02-02
Title: Sudoku Puzzle Generator and Solver
Author: David Brahm <brahm@alum.mit.edu> and Greg Snow <Greg.
   Snow@intermountainmail.org>, with contributions from Curt
   Seeliger <Seeliger.Curt@epamail.epa.gov> and Henrik
   Bengtsson <hb@maths.lth.se>.
Maintainer: David Brahm <brahm@alum.mit.edu>
Suggests: tkrplot
Description: Generates, plays, and solves Sudoku puzzles. The
    GUI playSudoku() needs package "tkrplot" if you are not
   on Windows
License: GPL
Packaged: Mon Feb 2 16:28:15 2009; a215020
Built: R 2.10.1; ; 2010-03-19 06:50:35 UTC; unix
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Index :

fetchSudokuUK

generateSudoku hintSudoku playSudoku printSudoku readSudoku solveSudoku writeSudoku Fetch the daily sudoku puzzle from http://www.sudoku.org.uk/ Randomly Generate a Sudoku Puzzle Grid Give a Hint for a Sudoku Cell Interactively play a game of Sudoku Print a Sudoku Grid to the Terminal. Read a File Containing a Sudoku Grid Solve a Sudoku Puzzle Write a Sudoku Grid to a File

- 3

イロト イポト イヨト イヨト

- Then I use the help feature to find out more on the interesting-looking ones:
 - > ?generateSudoku
- That's the same as:
 - > help(generateSudoku)
- Perhaps I run the example that is displayed on the help page:
 - > example(generateSudoku)

When you run a function, the parentheses are required, even if you don't add any specific arguments. This tells generateSudoku to use the default settings.

> generateSudoku()

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]
[1,]	1	0	0	0	0	0	0	0	0
[2,]	7	0	0	0	1	3	5	8	2
[3,]	8	2	0	0	6	0	0	0	0
[4,]	4	0	1	0	2	8	6	0	0
[5,]	0	5	8	0	0	0	4	0	1
[6,]	0	0	0	3	4	0	0	0	0
[7,]	5	0	2	0	7	9	3	1	4
[8,]	0	0	0	0	0	2	0	0	0
[9,]	0	7	0	0	0	0	0	5	0

3.2

44 / 68

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A Nicer Looking Sudoku Puzzle

- > myPuzzle <- generateSudoku(Nblank = 20, print.it = F)</pre>
- > printSudoku(myPuzzle)

Image: A matrix and a matrix

Torture Yourself with British Sudoku

> printSudoku(fetchSudokuUK())

PJ (KU)

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

There is even an interactive on-screen game to be played (with hints for cheaters)

3

イロト イポト イヨト イヨト

R interprets all of these commands in the same way:

- > generateSudoku (Nblank=20, print.it = TRUE)
- > generateSudoku(20,T)
- > generateSudoku(N=20, p=T)
- > generateSudoku(p=T, N=20)

R will try to match up the options with your arguments, but I try to avoid gambling by explicitly naming options.

This does not give what you want because the arguments are out of order and unnamed

> generateSudoku(T, 20)

イロト イポト イヨト イヨト 二日

Outline

- What is R?
- If You Knew S, you'd Feel Right At Home!
- OK, What Does It DO?
- ④ Graphics is a Major Selling Point for R
- 5 R Handy for Teaching Statistics
 - 6 Packages: Addon Components for R
- 🕖 Data Importation Anecdote
- 8 If You Want To Get Started
- Oppendix 1: Code for Simulation Examples

イロト イヨト イヨト イ

- > library(memisc)
- > idat <- spss.system.file("/home/pauljohn/ps/ps706/DataExample")</pre>
- > idat2 <- as.data.set(idat)</pre>
- > dat <- as.data.frame(idat2)</pre>
- > rm(idat2)
- > rm(idat)

> table((dat\$vo	te00)				
	VO	TED	DID	NOT	VOTE	INELIGIBLE
	1	826			715	389
REFUSED	TO ANS	WER				
		0				

PJ (KU)

R You Ready?

March 19, 2010 51 / 68

- > library(gmodels)
- > CrossTable(dat\$vote00)

Cell Contents |-----| | N | | N / Table Total | |------

< 67 >

l	VOTED	DID NOT VOTE	INELIGIBLE
I			
	1826	715	389
l	0.623	0.244	0.133
1			

(ロ) (個) (目) (目) (日) (の)

R You Ready?

PJ (KU)

gmodels package: Tastes Like SPSS in here!

> CrossTable(dat\$vote00, dat\$sex)

Cell Contents
-----N
Chi-square contribution
N / Row Total
N / Col Total
N / Table Total

Total Observations in Table: 2930

PJ (KU)

	dat\$sex			
dat\$vote00	MALE	FEMALE	Row Total	
VOTED	779	1047	1826	
	0.259	0.199		
	0.427	0.573	0.623	
	0.612	0.632	1	
	0.266	0.357	1	
DID NOT VOTE	317	398	715	
	0.130	0.100		
	0.443	0.557	0.244	
	0.249	0.240	I	
	0.108	0.136		
INELIGIBLE	177	212	389	
	0.378	0.290		
	0.455	0.545	0.133	
	0.139	0.128		1
PJ (KU)		R You Ready?	March 19, 2010	

55 / 68

> gt <- genTable(percent(vote00) ~ sex, data = dat)
> gt

sex

percent(vote00)	MALE	FEMALE
VOTED	61.19403	63.18648
DID NOT VOTE	24.90181	24.01931
INELIGIBLE	13.90416	12.79421
REFUSED TO ANSWER	0.00000	0.00000
Ν	1273.00000	1657.00000

(日) (國) (王) (王) (王)

	MALE	FEMALE
VOTED	61%	63%
DID NOT VOTE	25	24
INELIGIBLE	14	13
REFUSED TO ANSWER	0	0
Ν	1273	1657

3

イロト イポト イヨト イヨト

Outline

- What is R?
- If You Knew S, you'd Feel Right At Home!
- OK, What Does It DO?
- ④ Graphics is a Major Selling Point for R
- 6 R Handy for Teaching Statistics
- 6 Packages: Addon Components for R
- 🕖 Data Importation Anecdote
- If You Want To Get Started
 - 9 Appendix 1: Code for Simulation Examples

イロト イヨト イヨト イ

My new policy. I won't help students unless they follow my "Workspace Advice" for $\mathsf{R}^{.1}$ In essence,

- Create a "folder"
- Opy a template R file into that folder
- Open that R file with the Emacs text editor
- 4 Launch an R session inside an Emacs window
- Oevelop the R code by going back-and-forth between the "program buffer" and the "R buffer"

¹I put it in the Emacs wiki, it must be right! http://www.emacswiki.org/emacs/CategoryESS

Commands on left, R session on Right

PJ (KU)

R You Ready?

Emacs is like Democracy. Its the worst, except for all of the others that have been tried...

Emacs

- ► Free
- Available on all platforms
- Highly configurable
- Useful for many other kinds of projects.

Outline

- What is R?
- 2 If You Knew S, you'd Feel Right At Home!
- OK, What Does It DO?
- ④ Graphics is a Major Selling Point for R
- 6 R Handy for Teaching Statistics
- 6 Packages: Addon Components for R
- 🕖 Data Importation Anecdote
- 8 If You Want To Get Started
- Oppendix 1: Code for Simulation Examples

イロト イヨト イヨト イ

- > var1 <- rnorm(n = 1500, mean = 50, sd = 20)
- > hist(x = var1, prob = T, breaks = 20, xlim = c(-10),

110), ylim = c(0, 0.03), xlab = "A Random Sample from N(2)

ylab = "Proportion of Observations", main = "")

- > den1 <- density(var1)</pre>
- > lines(den1, lty = 2, col = "red")
- > legend("topleft", legend = c(paste("mean=", round(mean(var1), 3)), paste("sd=", round(sd(var1), 3))))

Compare Theoretical Probabilities and Observed Sample

(日) (周) (日) (日) (日) (0)

- > hist(samp, prob = T, breaks = 20, ylim = c(0,

1), xlab = "Normal Sample Means", main = "")

> legend("topleft", legend = c(paste("mean of means=", round(mean(samp), 3)), paste("sd of means=", round(sd(samp), 3))))

イロト イポト イヨト イヨト 二日

- round("topieit", iegend = c(paste("mean of means=", round(mean(samp), 3)), paste("sd of means=", round(sd(samp), 3))))

イロト イポト イヨト イヨト 二日

- > var1 <- rexp(n = 1500, rate = 1/50)
- > hist(x = var1, prob = T, breaks = 20, xlim = c(-10,

300), ylim = c(0, 0.03), xlab = "An Exponential Random Sa

ylab = "Proportion of Observations", main = "")

- > den1 <- density(var1)</pre>
- > lines(den1, lty = 2, col = "red")
- > legend("topleft", legend = c(paste("mean=", round(mean(var1), 3)), paste("sd=", round(sd(var1), 3))))

- > legend("topleft", legend = c(paste("mean of means=", round(mean(samp), 3)), paste("sd of means=", round(sd(samp), 3))))

イロト イポト イヨト イヨト 二日