R You Ready?

Paul E. Johnson, Prof., Political Science

Assoc. Dir, Center for Research Methods and Data Analysis

University of Kansas

Acknowledgment: Thanks to the r-help crowd, especially Pat Burns, Deepayan Sarkar, John Fox, and Sandy Weisberg, for their useful examples

- Mission for this talk
- Describe "R"
- Illustrate some of its uses
- Future "hands-on" computing sessions can be scheduled.
- Alert: KU Summer Stats Camp will offer 1 week-long session on R taught by some well qualified folks :) http://www.quant.ku.edu

Outline

(1) What is R ?
(2) If You Knew S, you'd Feel Right At Home!
(3) OK, What Does It DO?
(4) Graphics is a Major Selling Point for R
(5) R Handy for Teaching Statistics
(6) Packages: Addon Components for R
(7) Data Importation Anecdote
(8) If You Want To Get Started
(9) Appendix 1: Code for Simulation Examples

Outline

(1) What is R?
(2) If You Knew S, you'd Feel Right At Home!
(3) OK, What Does It DO?
(a) Graphics is a Major Selling Point for R
(5) R Handy for Teaching Statistics
(6) Packages: Addon Components for R
(7) Data Importation Anecdote
(8) If You Want To Get Started
(9) Appendix 1: Code for Simulation Examples

" R is a little bit like an elephant"

Ouch! That's not my Trunk!

R is
a free/open implementation of S.
a SAS/SPSS replacement for stats and graphs (salvation from Excel)
the embodiment of a new philosophy about data analysis, perhaps best exemplified by William Venables and Brian Ripley, Modern Applied Statistics with S / R, now in its 4th edition.
a statistical toobench for rapid model development by statisticians.
an open community of scholars who cooperate, exchange, and enhance each other's work product

Outline

(1) What is R?
(2) If You Knew S, you'd Feel Right At Home!
(3) OK, What Does It DO?

4 Graphics is a Major Selling Point for R
(3) R Handy for Teaching Statistics
6) Packages: Addon Components for R
(7) Data Importation Anecdote
(8) If You Want To Get Started
(9) Appendix 1: Code for Simulation Examples

What does R Taste Like? Everybody Says "Tastes like S"

- The S Language was developed at Bell Labs (mid 1970s). See Richard Becker's "Brief History of S" about the AT\&T years
- S-plus is a commercial product that answers to S syntax commands (from the Insightful Corporation).
- There have been 4 generations of the S language.
- Currently, S3 and S4 are in use
- In perfect world, transition would not affect users because changes are "under the hood"

What does R Taste Like? Everybody Says "Tastes like S"

- R is a computer language
- similar to S, but possibly better from a "computer science point of view."

Ross Ihaka and Robert Gentleman. 1996. "R: A language for data analysis and graphics." Journal of Computational and Graphical Statistics, 5(3):299-314.

- R is a program that interprets scripts written in the R language
- R also can "inter-connect" with other programs.
- R is now the "lingua franca" of research methods development. You Snooze, You Lose.

Does it matter that it is "Open Source"? YES!

- We can inspect, verify, copy, change, fix, and extend R.
- R team also elected to make R available for FREE, without charge.
- R evolves. It is an open, world-wide community of scholars.
- In R-space, nobody can hear (has to listen to) you scream (apologies to Alien)

Outline

(1) What is R?

- If You Knew S, you'd Feel Right At Home!
(3) OK, What Does It DO?
(4) Graphics is a Major Selling Point for R
(5) R Handy for Teaching Statistics
(8) Packages: Addon Components for R
(7) Data Importation Anecdote
(3) If You Want To Get Started
(9) Appendix 1: Code for Simulation Examples

I Don't Give a Hoot about S. What is R?

- A set of ways to organize data
- All the usual statistical models
- Handy graphs
- Highly "extensible"-open to modular "packages"
- Framework for cooperation with other programs and languages

Its interactive, but not "pointy clicky"

- An interactive session in R looks like this

図 pauljohn@pols124: ~						X
File Edit View Ierminal Help						
\cdots						
$\begin{aligned} & >x<-\quad \operatorname{rnorm}(n=1000, \text { mean }=10, \quad s d=20) \\ & >\text { mean }(x) \end{aligned}$						
[1] 10.07482						
$>\mathrm{sd}(\mathrm{x})$						
[1] 20.10633						
> quantile(x)						
0\%	25\%	50\%	75\%	100\%		
-51.164700	-3.763587	10.293876	22.687147	70.862537		
> hist(x)						
$>\square$						Σ

- > is the "prompt". Type stuff there!

There might be some excitement

- A graph pop ups when you type "hist(x)"

- But clicking on the graph doesn't do anything.

But you do interact with R

- Type more commands to re-draw and beautify the graph.

And a nicer looking histogram pops up

- Some GUI do exist (Rcmdr, jagr, rattle, rkward), but....

Outline

(1) What is R?

- If You Knew S, you'd Feel Right At Home!
(3) OK, What Does It DO?
(4) Graphics is a Major Selling Point for R
(5) R Handy for Teaching Statistics
(6) Packages: Addon Components for R
(7) Data Importation Anecdote
(8) If You Want To Get Started
(2) Appendix 1: Code for Simulation Examples

I Use R to Make Line Art

- R can create a "blank canvas"
- Which can then be decorated with subsidiary plotting commands like
- lines
- points
- text
- polygon

Hold your Seats! Prepare for the Graphic of the Century

Recall the old crowd favorite, the Normal Distribution,

$$
x \sim N\left(\mu, \sigma^{2}\right)
$$

μ is the center point of x 's range, the expected value, or mean σ is a dispersion parameter, often called the standard deviation

$$
x \sim \operatorname{Normal}(\mu=10.03, \sigma=12.58)
$$

I warned you. This is one awesome figure!

Getting all Computer-science-ey now:

plot() is magic!
It tries to guess what you need, and it gives it to you.
R has separate methods to create

- scatterplots
- barplots
- boxplots
- spinograms
- and so forth

plot of 2 numeric variables \rightarrow get a scatterplot

plot 1 numeric by a categorical variable, get boxplot

plot 2 categorical variables \rightarrow spineplot

Gender Gap Prettier as a Barplot, IMHO

Best Bar Plot from POLS706 Midterm 2010

My Best Barplot from the POLS706 Midterm, 2009

Outline

(1) What is R?

- If You Knew S, you'd Feel Right At Home!
(3) OK, What Does It DO?
(3) Graphics is a Major Selling Point for R
(5) R Handy for Teaching Statistics
(6) Packages: Addon Components for R
(7) Data Importation Anecdote
(3) If You Want To Get Started
(9) Appendix 1: Code for Simulation Examples

R has random variables

- Types of random variable generators (not just Normal, but also many others)
- Calculate theoretical quantities
- probability density curves
- cumulative distribution functions
- Draw samples from these distributions
- Conduct simulations (Monte Carlo experiments) easily
- R has functions to streamline this work.

One Normal Variable, $\mu=50, \sigma=20$

Observed and "True" Probabilties

The Sampling Distribution of the Mean

Consistent with theory, means should be $\operatorname{Normal}(\mu=50, \sigma=20 / \sqrt{1500}$

Put On Original Scale!

Sample from Exponential is not Normal

The Means Look Very Normal to ME!

Recall that this is the Central Limit Theorem

Outline

(1) What is R?

- If You Knew S, you'd Feel Right At Home!
(3) OK, What Does It DO?
(2) Graphics is a Major Selling Point for R
(5) R Handy for Teaching Statistics

6 Packages: Addon Components for R
(7) Data Importation Anecdote
(8) If You Want To Get Started
(2) Appendix 1: Code for Simulation Examples

CRAN: a service from the R Core Team

- R Package Writers follow a set of guidelines
- Upload packages to CRAN
- Available after passing checks \& tests
- R users can download \& install from within R.
$>$ install.packages(c("Imtest","car"), dep=T)

A Little Introspection, Please

- What packages do you have already?
$>$ rownames(installed.packages())
R provides a set of "recommended" packages, every install will have them.
- Wonder what you are missing out on?
$>$ rownames(available.packages())
On 2010-03-19, that command returned a list of 2260 packages.
- I want it ALL!

I wrote a script that installed them all on a Windows system.
Download and Install took

- 3 hours
- 2.7 Gigabytes of storage
- Check for updates periodically
$>$ update. packages (ask=F, checkBuilt=T)

A Vignette on Sudoku

- I recently learned there is an R package for making and playing SudoKu puzzles.
- At first, I turned my nose up at the frivolity of it, but then
- I installed it
> install.packages("sudoku")
- After it is installed, run
> library (sudoku)

What is that Sudoku thing?

The first thing I always do after loading a package is find out what is inside it:
> library (help=sudoku)

Documentation Included! No Extra Charge!

Information on package 'sudoku'
Description:
Package: sudoku
Version: 2.2
Date: 2009-02-02
Title: Sudoku Puzzle Generator and Solver
Author: David Brahm brahm@alum.mit.edu and Greg Snow <Greg. Snow@intermountainmail.org>, with contributions from Curt Seeliger <Seeliger. Curt@epamail.epa.gov> and Henrik Bengtsson hb@maths.Ith.se.
Maintainer: David Brahm brahm@alum.mit.edu
Suggests: tkrplot
Description: Generates, plays, and solves Sudoku puzzles. The GUI playSudoku() needs package "tkrplot" if you are not on Windows.
License: GPL
Packaged: Mon Feb 2 16:28:15 2009; a215020
Built: R 2.10.1; ; 2010-03-19 06:50:35 UTC; unix

Index:

fetchSudokuUK	Fetch the daily sudoku puzzle from
http://wwo.sudoku.org.uk/	
generateSudoku	Randomly Generate a Sudoku Puzzle Grid
hintSudoku	Give a Hint for a Sudoku Cell
playSudoku	Interactively play a game of Sudoku
printSudoku	Print a Sudoku Grid to the Terminal.
solveSudoku	Read a File Containing a Sudoku Grid
writeSudoku	Solve a Sudoku Puzzle
	Write a Sudoku Grid to a File

Documentation Included! No Extra Charge!

- Then I use the help feature to find out more on the interesting-looking ones:
> ? generateSudoku
- That's the same as:
$>$ help (generateSudoku)
- Perhaps I run the example that is displayed on the help page:
> example(generateSudoku)

When you run a function, the parentheses are required, even if you don't add any specific arguments. This tells generateSudoku to use the default settings.
> generateSudoku()

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$	$[, 9]$
$[1]$,	1	0	0	0	0	0	0	0	0
$[2]$,	7	0	0	0	1	3	5	8	2
$[3]$,	8	2	0	0	6	0	0	0	0
$[4]$,	4	0	1	0	2	8	6	0	0
$[5]$,	0	5	8	0	0	0	4	0	1
$[6]$,	0	0	0	3	4	0	0	0	0
$[7]$,	5	0	2	0	7	9	3	1	4
$[8]$,	0	0	0	0	0	2	0	0	0
$[9]$,	0	7	0	0	0	0	0	5	0

A Nicer Looking Sudoku Puzzle

> myPuzzle <- generateSudoku(Nblank = 20, print.it = F)
> printSudoku(myPuzzle)

9		6			2		5	7	
7			6	9	3		2		
1	2		7		5		6		
8			9	3	6			1	
2		1		5	7		9		
3	6		1		4		7		
5		8	3				1	2	
4	2	2		7	8			6	
6			2	4	1		8	5	

Torture Yourself with British Sudoku

> printSudoku(fetchSudokuUK())

Play Sudoku interactively against R

There is even an interactive on-screen game to be played (with hints for cheaters)

		2			3			
	4	9		7				
				4				2
	6		3		9		5	
3				8				9
	8		1		5		3	
6				5				
				9		6	8	
			6		1	5		

- this help
insert digit
clear cell
replot the buzzle
quit
hint/help
correct wrong entries (show in red)
undo last entry
show number in cell
show all (solve the puzzle)

In Some Ways, R is very forgiving

R interprets all of these commands in the same way:
$>$ generateSudoku(Nblank=20, print.it $=$ TRUE)
$>$ generateSudoku (20, T)
$>$ generateSudoku ($\mathrm{N}=20, \mathrm{p}=\mathrm{T}$)
$>$ generateSudoku($\mathrm{p}=\mathrm{T}, \mathrm{N}=20$)
R will try to match up the options with your arguments, but I try to avoid gambling by explicitly naming options.
This does not give what you want because the arguments are out of order and unnamed
$>$ generateSudoku(T, 20)

Outline

(1) What is R?

- If You Knew S, you'd Feel Right At Home!
(3) OK, What Does It DO?
(2) Graphics is a Major Selling Point for R
(5) R Handy for Teaching Statistics
(8) Packages: Addon Components for R
(7) Data Importation Anecdote
(8) If You Want To Get Started
(9) Appendix 1: Code for Simulation Examples

How do you get that GSS data?

> library (memisc)
> idat <- spss.system.file("/home/pauljohn/ps/ps706/DataExample
> idat2 <- as.data.set(idat)
> dat <- as.data.frame(idat2)
> rm(idat2)
> rm(idat)

R table() output: boring

> table(dat\$vote00)

VOTED	DID NOT VOTE	INELIGIBLE
1826	715	389
REFUSED TO ANSWER		
0		

gmodels package: Tastes Like SPSS in here!

> library(gmodels)
> CrossTable (dat\$vote00)
Cell Contents

1826	715	389
0.623	0.244	0.133

gmodels package: Tastes Like SPSS in here!

> CrossTable(dat\$vote00, dat\$sex)
Cell Contents

Chi-square contribution | N / Row Total |
N / Col Total |

N / Table Total

Total Observations in Table: 2930

I like memisc's way

```
> gt <- genTable(percent(voteOO) ~ sex, data = dat)
> gt
sex
percent(vote00)
    VOTED
    DID NOT VOTE
    INELIGIBLE
    REFUSED TO ANSWER
    N
\begin{tabular}{rr} 
MALE & FEMALE \\
61.19403 & 63.18648 \\
24.90181 & 24.01931 \\
13.90416 & 12.79421 \\
0.00000 & 0.00000 \\
73.00000 & 1657.00000
\end{tabular}
```


mainly because it easily goes to LaTeX

MALE FEMALE

VOTED	61%	63%
DID NOT VOTE	25	24
INELIGIBLE	14	13
REFUSED TO ANSWER	0	0
N	1273	1657

Outline

(1) What is R?

- If You Knew S, you'd Feel Right At Home!
(3) OK, What Does It DO?
(2) Graphics is a Major Selling Point for R
(5) R Handy for Teaching Statistics
(8) Packages: Addon Components for R
(7) Data Importation Anecdote
(8) If You Want To Get Started
(9) Appendix 1: Code for Simulation Examples

R usage for Dummies

My new policy. I won't help students unless they follow my "Workspace Advice" for R. ${ }^{1}$ In essence,
(1) Create a "folder"
(2) Copy a template R file into that folder
(3) Open that R file with the Emacs text editor
(1) Launch an R session inside an Emacs window
(3) Develop the R code by going back-and-forth between the "program buffer" and the "R buffer"

[^0]
Commands on left, R session on Right

Emacs is like Democracy. Its the worst, except for all of the others that have been tried...

- Emacs
- Free
- Available on all platforms
- Highly configurable
- Useful for many other kinds of projects.

Outline

(1) What is R?

- If You Knew S, you'd Feel Right At Home!
(3) OK, What Does It DO?
(2) Graphics is a Major Selling Point for R
(5) R Handy for Teaching Statistics
(3) Packages: Addon Components for R
(7) Data Importation Anecdote
(3) If You Want To Get Started
(9) Appendix 1: Code for Simulation Examples

Draw a Sample from the Normal, Create a Histogram

```
> var1 <- rnorm(n = 1500, mean = 50, sd = 20)
> hist(x = var1, prob = T, breaks = 20, xlim = c(-10,
    110), ylim = c(0, 0.03), xlab = "A Random Sample from N(
    ylab = "Proportion of Observations", main = "")
> den1 <- density(var1)
> lines(den1, lty = 2, col = "red")
> legend("topleft", legend = c(paste("mean=", round(mean(var1)
    3)), paste("sd=", round(sd(var1), 3))))
```


Compare Theoretical Probabilities and Observed Sample

$$
\begin{aligned}
& \text { > plot(den1, xlim }=c(-10,110), \text { ylim }=c(0,0.03) \text {, } \\
& \text { xlab = "Possible Values", type = "l", lty = 2, } \\
& \text { col = "red", main = "") } \\
& \text { > possValues <- seq(-10, 110) } \\
& \text { > trueProbs <- dnorm(possValues, mean = 50, sd = 20) } \\
& \text { > lines(possValues, trueProbs, lty = 1, col = "black") } \\
& \text { > legend("topright", legend = c("true under } N(50,400) " \text {, } \\
& \text { "observed in sample"), lty = c(1, 2), col = c("black", } \\
& \text { "red")) }
\end{aligned}
$$

Draw Lots of Samples, Calculate their Means, and Plot

> samp <- replicate(1000, mean(rnorm(n = 1500, mean $=50$, sd = 20)))
> hist(samp, prob $=T$, breaks $=20$, ylim $=c(0$, 1), xlab = "Normal Sample Means", main = "") > legend("topleft", legend = c(paste("mean of means=", round(mean(samp), 3)), paste("sd of means=", round(sd(samp), 3))))

Re-scale the Previous Histogram

> hist(samp, prob = T, breaks = 20, xlab = "Normal Sample Means $x \lim =c(-10,110)$, ylim $=c(0,1)$, main $=" ")$
> legend("topleft", legend = c(paste("mean of means=", round(mean(samp), 3)), paste("sd of means=", round(sd(samp), 3))))

Create and Plot an Exponential Variate

```
> var1 <- rexp(n = 1500, rate = 1/50)
```

> hist (x = var1, prob $=T$, breaks $=20$, xlim $=c(-10$, 300), ylim $=c(0,0.03), x l a b=$ "An Exponential Random S ylab = "Proportion of Observations", main = "")
> den1 <- density(var1)
> lines(den1, lty = 2, col = "red")
> legend("topleft", legend = c(paste("mean=", round(mean(var1) 3)), paste("sd=", round(sd(var1), 3))))

The Central Limit Theorem is Correct

```
> samp <- replicate(1000, mean(rexp(n = 1500, rate = 1/50)))
> hist(samp, prob = T, breaks = 20, ylim = c(0,
    0.5), xlab = "Sample Means from Exponentials",
    main = "")
> legend("topleft", legend = c(paste("mean of means=",
    round(mean(samp), 3)), paste("sd of means=",
    round(sd(samp), 3))))
```


[^0]: ${ }^{1}$ I put it in the Emacs wiki, it must be right!
 http://www.emacswiki.org/emacs/CategoryESS

